Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tropical diseases and risk of hypertension in the Amazon Basin: a cross-sectional study

Abstract

Although infectious diseases have been associated with cardiovascular conditions, little is known about tropical disease burden and hypertension. We hypothesized that a history of tropical infections was associated with hypertension. We examined participants from outpatient clinics in the Amazon Basin who were interviewed about prior exposure to tropical diseases, including dengue, malaria hospitalization, and leishmaniasis. Hypertension was defined as a prior physician diagnosis of hypertension, treatment with anti-hypertensive medication, or a systolic blood pressure ≥140 mmHg and/or a diastolic blood pressure ≥90 mmHg. We used logistic regression models to examine the relationship between tropical infectious disease and hypertension. We included 556 participants (mean age 41 ± 15 years, 61% women) of whom 214 (38%) had hypertension and 354 (64%) had a history of tropical infectious disease. The distribution of tropical diseases was: dengue 270 (76%), malaria hospitalization 104 (29%) and leishmaniasis 48 (14%). Any prior tropical infection was significantly associated with prevalent hypertension (odds ratio 1.76 [95% CI 1.22–2.54], P = 0.003) and the association remained significant after adjusting for age, sex, body mass index, diabetes, hypercholesterolemia, socioeconomic status, smoking, vegetable intake and serum creatinine. Persons with a history of ≥2 tropical infections (n = 64) had the greatest risk of hypertension (odds ratio 2.04 [95% CI 1.15–3.63], P = 0.015). In adjusted models, prior infection with dengue was associated with hypertension (P = 0.006), but no associations were found with malaria hospitalization (P = 0.39) or leishmaniasis (P = 0.98). In conclusion, a history of tropical infectious disease was associated with hypertension. This finding supports the idea that pathogen burden may be related to cardiovascular conditions.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Study site.
Fig. 2: Tropical diseases and hypertension.

Data availability

Data are available upon reasonable request to the corresponding author.

References

  1. Zhou B, Bentham J, Di Cesare M, Bixby H, Danaei G, Cowan MJ, et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet. 2017;389:37–55.

    Article  Google Scholar 

  2. Schutte AE, Srinivasapura Venkateshmurthy N, Mohan S, Prabhakaran D. Hypertension in low- and middle-income countries. Circ Res. 2021;128:808–26.

    CAS  Article  Google Scholar 

  3. Vahdat K, Pourbehi MR, Ostovar A, Hadavand F, Bolkheir A, Assadi M, et al. Association of pathogen burden and hypertension: the persian gulf healthy heart study. Am J Hypertens. 2013;26:1140–7.

    Article  Google Scholar 

  4. Rupprecht HJ, Blankenberg S, Bickel C, Rippin G, Hafner G, Prellwitz W, et al. Impact of viral and bacterial infectious burden on long-term prognosis in patients with coronary artery disease. Circulation. 2001;104:25–31.

    CAS  Article  Google Scholar 

  5. Elkind MSV, Ramakrishnan P, Moon YP, Boden-Albala B, Liu KM, Spitalnik SL, et al. Infectious burden and risk of stroke: the northern manhattan study. Arch Neurol. 2010;67:33–38.

    Article  Google Scholar 

  6. Hotez PJ. Linking tropical infections to hypertension: new comorbid disease paradigms in our era of “Blue Marble Health”. J Am Heart Assoc. 2019;8:1–3.

    Article  Google Scholar 

  7. Etyang AO, Kapesa S, Odipo E, Bauni E, Kyobutungi C, Abdalla M, et al. Effect of previous exposure to malaria on blood pressure in Kilifi, Kenya: a mendelian randomization study. J Am Heart Assoc. 2019;8. https://doi.org/10.1161/JAHA.118.011771.

  8. Liu L, Liu Y, Tong W, Ye H, Zhang X, Cao W, et al. Pathogen burden in essential hypertension. Circ J. 2007;71:1761–4.

    Article  Google Scholar 

  9. Gillis EE, Sullivan JC. Sex differences in hypertension: recent advances. Hypertension. 2016;68:1322–7.

    CAS  Article  Google Scholar 

  10. Lindoso JAL, Lindoso AABP. Neglected tropical diseases in Brazil. Rev Inst Med Trop Sao Paulo. 2009;51:247–53.

    Article  Google Scholar 

  11. Ribeiro ALP, Duncan BB, Brant LCC, Lotufo PA, Mill JG, Barreto SM. Cardiovascular health in brazil trends and perspectives. Circulation. 2016;133:422–33.

    Article  Google Scholar 

  12. Gupta S, Gazendam N, Farina JM, Saldarriaga C, Mendoza I, López-Santi R, et al. Malaria and the Heart: JACC State-of-the-Art Review. J Am Coll Cardiol. 2021;77:1110–21.

    CAS  Article  Google Scholar 

  13. Araiza-Garaygordobil D, García-Martínez CE, Burgos LM, Saldarriaga C, Liblik K, Mendoza I, et al. Dengue and the heart. Cardiovasc J Afr. 2021;32. https://doi.org/10.5830/CVJA-2021-033.

  14. Holm AE, Gomes LC, Farias Marinho CR, Silvestre OM, Vestergaard LS, Biering-Sørensen T, et al. Prevalence of cardiovascular complications in malaria: a systematic review and meta-analysis. Am J Trop Med Hyg. 2021. https://doi.org/10.4269/ajtmh.20-1414.

  15. Wang H, Naghavi M, Allen C, Barber RM, Carter A, Casey DC, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–544.

    Article  Google Scholar 

  16. Yamey G. The world’s most neglected diseases. Br Med J. 2002;325:176–7.

    Article  Google Scholar 

  17. Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Tauil PL, Daniel-Ribeiro CT. Malaria in Brazil: an overview. Malar J. 2010;9:1–15.

    Article  Google Scholar 

  18. Pan American Health Organization / World Health Organization. Epidemiological Update: Dengue. 7 Feburary 2020. Washington, D.C. PAHO/WHO; 2020. p. 1–21.

  19. Oliveira GMM, Brant LCC, Polanczyk CA, Biolo A, Nascimento BR, Malta DC, et al. Cardiovascular Statistics – Brazil 2020. Arq Bras Cardiol. 2020;115:308–439.

    Article  Google Scholar 

  20. Vera-Cala LM, Orostegui M, Valencia-Angel LI, López N, Bautista LE. Accuracy of the Omron HEM-705 CP for blood pressure measurement in large epidemiologic studies. Arq Bras Cardiol. 2011;96:393–8.

    Article  Google Scholar 

  21. Zhu J, Nieto FJ, Horne BD, Anderson JL, Muhlestein JB, Epstein SE. Prospective study of pathogen burden and risk of myocardial infarction or death. Circulation. 2001;103:45–51.

    CAS  Article  Google Scholar 

  22. Cook PJ, Lip GYH, Davies P, Beevers DG, Wise R, Honeybourne D. Chlamydia pneumoniae antibodies in severe essential hypertension. Hypertension. 1998;31:589–94.

    CAS  Article  Google Scholar 

  23. Sun Y, Pei W, Wu Y, Jing Z, Zhang J, Wang G. Herpes simplex virus type 2 infection is a risk factor for hypertension. Hypertens Res. 2004;27:541–4.

    Article  Google Scholar 

  24. Tauil PL. The status of infectious disease in the Amazon region. Emerg Infect Dis. 2009;15:625.

    Article  Google Scholar 

  25. PAHO. PLISA Health Information Platform for the Americas. 2021. http://www.paho.org/data/index.php/en/. Accessed 25 Apr 2021.

  26. Teixeira MG, Paixão ES, Costa M da CN, Cunha RV, Pamplona L, Dias JP, et al. Arterial hypertension and skin allergy are risk factors for progression from dengue to dengue hemorrhagic fever: a case control study. PLoS Negl Trop Dis. 2015;9:1–8.

    Google Scholar 

  27. Awandare GA, Goka B, Boeuf P, Tetteh JKA, Kurtzhals JAL, Behr C, et al. Increased levels of inflammatory mediators in children with severe Plasmodium falciparum malaria with respiratory distress. J Infect Dis. 2006;194:1438–46.

    CAS  Article  Google Scholar 

  28. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57:132–40.

    CAS  Article  Google Scholar 

  29. Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathog Glob Health. 2016;110:247–60.

    CAS  Article  Google Scholar 

  30. Angulo I, Fresno M. Cytokines in the pathogenesis of and protection against malaria. Clin Diagn Lab Immunol. 2002;9:1145–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Clark IA, Alleva LM, Budd AC, Cowden WB. Understanding the role of inflammatory cytokines in malaria and related diseases. Travel Med Infect Dis. 2008;6:67–81.

    Article  Google Scholar 

  32. Costa VV, Fagundes CT, Souza DG, Teixeira MM. Inflammatory and innate immune responses in dengue infection: Protection versus disease induction. Am J Pathol. 2013;182:1950–61.

    CAS  Article  Google Scholar 

  33. Cheng J, Ke Q, Jin Z, Wang H, Kocher O, Morgan JP, et al. Cytomegalovirus infection causes an increase of arterial blood pressure. PLoS Pathog. 2009;5. https://doi.org/10.1371/journal.ppat.1000427.

  34. Houweling TAJ, Karim-Kos HE, Kulik MC, Stolk WA, Haagsma JA, Lenk EJ, et al. Socioeconomic inequalities in neglected tropical diseases: a systematic review. PLoS Negl Trop Dis. 2016;10:1–28.

    Article  Google Scholar 

  35. da Silva NS, Viana AB, Cordeiro JA, Cavasini CE. American cutaneous leishmaniasis in the State of Acre, Brazil. Rev Saúde Pública. 1999;33:554–9.

    CAS  Article  Google Scholar 

Download references

Author contributions

AEH: Conception of study, planning and design, data acquisition, data extraction and analysis, statistics, writing, critical review. LCG: Data acquisition, planning. KOL: Data acquisition. AW: Data acquisition, data analysis, critical review. LOM: Data acquisition. IVMV: Data acquisition. MDK: Data analysis, critical review. MP: Critical review. RMS: Expert advice. CRF: Critical review. TBS: Expert advise, critical review. OMS: Expert advise. PB (responsible for the overall content as guarantor): Conception of study, planning and design, funding, data acquisition, data extraction and analysis, statistics, critical review.

Funding

Funding specifically rewarded for the Malaria Heart Study: PB and AEH: Jette and Hans Henrik Jensen, The Independent Research Fund Denmark (0129-0003B), Dansk Medicinsk Selskab København (120620-kms), Julie von Müllens Fond, Knud Højgaards Fond (18-05-2487), A. P. Møllers Lægefond (18-L-0026), Reinholdt W. Jorck og Hustrus Fond (18-JU-0485), Eva og Henry Frænkels Mindefond (NLA-080919), Astra Zeneca/Danish Society of Cardiology, Internal Funds at Herlev-Gentofte Hospital, Torben og Alice Frimodts Fond (TA250419), Brorsons Fond (12038-1-hh), Lundbeckfonden (R373-2021-1201). AW: Danish Heart Association (20-R139-A9644-22165), William Demant (20-1257), Knud Højgaards Fond (20-01-1076), Reinholdt W. Jorck og Hustrus Fond (20-JU-0145). MK: Novo Nordisk Fonden (NNF20OC0062782). LCG: CNPq (142306/2020-7). Other sources of funding: CRFM: FAPESP (2020/06747-4) and CNPq (302917/2019-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Brainin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holm, A.E., Gomes, L.C., Lima, K.O. et al. Tropical diseases and risk of hypertension in the Amazon Basin: a cross-sectional study. J Hum Hypertens (2021). https://doi.org/10.1038/s41371-021-00633-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41371-021-00633-1

Search

Quick links