Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Assessment of skin microcirculation in primary aldosteronism: impaired microvascular responses compared to essential hypertensives and normotensives

Abstract

Primary aldosteronism (PA) is associated with considerably higher cardiovascular risk and increased prevalence of organ damage compared to essential hypertension (EH). Laser speckle contrast imaging (LSCI) has emerged as a novel non-invasive tool to assess of skin microcirculation. Our aim was to evaluate skin microvascular function (SMF) using LSCI coupled with post-occlusive reactive hyperemia (PORH) in a group of PA patients (PAs) compared to patients with EH (EHs) and normotensive controls (NTs). We enrolled PAs, age- and gender-matched with EHs and NTs. All participants underwent SMF assessment by LSCI with PORH. We enrolled 109 participants including 29 PAs, 47 EHs, and 33 NTs. SMF was significantly impaired in PAs, including peak time (p < 0.001) and base to peak flux (p < 0.001) compared to NTs and EHs. Among PAs, plasma aldosterone showed a positive correlation with occlusion flux (p = 0.005). Our study shows for the first time that PAs present impaired SMF as assessed with LSCI coupled with PORH, not only compared to NTs but also compared to EHs with similar blood pressure profile. Further studies are needed to investigate the clinical impact of such alterations in terms of pathophysiology and cardiovascular risk prediction.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Comparison of skin microvascular function as assessed with LSCI in the three groups.

References

  1. Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol. 2006;48:2293–300.

    CAS  Article  Google Scholar 

  2. Hannemann A, Bidlingmaier M, Friedrich N, Manolopoulou J, Spyroglou A, Völzke H, et al. Screening for primary aldosteronism in hypertensive subjects: results from two German epidemiological studies. Eur J Endocrinol. 2012;167:7–15.

    CAS  Article  Google Scholar 

  3. Ohno Y, Sone M, Inagaki N, Yamasaki T, Ogawa O, Takeda Y, et al. Prevalence of cardiovascular disease and its risk factors in primary aldosteronism a multicenter study in Japan. Hypertension. 2018;71:530–7.

    CAS  Article  Google Scholar 

  4. Monticone S, D’Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6:41–50.

    CAS  Article  Google Scholar 

  5. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 2018;6:51–9.

    Article  Google Scholar 

  6. Hung CS, Sung SH, Liao CW, Pan CT, Chang CC, Chen ZW, et al. Aldosterone induces vascular damage: A wave reflection analysis study. Hypertension 2019;74:623–9.

    CAS  Article  Google Scholar 

  7. Gkaliagkousi E, Anyfanti P, Triantafyllou A, Gavriilaki E, Nikolaidou B, Lazaridis A, et al. Aldosterone as a mediator of microvascular and macrovascular damage in a population of normotensive to early-stage hypertensive individuals. J Am Soc Hypertens. 2018;12:50–7.

  8. Chen ZW, Tsai CH, Pan CT, Chou CH, Liao CW, Hung CS, et al. Endothelial dysfunction in primary aldosteronism. Int J Mol Sci. 2019;20:1–25.

    Google Scholar 

  9. Rizzoni D, Paiardi S, Rodella L, Porteri E, De Ciuceis C, Rezzani R, et al. Changes in extracellular matrix in subcutaneous small resistance arteries of patients with primary aldosteronism. J Clin Endocrinol Metab. 2006;91:2638–42.

    CAS  Article  Google Scholar 

  10. Rossi GP, Bolognesi M, Rizzoni D, Seccia TM, Piva A, Porteri E, et al. Vascular remodeling and duration of hypertension predict outcome of adrenalectomy in primary aldosteronism patients. Hypertension. 2008;51:1366–71.

    CAS  Article  Google Scholar 

  11. Taddei S, Virdis A, Mattei P, Salvetti A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension. 1993;21:929–33.

    CAS  Article  Google Scholar 

  12. Holowatz LA, Thompson-torgerson CS, Kenney WL. The human cutaneous circulation as a model of generalized microvascular function. J Appl Physio. 2008;105:370–2.

    Article  Google Scholar 

  13. Coulon P, Constans J, Gosse P. Impairment of skin blood flow during post-occlusive reactive hyperhemy assessed by laser Doppler flowmetry correlates with renal resistive index. J Hum Hypertens. 2012;26:56–63.

    CAS  Article  Google Scholar 

  14. IJzerman RG, de Jongh RT, Beijk MAM, van Weissenbruch MM, Delemarre-van de Waal HA, Serné EH, et al. Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. Eur J Clin Invest. 2003;33:536–42.

    CAS  Article  Google Scholar 

  15. Mahé G, Humeau-Heurtier A, Durand S, Leftheriotis G, Abraham P. Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging. Circ Cardiovasc Imaging. 2012;5:155–63.

    Article  Google Scholar 

  16. Humeau-heurtier A, Abraham P, Durand S, Mah G. Excellent inter- and intra-observer reproducibility of microvascular tests using laser speckle contrast imaging. Clin Hemorheol Microcirc. 2014;58:439–46.

    CAS  Article  Google Scholar 

  17. Concistrè A, Petramala L, Bonvicini M, Gigante A, Collalti G, Pellicano C, et al. Comparisons of skin microvascular changes in patients with primary aldosteronism and essential hypertension. Hypertens Res. 2020;43:1222–30.

    Article  Google Scholar 

  18. Kishimoto S, Matsumoto T, Oki K, Maruhashi T, Kajikawa M, Matsui S, et al. Microvascular endothelial function is impaired in patients with idiopathic hyperaldosteronism. Hypertens Res. 2018;41:932–8.

    CAS  Article  Google Scholar 

  19. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2016;101:1889–916.

    CAS  Article  Google Scholar 

  20. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. J Hypertens. 2018;36:1953–2041.

    CAS  Article  Google Scholar 

  21. Roustit M, Cracowski J. Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharm Sci. 2013;34:373–84.

    CAS  Article  Google Scholar 

  22. Boas DA, Dunn AK. Laser speckle contrast imaging in biomedical optics. J Biomed Opt 2010;15:011109.

    Article  Google Scholar 

  23. Rousseau P, Mahé G, Haj-yassin F, Durand S, Humeau A, Leftheriotis G, et al. Increasing the “ region of interest” and “ time of interest”, both reduce the variability of blood fl ow measurements using laser speckle contrast imaging. Microvasc Res. 2011;82:88–91.

    Article  Google Scholar 

  24. Dipla K, Triantafyllou A, Koletsos N, Papadopoulos S, Sachpekidis V, Vrabas IS, et al. Impaired muscle oxygenation and elevated exercise blood pressure in hypertensive patients: links with vascular stiffness. Hypertension. 2017;70:444–51.

    CAS  Article  Google Scholar 

  25. Lazaridis A, Gkaliagkousi E, Koletsos N, Nikolaidou B, Anyfanti P, Dolgyras P, et al. Real time assessment of microcirculation in hypertension using laser speckle contrast analysis. J Hypertens. 2018;36:283–4.

    Article  Google Scholar 

  26. Triantafyllou A, Anyfanti P, Zabulis X, Gavriilaki E, Karamaounas P, Gkaliagkousi E, et al. Accumulation of microvascular target organ damage in newly diagnosed hypertensive patients. J Am Soc Hypertens. 2014;8:542–9.

    CAS  Article  Google Scholar 

  27. Savard S, Amar L, Plouin PF, Steichen O. Cardiovascular complications associated with primary aldosteronism: a controlled cross-sectional study. Hypertension. 2013;62:331–6.

    CAS  Article  Google Scholar 

  28. Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005;45:1243–8.

    CAS  Article  Google Scholar 

  29. Stehr CB, Mellado R, Ocaranza MP, Carvajal CA, Mosso L, Becerra E, et al. Increased levels of oxidative stress, subclinical inflammation, and myocardial fibrosis markers in primary aldosteronism patients. J Hypertens. 2010;28:2120–6.

    CAS  Article  Google Scholar 

  30. Zhu CJ, Wang QQ, Zhou JL, Liu HZ, Hua F, Yang HZ, et al. The mineralocorticoid receptor-p38MAPK-NFB or ERK-Sp1 signal pathways mediate aldosterone-stimulated inflammatory and profibrotic responses in rat vascular smooth muscle cells. Acta Pharm Sin. 2012;33:873–8.

    CAS  Article  Google Scholar 

  31. Koletsos N, Gkaliagkousi E, Lazaridis A, Triantafyllou A, Anyfanti P, Dolgyras P, et al. Skin microvascular dysfunction in systemic lupus erythematosus patients with and without cardiovascular risk factors. Rheumatol (Oxf). 2021;60:2834–41. 18

    Article  Google Scholar 

  32. Cracowski JL, Gaillard-Bigot F, Cracowski C, Sors C, Roustit M, Millet C. Involvement of cytochrome epoxygenase metabolites in cutaneous postocclusive hyperemia in humans. J Appl Physiol. 2013;114:245–51.

    CAS  Article  Google Scholar 

  33. Koeppen M, Feil R, Siegl D, Feil S, Hofmann F, Pohl U, et al. cGMP-dependent protein kinase mediates NO-but not acetylcholine-induced dilations in resistance vessels in vivo. Hypertension. 2004;44:952–5.

    CAS  Article  Google Scholar 

  34. Grgic I, Kaistha BP, Hoyer J, Köhler R. Endothelial Ca 2+-activated K + channels in normal and impaired EDHF-dilator responses - relevance to cardiovascular pathologies and drug discovery. Br J Pharmacol. 2009;157:509–26.

    CAS  Article  Google Scholar 

  35. Dupont JJ, Hill MA, Bender SB, Jaisser F, Jaffe IZ. Aldosterone and vascular mineralocorticoid receptors: regulators of ion channels beyond the kidney. Hypertension. 2014;63:632–7.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Eugenia Gkaliagkousi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gkaliagkousi, E., Lazaridis, A., Anyfanti, P. et al. Assessment of skin microcirculation in primary aldosteronism: impaired microvascular responses compared to essential hypertensives and normotensives. J Hum Hypertens (2021). https://doi.org/10.1038/s41371-021-00639-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41371-021-00639-9

Search

Quick links