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Automated ‘oscillometric’ blood pressure (BP) measuring devices (BPMDs) were developed in the 1970s to replace manual
auscultatory BP measurement by mercury sphygmomanometer. Automated BPMDs that have passed accuracy testing versus a
reference auscultatory sphygmomanometer using a scientifically accepted validation protocol are recommended for clinical use
globally. Currently, there are many thousands of unique automated BPMDs manufactured by hundreds of companies, with each
device using proprietary algorithms to estimate BP and using a method of operation that is largely unchanged since inception.
Validated automated BPMDs provide similar BP values to those recorded using manual auscultation albeit with potential sources of
error mostly associated with using empirical algorithms to derive BP from waveform pulsations. Much of the work to derive
contemporary BP thresholds and treatment targets used to manage cardiovascular disease risk was obtained using automated
BPMDs. While there is room for future refinement to improve accuracy for better individual risk stratification, validated BPMDs
remain the recommended standard for office and out-of-office BP measurement to be used in hypertension diagnosis and
management worldwide.

Journal of Human Hypertension (2023) 37:93–100; https://doi.org/10.1038/s41371-022-00693-x

INTRODUCTION
Manual auscultatory measurement of upper arm blood pressure
(BP) with a mercury sphygmomanometer was the gold standard
non-invasive test and mainstay clinical method to diagnose
hypertension in the twentieth century [1, 2] This indirect
measurement method, as well as automated BP methods, was
used in the ground-breaking epidemiological and clinical trials
that discovered the importance of high BP as a cardiovascular
disease risk factor, as well as the value of antihypertensive
treatment to reduce cardiovascular events and mortality [3–9].
Automation of BP measurement became favoured over manual
methods to lessen the chances of user error from such things as
digit preference, observer bias, incorrect stethoscope placement
and failing to correctly interpret Korotkoff sounds, to name a few
[10, 11]. Consequent efforts were directed towards the develop-
ment of automated BP measuring devices (BPMDs) based on
electronic capture and analysis of pressure waveforms in the cuff,
and were specifically designed to provide BP values equivalent to
the systolic and diastolic BP values measured with a mercury
sphygmomanometer [12].
The first commercial automated BPMD, the Device for Indirect

Non-invasive Automatic Mean Arterial Pressure (DINAMAP) 825

[13], became available in 1976 and was incorporated into both
research and clinical practice. Appropriately validated automated
BPMDs [14] remain the recommended standard for clinical
diagnosis and management of hypertension [15–17]. A major
reason for the rise in use of automated BPMDs was the global
policy directive in 2005 to phase out and replace mercury-based
BP measurement in healthcare settings due to environmental
toxicity concerns [18, 19]. The two common alternatives to
mercury-based BP measurement devices were manual aneroid
sphygmomanometers and automated BPMDs [20], with the
addition a few years later of the so-called hybrid devices, i.e.,
manual sphygmomanometers where the mercury column was
replaced by a digital led column, associated with an electronic
transducer [21]. Preference towards automated BPMDs was widely
recommended [22] because of less chance for user error and also
because automated BPMDs were perceived to not require the
same level of ongoing maintenance required by aneroid devices.
However, annual accuracy checking is still advised [23], which is
appropriate where resourcing allows, but yet to be proven as a
necessary step unless the device has been, or is suspected to be,
damaged. It should be noted that calibration of these devices
applies to only the pressure transducer. In addition, devices
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Table 1. Summary of the principles of operation for non-invasive estimation of blood pressure (BP) using a manual auscultatory
sphygmomanometer compared with automated BP measurement devices (BPMDs).

Operational step Requirements and rationale for when using a manual
auscultatory sphygmomanometer

Comparison with automated BPMDsa

Cuff placement Select an appropriately sized inflatable compression cuff
that encircles the upper arm:
• Dimensions of the cuff bladder relative to the
individual’s mid-arm circumference influence whether
proper occlusion of the upper arm and brachial
artery occurs

• A cuff that is too small (undercuffing) will overestimate
BP and a cuff that is too large (overcuffing) will
underestimate BP

• Cuffs must have an inflatable bladder length covering
75–100% of the mid upper arm circumference and a
bladder width covering 37–50% of the mid-arm
circumference [59]

• The shape of the cuff is also important in large arm
circumference where the arm tends to be conical [68]

The 75–100% and 37–50% rule for inflatable
bladder dimensions do not apply here.
Individualised cuff selection should be based on the
mid-arm circumference range indicated on the
device cuffs and each cuff available for use with the
device must be included in that device’s validation
testing

Arm positioned Arm supported with the middle of the cuff positioned at
mid-heart level:
• Due to effects of hydrostatic pressure, if the upper arm
is above or below the mid-heart level, accuracy of BP
readings will be influenced

• If the upper arm is too high, BP will be underestimated
and if the upper arm is too low, BP will be
overestimated (by approximately 0.8mmHg per cm
above or below the heart)

Same requirements and rationale

Cuff inflation Inflate manually with bulb to at least 30mmHg above
the point where the radial pulse disappears, indicating
that the brachial artery is occluded

Same requirement to occlude the brachial artery;
however, this is automated in non-hybrid BPMDs.
Inflation is controlled electronically by a
microcomputer and pumps to a level above systolic
BP (e.g., 20–40mmHg). The level of inflation is
determined by proprietary algorithms, with some
using stepped cuff pressure changes. Cuff pressure
is sensed by pressure transducer. Some devices
measure BP during inflation

Cuff deflation Deflation rate should be 2–3mmHg/s or per heart rate
when heart rate is very slow. A deflation rate that is too
fast can significantly underestimate systolic BP and
overestimate diastolic BP

Deflation rate is electronically controlled via a
deflate valve using a continuous or stepped
decrease approach. In most devices the rate of
deflation is faster than that recommended for
manual measurement for BPMDs that do not use an
auscultatory method [69]

Signal Auscultation by stethoscope placed over the brachial
artery in the antecubital fossa below the lower border of
the cuff to minimise noise artefact

• For the oscillometric method, the compression
cuff and its entrained air volume is used to sense
the volumetric changes in the brachial artery
created by cardiac contraction and relaxation,
resulting in volumetric and therefore pressure
changes within the cuff (so-called oscillations).
Cuff pressure is sensed by a solid-state pressure
transducer within the internal housing of
the device

• A small number of BPMDs employ an automated
auscultator method using a microphone
embedded in the cuff with which to detect
Korotkoff sounds

Signal association with
systolic and diastolic BP

Korotkoff sounds denote systolic BP (phase I) and
diastolic BP (phase V, or phase IV in absence of V):
• Korotkoff phase I sound is the first appearance of two
consecutive clear tapping sounds denoting the
introduction of blood flow under the cuff

• Korotkoff phase II–IV sounds change in quality as the
cuff is deflated

• Korotkoff phase V sound is the point at which all
sounds disappear, denoting the restoration of blood
flow under the cuff

• For the oscillometric method, systolic and diastolic
BPs are estimated typically by characteristic ratios
of an envelope fitted to the ‘oscillations’ with
systolic BP at about 50% (range 45–73%) of
maximal amplitude on the rising phase of the
waveform envelope and with diastolic BP at about
70% (range 69–83%) of maximal amplitude on the
falling phase of the waveform envelope [45, 50]

• Mean arterial pressure is estimated on the
oscillometric waveform envelope at the point of
maximal amplitude

• Digital readouts are provided for systolic and
diastolic BPs and occasionally for mean arterial
pressure
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should be regularly inspected for any damage, breaks or tears to
the device cuff and tubing, as their integrity is essential to device
accuracy. There is now a large global marketplace for automated
BPMDs (worth USD 1.5 billion in 2020, projected to reach USD 3.2
billion by 2028) [24] with hundreds of companies manufacturing
more than 3500 different models of automated BPMDs, many of
which are without evidence of having passed validation testing
[25–29].
Despite the ubiquitous availability and use of automated

BPMDs, there are few resources available that provide information
for the non-specialist audience, not only on how automated
BPMDs work, but what they measure compared with invasive and
other non-invasive BP reference methods. This paper aims to fill
these gaps in the context of this special issue on the accuracy of
automated BPMDs [30]. Before describing how automated BPMDs
work, it is beneficial to know their operating principles and what is
measured by the auscultatory method using a mercury sphygmo-
manometer because even though this method is phased out of
use in most world regions, this is the non-invasive BP reference
standard that automated BPMDs were purposefully designed to
emulate.

AUSCULTATORY METHOD USING A MERCURY
SPHYGMOMANOMETER: HOW DOES IT WORK, WHAT DOES IT
MEASURE?
If we understand the operational strengths and limitations of BP
measurement when conducted via both auscultation using a
mercury sphygmomanometer and automation using BPMDs, this
will enable greater context regarding the performance of the
latter, as well as insight on potential areas for improvement.
Table 1 summarises the principles of operation using a
sphygmomanometer, which firstly involves cuff inflation over
the upper arm until the blood flow in the brachial artery is fully
occluded. The cuff is then slowly deflated by the operator whilst
listening to sounds (auscultation by stethoscope) within the
brachial artery at the lower border of the cuff, at the same time as

viewing the pressure level within the cuff displayed in millimetres
of mercury on the glass column of a sphygmomanometer. Theory
states a distinctive sound occurs at the onset of flow under the
cuff, with the cuff pressure reading denoting systolic BP (Korotkoff
phase I), and the cuff pressure at which sound disappears, or is
muffled, denoting diastolic BP (Korotkoff phase V or phase IV,
respectively) and occurs with full restitution of blood flow [31].
These brachial artery sounds are separable in time and distinctive
from heart sounds [32, 33].
The clinical value of peripheral BP measurement by sphygmo-

manometer with respect to hypertension is that it gives an
estimation of the pressure load experienced by the central organs
that are most susceptible to damage from high BP, especially the
heart, brain and kidneys [34]. Importantly, the systolic BP at the
central aorta level can be significantly amplified as the pressure
pulse is transmitted to the brachial artery with each cardiac
contraction [35]. The degree of systolic BP amplification varies
markedly between individuals, with examples of this variation
using invasively measured human data showing little difference
(<5mmHg) between the aorta and brachial artery in some people,
but large difference (>30mmHg) in others [36–39]. On average,
brachial artery systolic BP is 8.0 mmHg (95% confidence interval:
5.9 to 10.1 mmHg) higher than that in the proximal aorta, whereas
the diastolic BP varies minimally and is only slightly lower at the
brachial artery (−1.0 mmHg; 95% confidence interval: −2.0 to
−0.1 mmHg) [38]. The wide variability in systolic BP between
central and peripheral large arteries naturally raises the question
as to what is being measured by a sphygmomanometer at the
brachial artery.
As early as in 1951, a committee of the Council for High BP

Research of the American Heart Association reported that the
sphygmomanometer auscultation method underestimates intra-
arterial brachial systolic BP by an average of 3–4mmHg, but
overestimates diastolic BP by an average 8mmHg [40]. The
committee also emphasised the sizable level of scatter, whereby
the mean error of the cuff method averaged 8mmHg from intra-
arterial brachial BP for both systolic and diastolic BP [40]. These

Table 1. continued

Operational step Requirements and rationale for when using a manual
auscultatory sphygmomanometer

Comparison with automated BPMDsa

• Algorithms for device functionality and those used
to estimate mean arterial pressure, systolic and
diastolic BP are closely guarded trade secrets that
are not shared publicly nor independently
scrutinised [45]

aDescriptions provided are generally applicable to automated BPMDs but differences exist between manufacturers and devices.

Fig. 1 Summary of components for the operation of an automated blood pressure measurement device (BPMD) using the oscillometric
method. Cuff inflation and deflation is controlled by a microcomputer with a miniature air pump and valve system to change cuff pressure
and facilitate BP measurements. Pressure waveforms generated by cardiac contraction and relaxation are sensed by the inflated cuff and
transmitted via the tube to the internal pressure transducer, which provides the input signal for estimation of systolic and diastolic BP via the
processing unit.
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observations were similar to those of an individual patient level
meta-analysis among more than 300 people published in 2017
[38]. The consequent results for pulse pressure measured by
sphygmomanometer were underestimation by an average of
11mmHg, and with a mean absolute difference of 11.8 mmHg
(95% confidence interval 9.1 to 14.7) indicating wide scatter from
intra-arterial measures [38]. These findings were also replicated in
a recent pooled meta-analysis [41].
Altogether, on average, systolic BP measured by auscultation

with a sphygmomanometer variably underestimates intra-arterial
brachial systolic BP, systematically overestimates diastolic BP and
systematically underestimates pulse pressure. The causes of the
cuff discrepancies from intra-arterial BP are not fully known,
although arterial occlusion itself could create systematic error [42].
The systematic overestimation of diastolic BP probably occurs
from incomplete transmission of cuff pressure to the brachial
artery, meaning that the arterial segment opens at an intra-arterial
pressure that is lower than that exerted by the cuff. The variability
in error for systolic and diastolic BP plausibly has interaction with
arterial stiffness, resulting in Korotkoff sounds I and V being
separate events from the exact movement of the cuff pressure
past the systolic and diastolic BP [43].

AUTOMATED BPMDS: HOW DO THEY WORK, WHAT DO THEY
MEASURE?
As detailed in Table 1, automated BPMDs follow the same
operational steps as for using manual auscultation with respect to
cuff placement and arm position. The need for cuff inflation and
deflation also follows the same rationale towards occluding the
brachial artery and measuring arterial signals transmitted to the
cuff to estimate BP. For automated BPMDs, these processes are
undertaken electronically and based on proprietary algorithms
designed to estimate BP by analysis of cuff pressure waveform
signals detected because they are transmitted from the cuff into
the tubing system (and onwards to the pressure transducer), and
ultimately processed by microcomputer. This approach has
remained mostly unchanged for decades [13, 44, 45]. Key
components of automated BPMD measuring systems have been
described elsewhere [13, 46] and are summarised in Fig. 1.
Automated BPMDs are traditionally called ‘oscillometric’ BP

devices on the basis that the waveforms recorded by cuff and
subsequently analysed for BP estimation are oscillometric pulsa-
tions. This is a misnomer leading some experts to recommend that
automated BPMDs should not be referred to as ‘oscillometric’
devices [47, 48]. Oscillations are periodic waves with a repetitive

Fig. 2 Overview of the oscillometric method to estimate blood pressure (BP) with superimposed example Korotkoff sounds phase I and
V. The oscillometric waveform extracted from the cuff pressure curve is processed to construct the oscillometric waveform envelope, whereby
the mean arterial pressure (MAP) is identified at the maximal amplitude of the envelope. Systolic BP (SBP) and diastolic BP (DBP) are then
estimated using empirical fixed-ratio coefficients or other algorithms.
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variation of a measure about a central value, such as an
alternating current, whereas the cuff recorded waves are featured
brachial artery pressure waves generated from each cardiac cycle
[47, 48]. In the spirit of using technically correct terminology, this
paper and others in the special issue refer to BPMDs as ‘automated
BPMDs’ (this description also includes the small percentage of
BPMDs that operate via an automated auscultation method using
microphones embedded in the cuff). However, for ease of
connection with existing literature on operating principles, the
explanations below also refer to conventional oscillometric terms.
Most automated BPMDs analyse the pressure waveform signals

during the period of cuff deflation, although some devices analyse
signals during the inflation period [49]. The recorded cuff deflation
curve has two characteristics: (1) the slowly declining component
as cuff pressure is reduced, and (2) the pulsations caused by
cardiac contraction and relaxation. The pulsations first become
apparent before registration of systolic BP with Korotkoff phase I
[12]. The pulsations are extracted and analysed for estimation of
BP. The extracted component is referred to as the oscillometric
waveform, which is filtered (using various methods) to remove
frequency components belonging to the deflating cuff pressure
(this filtering step changes the waveform morphology such that
classic arterial waveform features may no longer be apparent, and
this could be part of the reason contributing to the notion that
these are oscillometric waves rather than arterial pressure
waveforms). After filtering, an oscillometric waveform envelope
is then constructed from the oscillometric waveform using signal
processing methods that differ between device makers and also
between different models from the same manufacturer, and
proprietary algorithms are employed to estimate BPs from the
waveform envelope [50].
The maximum amplitude algorithm is a conventional method to

estimate mean arterial pressure, which is the cuff pressure at the
maximum amplitude of the oscillometric waveform envelope,
corresponding with unloading the arterial wall and where the
transmural pressure is zero [44, 51, 52]. The systolic and diastolic
BPs are estimated using proprietary algorithms, for example,
based on empirical fixed-ratio coefficients [50, 53] that are
designed to coincide with BPs measured by an auscultation
sphygmomanometer. The systolic BP fixed-ratio coefficient
correlates with a point on the envelope where the wave
amplitude approximates 50% (0.50), and the diastolic BP fixed-

ratio coefficient correlates with point where the wave amplitude
approximates 70% (0.70) of the maximal amplitude. However, the
range of optimal coefficients for accurate systolic and diastolic BP
measurements varies greatly between devices [12, 45, 50, 54].
Furthermore, different methods used to construct the oscillo-
metric waveform envelope, as well as individual differences in the
shape of the waveform envelope, can lead to different estimated
BP values [55, 56]. An overview of the ‘oscillometric’methods used
in automated BPMDs is provided in Fig. 2.
Since each unique automated BPMD can have different

processes, algorithms and fitting functions to derive BPs (none
of which are publicly disclosed), the accuracy of each BPMD needs
to be individually determined by comparison to a BP reference
standard using a scientifically accepted validation protocol
[14, 57, 58]. This is usually performed non-invasively using an
auscultatory sphygmomanometer at the upper arm as the
reference, but can also use invasive (intra-arterial catheter) BP
monitoring as the reference, especially for devices that are
intended for use in the critical care or anaesthetised patient
setting [59]. Some limitations of the oscillometric method lead to
errors in comparison with manual auscultatory measurement (e.g.,
up to 10–15%) [60] in BP estimations that are either systematic,
random or associated with clinical characteristics of specific
patient populations [61].
It must be noted that references to bias, error or accuracy

applying to the difference between invasive and non-invasive
techniques, do not suggest that an automated BPMD calibrated to
auscultatory values should not be used. In fact, the opposite
applies. An automated BPMD calibrated to invasive measurements
should not be used in an office or home situation where reference
clinical values have been obtained non-invasively. Some devices
allow the measured value to be switched between non-invasive
and invasive.
Among BPMDs using fixed-ratio coefficients, there is systematic

bias towards greater underestimation of systolic BP as systolic BP
increases, because the optimal fixed-ratio coefficient for accurate
systolic BP estimation becomes progressively lower as systolic BP
increases (e.g., the optimal fixed-ratio approximates 0.57 at
100mmHg but this falls to 0.45 at 190mmHg) [12]. Mechanical
properties of the arterial wall can also influence BP accuracy using
fixed-ratio coefficients. In particular, increased arterial stiffness
leads to overestimation of systolic, diastolic and mean arterial BPs

Table 2. Potential sources of error from specific components of the oscillometric method to estimate blood pressure (BP).

Oscillometric component Potential influence on accuracy

Cuff size A narrow cuff requires higher pressures to induce maximum pulsations, thus increasing the
oscillometric waveform to higher pressures for mean arterial pressure, systolic BP and diastolic BP,
but also broadening the oscillometric waveform and increasing pulse pressure [61]

Cuff fit Compared with a cuff that is placed with a snug fit, the estimation of oscillometric mean arterial
pressure increases with the looseness of the cuff fit [68]. In large arms, the shape of the cuff is also
important to fit the arm that is conical [69]

Cuff deflation rate Faster deflation rates are used to reduce BP measurement time but this results in fewer
oscillometric waveforms with which to estimate BPs. Missing oscillometric waveform values
require different degrees of interpolation relative to deflation rate. Although accuracy may not
always be compromised [70], error is expected to increase at faster deflation rates [56, 71]

Extracting the oscillometric waveform Different filtering methods used to extract waveform pulsations can distort the shape of the
extracted pulses and the oscillometric waveform, thus changing BP estimations [72, 73]

Constructing the oscillometric waveform
envelope

Several signal processing methods can be used to construct the oscillometric waveform envelope,
and this creates variability in waveform envelope morphology as well as different BP estimations
[55]

BP algorithms There is a large variety of algorithms to estimate BP, many of which are patent protected for each
individual automated BPMD, and have variable performance characteristics [50, 55] that are
difficult to independently scrutinise. Algorithms are empirical and may not account for individual
physiological variability in modifying factors such as arterial stiffness [74]. Optimal fixed-ratio
coefficients for accurate BP also differ depending on the method used to construct the
oscillometric waveform envelope [55]
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[60, 62–64]. While auscultation is prone to significant errors with
fast deflation, automation can be much less prone to these errors,
depending on the analysis technique used, as shown by Zheng
et al. [65]. However, they studied three repeat measurements, and
also showed that variability between repeat measurements almost
doubled with fast deflation, but could be improved with
oscillometric modelling techniques. Automated devices rely on
the oscillatory envelope retaining its shape, and this can be
compromised with fast deflation, and slow or variable heart rates.
Table 2 summarises several sources of potential error using the
oscillometric method. When compared with intra-arterial brachial
BP, on average automated BPMDs underestimate systolic BP to a
greater degree than with an auscultation sphygmomanometer
(−8.0 vs −3.4 mmHg), but the overestimation of intra-arterial
diastolic BP is similar (4.5 vs 6.3 mmHg). The underestimation of
intra-arterial brachial systolic BP by automated BPMDs means that
the estimated systolic BP may be similar to intra-arterial central
aortic systolic BP, but this is a device-specific performance
characteristic that may vary between individuals [38].
A summary of the level of differences between intra-arterial BP

and BP obtained via automated BPMDs and auscultation using a
sphygmomanometer is presented in Fig. 3. The figure highlights
that divergence from true intra-arterial BP values is greatest for
automated BPMDs, and this issue forms a major component of the
rationale to develop new BP technology to provide better
estimates of BP, especially at the central aortic level [66]. This
prospect does not detract from the long-established clinical value
of cuff measured BP, and although the general approach of
estimating BP by automated BPMDs works well for many people,
the method requires refining for improved accuracy among
individuals [67]. Whether more accurate non-invasive BP measure-
ment leads to more efficient prevention of cardiovascular disease
has been cited as an important question ‘on BP measurement
methodology that the scientific community should put on its
research agenda’ [68].

CONCLUSIONS
Globally, there are many thousands of unique models of automated
‘oscillometric’ BPMDs available for consumer purchase. Automated
devices are also routinely used by healthcare professionals for office/
clinic and 24-h ambulatory BP monitoring. This paper has reviewed
the operating principles and BP measurement outputs acquired
using manual auscultation and automated BPMD methods. The
original evidence to support the clinical use of BP measurement was
derived with data from the auscultatory sphygmomanometer
method using a mercury column, and automated BPMDs were
designed to provide equivalent BP values. The automated BPMD
method employs a standardised approach that is largely unchanged
over many decades, which includes using proprietary empirical
algorithms for analysing arterial waveforms and estimating BP.
Although there are well-known sources of error associated with
automated BPMDs, including variable underestimation when
compared with brachial intra-arterial systolic BP, appropriately
validated BPMDs provide similar values to auscultatory BP, albeit
with room for improved accuracy that is expected to refine individual
risk stratification for better cardiovascular disease risk prevention and
improved treatment and management of hypertension.
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