Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Liver-function parameters are associated with incident hypertension in a large Taiwanese population follow-up study

Abstract

Previous studies demonstrated inconsistent results regarding the association between liver function and hypertension. In addition, large cohort follow-up studies are lacking. Therefore, this longitudinal study aimed to investigate the association between liver function and incident hypertension using data from the Taiwan Biobank (TWB). We evaluated liver biomarkers, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, alpha-fetoprotein (AFP), total bilirubin, and gamma-glutamyl transferase (GGT) in this study. A total of 21,293 participants without hypertension at baseline were analyzed. During the mean 3.9-year follow-up, 3002 participants developed hypertension (defined as incident hypertension). Multivariable analysis revealed that high AST (odds ratio [OR], 1.004; 95% confidence interval [CI], 1.001–1.007; p = 0.014), high ALT (OR, 1.004; 95% CI, 1.002–1.006; p < 0.001), high albumin (OR, 1.897; 95% CI, 1.573–2.286; p < 0.001), and high GGT (OR, 1.004; 95% CI, 1.003–1.005; p < 0.001) were significantly associated with incident hypertension in all study participants. In subgroup analysis of the participants with an ALT level ≤2 times the normal limit (80 u/l) (n = 20,983), multivariable analysis demonstrated that high ALT (OR, 1.009; 95% CI, 1.005–1.012; p < 0.001) and high GGT (OR, 1.005; 95% CI, 1.003–1.006; p < 0.001) were significantly associated with incident hypertension. In conclusion, we found that elevated AST, ALT, albumin, and GGT were associated with incident hypertension in a large Taiwanese cohort. A greater understanding of potential risk factors for hypertension may help to reduce the burden of hypertension in this Taiwanese population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from Taiwan Biobank, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of Taiwan Biobank.

References

  1. Collaborators GBDRF. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–94.

    Article  Google Scholar 

  2. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chiang CE, Wang TD, Ueng KC, Lin TH, Yeh HI, Chen CY, et al. 2015 guidelines of the Taiwan Society of Cardiology and the Taiwan Hypertension Society for the management of hypertension. J Chin Med Assoc. 2015;78:1–47.

    Article  PubMed  Google Scholar 

  4. Gowda S, Desai PB, Hull VV, Math AA, Vernekar SN, Kulkarni SS. A review on laboratory liver function tests. Pan Afr Med J. 2009;3:17.

    PubMed  PubMed Central  Google Scholar 

  5. Ding HR, Wang JL, Ren HZ, Shi XL. Lipometabolism and glycometabolism in liver diseases. Biomed Res Int. 2018;2018:1287127.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ali N, Sumon AH, Fariha KA, Asaduzzaman M, Kathak RR, Molla NH, et al. Assessment of the relationship of serum liver enzymes activity with general and abdominal obesity in an urban Bangladeshi population. Sci Rep. 2021;11:6640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hua S, Qi Q, Kizer JR, Williams-Nguyen J, Strickler HD, Thyagarajan B, et al. Association of liver enzymes with incident diabetes in US Hispanic/Latino adults. Diabet Med. 2021;38:e14522.

    Article  CAS  PubMed  Google Scholar 

  8. Islam S, Rahman S, Haque T, Sumon AH, Ahmed AM, Ali N. Prevalence of elevated liver enzymes and its association with type 2 diabetes: a cross-sectional study in Bangladeshi adults. Endocrinol Diabetes Metab. 2020;3:e00116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu L, Jiang CQ, Schooling CM, Zhang WS, Cheng KK, Lam TH. Liver enzymes as mediators of association between obesity and diabetes: the Guangzhou Biobank Cohort Study. Ann Epidemiol. 2017;27:204–7.

    Article  PubMed  Google Scholar 

  10. Lee DS, Evans JC, Robins SJ, Wilson PW, Albano I, Fox CS, et al. Gamma glutamyl transferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2007;27:127–33.

    Article  CAS  PubMed  Google Scholar 

  11. Djousse L, Levy D, Cupples LA, Evans JC, D’Agostino RB, Ellison RC. Total serum bilirubin and risk of cardiovascular disease in the Framingham offspring study. Am J Cardiol. 2001;87:1196–200. A4, 7

    Article  CAS  PubMed  Google Scholar 

  12. Porter SA, Pedley A, Massaro JM, Vasan RS, Hoffmann U, Fox CS. Aminotransferase levels are associated with cardiometabolic risk above and beyond visceral fat and insulin resistance: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2013;33:139–46.

    Article  CAS  PubMed  Google Scholar 

  13. Monami M, Bardini G, Lamanna C, Pala L, Cresci B, Francesconi P, et al. Liver enzymes and risk of diabetes and cardiovascular disease: results of the Firenze Bagno a Ripoli (FIBAR) study. Metabolism. 2008;57:387–92.

    Article  CAS  PubMed  Google Scholar 

  14. Jia J, Yang Y, Liu F, Zhang M, Xu Q, Guo T, et al. The association between serum alanine aminotransferase and hypertension: a national based cross-sectional analysis among over 21 million Chinese adults. BMC Cardiovasc Disord. 2021;21:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu P, Xu CF, Wan XY, Yu CH, Shen C, Chen P, et al. Association between serum alpha-fetoprotein levels and fatty liver disease: a cross-sectional study. World J Gastroenterol. 2014;20:11865–70.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen Y, Zhao Y, Feng L, Zhang J, Zhang J, Feng G. Association between alpha-fetoprotein and metabolic syndrome in a Chinese asymptomatic population: a cross-sectional study. Lipids Health Dis. 2016;15:85.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rahman S, Islam S, Haque T, Kathak RR, Ali N. Association between serum liver enzymes and hypertension: a cross-sectional study in Bangladeshi adults. BMC Cardiovasc Disord. 2020;20:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim NH, Huh JK, Kim BJ, Kim MW, Kim BS, Kang JH. Serum gamma-glutamyl transferase level is an independent predictor of incident hypertension in Korean adults. Clin Exp Hypertens. 2012;34:402–9.

    Article  CAS  PubMed  Google Scholar 

  19. Lee DH, Jacobs DR Jr., Gross M, Kiefe CI, Roseman J, Lewis CE, et al. Gamma-glutamyltransferase is a predictor of incident diabetes and hypertension: the coronary artery risk development in young adults (CARDIA) study. Clin Chem. 2003;49:1358–66.

    Article  CAS  PubMed  Google Scholar 

  20. Liu CF, Gu YT, Wang HY, Fang NY. Gamma-glutamyltransferase level and risk of hypertension: a systematic review and meta-analysis. PLoS ONE. 2012;7:e48878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kunutsor SK, Apekey TA, Cheung BM. Gamma-glutamyltransferase and risk of hypertension: a systematic review and dose-response meta-analysis of prospective evidence. J Hypertens. 2015;33:2373–81.

    Article  CAS  PubMed  Google Scholar 

  22. Chen CH, Yang JH, Chiang CWK, Hsiung CN, Wu PE, Chang LC, et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet. 2016;25:5321–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan CT, Hung TH, Yeh CK. Taiwan regulation of biobanks. J Law Med Ethics. 2015;43:816–26.

    Article  PubMed  Google Scholar 

  24. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–70.

    Article  CAS  PubMed  Google Scholar 

  25. Pratt DS, Kaplan MM. Evaluation of abnormal liver-enzyme results in asymptomatic patients. N. Engl J Med. 2000;342:1266–71.

    Article  CAS  PubMed  Google Scholar 

  26. Chang Y, Ryu S, Sung E, Jang Y. Higher concentrations of alanine aminotransferase within the reference interval predict nonalcoholic fatty liver disease. Clin Chem. 2007;53:686–92.

    Article  CAS  PubMed  Google Scholar 

  27. Khalili M, Shuhart MC, Lombardero M, Feld JJ, Kleiner DE, Chung RT, et al. Relationship between metabolic syndrome, alanine aminotransferase levels, and liver disease severity in a multiethnic North American cohort with chronic hepatitis B. Diabetes Care. 2018;41:1251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun H, Liu Q, Wang X, Li M, Fan Y, Song G, et al. The longitudinal increments of serum alanine aminotransferase increased the incidence risk of metabolic syndrome: a large cohort population in China. Clin Chim Acta. 2019;488:242–7.

    Article  CAS  PubMed  Google Scholar 

  29. Greber-Platzer S, Thajer A, Bohn S, Brunert A, Boerner F, Siegfried W, et al. Increased liver echogenicity and liver enzymes are associated with extreme obesity, adolescent age and male gender: analysis from the German/Austrian/Swiss obesity registry APV. BMC Pediatr. 2019;19:332.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kew MC. Serum aminotransferase concentration as evidence of hepatocellular damage. Lancet. 2000;355:591–2.

    Article  CAS  PubMed  Google Scholar 

  31. Kunutsor SK, Apekey TA, Seddoh D, Walley J. Liver enzymes and risk of all-cause mortality in general populations: a systematic review and meta-analysis. Int J Epidemiol. 2014;43:187–201.

    Article  PubMed  Google Scholar 

  32. Ndrepepa G. Aspartate aminotransferase and cardiovascular disease—a narrative review. J Lab Precis Med. 2020; 6, 10.21037/jlpm-20-93.

  33. Choi KM, Han K, Park S, Chung HS, Kim NH, Yoo HJ, et al. Implication of liver enzymes on incident cardiovascular diseases and mortality: a nationwide population-based cohort study. Sci Rep. 2018;8:3764.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fulks M, Stout RL, Dolan VF. Using liver enzymes as screening tests to predict mortality risk. J Insur Med. 2008;40:191–203.

    PubMed  Google Scholar 

  35. Ueland PM, Ulvik A, Rios-Avila L, Midttun O, Gregory JF. Direct and functional biomarkers of vitamin B6 status. Annu Rev Nutr. 2015;35:33–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ono K, Ono T, Matsumata T. The pathogenesis of decreased aspartate aminotransferase and alanine aminotransferase activity in the plasma of hemodialysis patients: the role of vitamin B6 deficiency. Clin Nephrol. 1995;43:405–8.

    CAS  PubMed  Google Scholar 

  37. Lotto V, Choi SW, Friso S. Vitamin B6: a challenging link between nutrition and inflammation in CVD. Br J Nutr. 2011;106:183–95.

    Article  CAS  PubMed  Google Scholar 

  38. Ray L, Nanda SK, Chatterjee A, Sarangi R, Ganguly S. A comparative study of serum aminotransferases in chronic kidney disease with and without end-stage renal disease: Need for new reference ranges. Int J Appl Basic Med Res. 2015;5:31–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sette LH, Lopes EP. The reduction of serum aminotransferase levels is proportional to the decline of the glomerular filtration rate in patients with chronic kidney disease. Clinics. 2015;70:346–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hu H, Sparrow D, Weiss S. Association of serum albumin with blood pressure in the normative aging study. Am J Epidemiol. 1992;136:1465–73.

    Article  CAS  PubMed  Google Scholar 

  41. Hostmark AT, Tomten SE, Berg JE. Serum albumin and blood pressure: a population-based, cross-sectional study. J Hypertens. 2005;23:725–30.

    Article  CAS  PubMed  Google Scholar 

  42. Tell GS, Rutan GH, Kronmal RA, Bild DE, Polak JF, Wong ND, et al. Correlates of blood pressure in community-dwelling older adults. The cardiovascular health study. Cardiovascular health study (CHS) Collaborative Research Group. Hypertension. 1994;23:59–67.

    Article  CAS  PubMed  Google Scholar 

  43. Vargas CM, Obisesan T, Gillum RF. Association of serum albumin concentration, serum ionized calcium concentration, and blood pressure in the Third National Health and Nutrition Examination Survey. J Clin Epidemiol. 1998;51:739–46.

    Article  CAS  PubMed  Google Scholar 

  44. Oda E. Decreased serum albumin predicts hypertension in a Japanese health screening population. Intern Med. 2014;53:655–60.

    Article  CAS  PubMed  Google Scholar 

  45. Tibblin G, Bergentz SE, Bjure J, Wilhelmsen L. Hematocrit, plasma protein, plasma volume, and viscosity in early hypertensive disease. Am Heart J. 1966;72:165–76.

    Article  CAS  PubMed  Google Scholar 

  46. Kadono M, Hasegawa G, Shigeta M, Nakazawa A, Ueda M, Yamazaki M, et al. Serum albumin levels predict vascular dysfunction with paradoxical pathogenesis in healthy individuals. Atherosclerosis. 2010;209:266–70.

    Article  CAS  PubMed  Google Scholar 

  47. Bae JC, Seo SH, Hur KY, Kim JH, Lee MS, Lee MK, et al. Association between serum albumin, insulin resistance, and incident diabetes in nondiabetic subjects. Endocrinol Metab. 2013;28:26–32.

    Article  Google Scholar 

  48. Onat A, Can G, Ornek E, Cicek G, Ayhan E, Dogan Y. Serum gamma-glutamyltransferase: independent predictor of risk of diabetes, hypertension, metabolic syndrome, and coronary disease. Obesity. 2012;20:842–8.

    Article  CAS  PubMed  Google Scholar 

  49. Stranges S, Trevisan M, Dorn JM, Dmochowski J, Donahue RP. Body fat distribution, liver enzymes, and risk of hypertension: evidence from the Western New York Study. Hypertension. 2005;46:1186–93.

    Article  CAS  PubMed  Google Scholar 

  50. Emdin M, Pompella A, Paolicchi A. Gamma-glutamyltransferase, atherosclerosis, and cardiovascular disease: triggering oxidative stress within the plaque. Circulation. 2005;112:2078–80.

    Article  PubMed  Google Scholar 

  51. Paolicchi A, Minotti G, Tonarelli P, Tongiani R, De Cesare D, Mezzetti A, et al. Gamma-glutamyl transpeptidase-dependent iron reduction and LDL oxidation—a potential mechanism in atherosclerosis. J Investig Med. 1999;47:151–60.

    CAS  PubMed  Google Scholar 

  52. Lee DH, Blomhoff R, Jacobs DR Jr. Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res. 2004;38:535–9.

    Article  CAS  PubMed  Google Scholar 

  53. Dan S, Banerjee I, Roy H, Roy S, Jana T, Dan S. Association between serum gamma-glutamyl transferase level and hypertension in Indian adults: a population based cross-sectional study. N. Am J Med Sci. 2012;4:496–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shankar A, Li J. Association between serum gamma-glutamyltransferase level and prehypertension among US adults. Circ J. 2007;71:1567–72.

    Article  CAS  PubMed  Google Scholar 

  55. Yamada Y, Ikai E, Tsuritani I, Ishizaki M, Honda R, Ishida M. The relationship between serum gamma-glutamyl transpeptidase levels and hypertension: common in drinkers and nondrinkers. Hypertens Res. 1995;18:295–301.

    Article  CAS  PubMed  Google Scholar 

  56. McCallum L, Panniyammakal J, Hastie CE, Hewitt J, Patel R, Jones GC, et al. Longitudinal blood pressure control, long-term mortality, and predictive utility of serum liver enzymes and bilirubin in hypertensive patients. Hypertension. 2015;66:37–43.

    Article  CAS  PubMed  Google Scholar 

  57. Bonnet F, Gastaldelli A, Pihan-Le Bars F, Natali A, Roussel R, Petrie J, et al. Gamma-glutamyltransferase, fatty liver index and hepatic insulin resistance are associated with incident hypertension in two longitudinal studies. J Hypertens. 2017;35:493–500.

    Article  CAS  PubMed  Google Scholar 

  58. Lee DH, Ha MH, Kim JR, Gross M, Jacobs DR Jr. Gamma-glutamyltransferase, alcohol, and blood pressure. A four year follow-up study. Ann Epidemiol. 2002;12:90–6.

    Article  PubMed  Google Scholar 

  59. Nilssen O, Forde OH. Seven-year longitudinal population study of change in gamma-glutamyltransferase: the Tromso study. Am J Epidemiol. 1994;139:787–92.

    Article  CAS  PubMed  Google Scholar 

  60. Aneni EC, Oni ET, Martin SS, Blaha MJ, Agatston AS, Feldman T, et al. Blood pressure is associated with the presence and severity of nonalcoholic fatty liver disease across the spectrum of cardiometabolic risk. J Hypertens. 2015;33:1207–14.

    Article  CAS  PubMed  Google Scholar 

  61. Lonardo A, Nascimbeni F, Mantovani A, Targher G. Hypertension, diabetes, atherosclerosis and NASH: cause or consequence? J Hepatol. 2018;68:335–52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y-HL reviewed the articles and wrote the paper. S-CC and W-HL analyzed and interpreted the data. Y-CC, J-CH, and P-YW provided consultation and validation. C-HH and C-HK supervised the work. H-MS revised the paper draft and the final version of the submitted paper. All authors read and approved the final paper.

Corresponding author

Correspondence to Ho-Ming Su.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All of the participants provided written informed consent. The Institutional Review Board (IRB) of Kaohsiung Medical University Hospital approved this study (KMUHIRB-E(I)-20210058), and ethical approval for the TWB was granted by the IRB on Biomedical Science Research, Academia Sinica, Taiwan, and the Ethics and Governance Council of the TWB. In addition, the study was conducted according to the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YH., Chen, SC., Lee, WH. et al. Liver-function parameters are associated with incident hypertension in a large Taiwanese population follow-up study. J Hum Hypertens 37, 496–501 (2023). https://doi.org/10.1038/s41371-022-00694-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-022-00694-w

This article is cited by

Search

Quick links