Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ambulatory monitoring of central arterial pressure, wave reflections, and arterial stiffness in patients at cardiovascular risk

Abstract

This paper reviews current 24 h ambulatory noninvasive technologies for pulse wave analysis (PWA) providing central arterial pressure, pulse wave velocity, and augmentation index and the scientific evidence supporting their use in the clinical management of patients with arterial hypertension or at risk for cardiovascular complications.

The most outstanding value of these techniques lies in the fact that they are user-friendly, mostly operator independent, and enable the evaluation of vascular function during daily-life conditions, allowing to obtain repeated measurements in different out-of-office circumstances, less artificial than those of the laboratory or doctor’s office.

Studies performed so far suggest that 24 h PWA may represent a potentially promising tool for evaluating vascular function, structure, and damage in daily-life conditions and promoting early screening in subjects at risk. The current evidence in favor of such an approach in the clinical practice is still limited and does not recommend its routine use. In particular, at the moment, there is a shortage of long-term prognostic studies able to support the predictive value of 24 h PWA. Finally, the accuracy of the measures is strongly dependent on the type of technology and device employed with lack of interoperability among the devices that deeply affects comparability of results among studies using different technologies. It is thus mandatory in the near future to promote proper validation studies, for instance using the ARTERY protocol, and to plan well-designed long-term longitudinal studies that may prove the accuracy and high predictive value of PWA in ambulatory conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Method of computation of central hemodynamic and wave reflection indices through pulse wave analysis.
Fig. 2: Survival curves in hemodialysis patients according to pulse pressure, pulse wave velocity, and augmentation index.

References

  1. 1.

    Vlachopoulos C, Xaplanteris P, Aboyans V, Brodmann M, Cifkova R, Cosentino F, et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis. 2015;241:507–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Omboni S, Posokhov IN, Kotovskaya YV, Protogerou AD, Blacher J. Twenty-four-hour ambulatory pulse wave analysis in hypertension management: current evidence and perspectives. Curr Hypertens Rep. 2016;18:72.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens. 2018;36:2284–309.

    CAS  Article  Google Scholar 

  4. 4.

    Wassertheurer S, Kropf J, Weber T, van der Giet M, Baulmann J, Ammer M, et al. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Hum Hypertens. 2010;24:498–504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Rogoza A, Kuznetsov. Central aortic blood pressure and augmentation index: comparison between Vasotens® and SphygmoCor® technology. Res Rep Clin Cardiol. 2012;3:27–33.

    Google Scholar 

  6. 6.

    Butlin M, Qasem A, Avolio AP. Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2591–4.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Hwang MH, Yoo JK, Kim HK, Hwang CL, Mackay K, Hemstreet O, et al. Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J Hum Hypertens. 2014;28:475–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Dorr M, Richter S, Eckert S, Ohlow MA, Hammer F, Hummel A, et al. Invasive validation of antares, a new algorithm to calculate central blood pressure from oscillometric upper arm pulse waves. J Clin Med. 2019;8:1073.

    PubMed Central  Article  Google Scholar 

  9. 9.

    Jatoi NA, Mahmud A, Bennett K, Feely J. Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J Hypertens. 2009;27:2186–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Horvath IG, Nemeth A, Lenkey Z, Alessandri N, Tufano F, Kis P, et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28:2068–75.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Hametner B, Wassertheurer S, Kropf J, Mayer C, Eber B, Weber T. Oscillometric estimation of aortic pulse wave velocity: comparison with intra-aortic catheter measurements. Blood Press Monit. 2013;18:173–6.

    PubMed  Article  Google Scholar 

  12. 12.

    Stabouli S, Printza N, Zervas C, Dotis J, Chrysaidou K, Maliahova O, et al. Comparison of the SphygmoCor XCEL device with applanation tonometry for pulse wave velocity and central blood pressure assessment in youth. J Hypertens. 2019;37:30–6.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Salvi P, Scalise F, Rovina M, Moretti F, Salvi L, Grillo A, et al. Noninvasive estimation of aortic stiffness through different approaches. Hypertension. 2019;74:117–29.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Williams B, Lacy PS, Yan P, Hwee CN, Liang C, Ting CM. Development and validation of a novel method to derive central aortic systolic pressure from the radial pressure waveform using an n-point moving average method. J Am Coll Cardiol. 2011;57:951–61.

    PubMed  Article  Google Scholar 

  15. 15.

    Ott C, Haetinger S, Schneider MP, Pauschinger M, Schmieder RE. Comparison of two noninvasive devices for measurement of central systolic blood pressure with invasive measurement during cardiac catheterization. J Clin Hypertens. 2012;14:575–9.

    Article  Google Scholar 

  16. 16.

    Garcia-Ortiz L, Recio-Rodriguez JI, Agudo-Conde C, Maderuelo-Fernandez JA, Patino-Alonso MC, de Cabo-Laso A, et al. Noninvasive validation of central and peripheral augmentation index estimated by a novel wrist-worn tonometer. J Hypertens. 2018;36:2204–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Armstrong MK, Schultz MG, Picone DS, Black JA, Dwyer N, Roberts-Thomson P, et al. Brachial and radial systolic blood pressure are not the same. Hypertension. 2019;73:1036–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Picone DS, Climie RE, Ahuja KD, Keske MA, Sharman JE, Brachial-to-radial SBP. amplification: implications of age and estimated central blood pressure from radial tonometry. J Hypertens. 2015;33:1876–83.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Bilo G, Zorzi C, Ochoa Munera JE, Torlasco C, Giuli V, Parati G. Validation of the Somnotouch-NIBP noninvasive continuous blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. Blood Press Monit. 2015;20:291–4.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Cremer A, Butlin M, Codjo L, Coulon P, Ranouil X, Joret C, et al. Determination of central blood pressure by a noninvasive method (brachial BP and QKD interval). J Hypertens. 2012;30:1533–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Cremer A, Codjo L, Butlin M, Papaioannou G, Yeim S, Jan E, et al. Determination of central blood pressure by a noninvasive method (brachial blood pressure and QKD interval): a noninvasive validation. J Hypertens. 2013;31:1847–52.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Sharman JE, Avolio AP, Baulmann J, Benetos A, Blacher J, Blizzard CL, et al. Validation of non-invasive central blood pressure devices: ARTERY Society task force consensus statement on protocol standardization. Eur Heart J. 2017;38:2805–12.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Picone DS, Schultz MG, Peng X, Black JA, Dwyer N, Roberts-Thomson P, et al. Intra-arterial analysis of the best calibration methods to estimate aortic blood pressure. J Hypertens. 2019;37:307–15.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Picone DS, Schultz MG, Otahal P, Aakhus S, Al-Jumaily AM, Black JA, et al. Accuracy of cuff-measured blood pressure: systematic reviews and meta-analyses. J Am Coll Cardiol. 2017;70:572–86.

    Article  Google Scholar 

  25. 25.

    Schultz MG, Picone DS, Armstrong MK, Black JA, Dwyer N, Roberts-Thomson P, et al. Validation study to Determine the accuracy of central blood pressure measurement using the Sphygmocor Xcel cuff device. Hypertension. 2020;76:244–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Schultz MG, Picone DS, Armstrong MK, Black JA, Dwyer N, Roberts-Thomson P, et al. The influence of SBP amplification on the accuracy of form-factor-derived mean arterial pressure. J Hypertens. 2020;38:1033–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Jones CR, Taylor K, Chowienczyk P, Poston L, Shennan AH. A validation of the Mobil O Graph (version 12) ambulatory blood pressure monitor. Blood Press Monit. 2000;5:233–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Wei W, Tolle M, Zidek W, van der Giet M. Validation of the mobil-O-Graph: 24 h-blood pressure measurement device. Blood Press Monit. 2010;15:225–8.

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Franssen PM, Imholz BP. Evaluation of the Mobil-O-Graph new generation ABPM device using the ESH criteria. Blood Press Monit. 2010;15:229–31.

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Nemeth Z, Moczar K, Deak G. Evaluation of the Tensioday ambulatory blood pressure monitor according to the protocols of the British Hypertension Society and the Association for the Advancement of Medical Instrumentation. Blood Press Monit. 2002;7:191–7.

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Jones SC, Bilous M, Winship S, Finn P, Goodwin J. Validation of the OSCAR 2 oscillometric 24-hour ambulatory blood pressure monitor according to the International Protocol for the validation of blood pressure measuring devices. Blood Press Monit. 2004;9:219–23.

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Goodwin J, Bilous M, Winship S, Finn P, Jones SC. Validation of the Oscar 2 oscillometric 24-h ambulatory blood pressure monitor according to the British Hypertension Society protocol. Blood Press Monit. 2007;12:113–7.

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Koudryavtcev SA, Lazarev VM. Validation of the BPLab(R) 24-hour blood pressure monitoring system according to the European standard BS EN 1060-4:2004 and British Hypertension Society protocol. Med Devices. 2011;4:193–6.

    Article  Google Scholar 

  34. 34.

    Ledyaev MY, Stepanova OV, Ledyaeva AM. Validation of the BPLab(R) 24-hour blood pressure monitoring system in a pediatric population according to the 1993 British Hypertension Society protocol. Med Devices. 2015;8:115–8.

    Article  Google Scholar 

  35. 35.

    Dorogova IV, Panina ES. Comparison of the BPLab(R) sphygmomanometer for ambulatory blood pressure monitoring with mercury sphygmomanometry in pregnant women: validation study according to the British Hypertension Society protocol. Vasc Health Risk Manag. 2015;11:245–9.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    O’Brien E, Waeber B, Parati G, Staessen J, Myers MG. Blood pressure measuring devices: recommendations of the European Society of Hypertension. BMJ. 2001;322:531–6.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Bramlage P, Deutsch C, Kruger R, Wolf A, Muller P, Zwingers T, et al. Validation of the custo screen 400 ambulatory blood pressure-monitoring device according to the European Society of Hypertension International Protocol revision 2010. Vasc Health Risk Manag. 2014;10:303–9.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Beime B, Deutsch C, Kruger R, Wolf A, Muller P, Hammel G, et al. Validation of the custo screen pediatric blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. Eur J Pediatr. 2017;176:573–80.

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Nair D, Tan SY, Gan HW, Lim SF, Tan J, Zhu M, et al. The use of ambulatory tonometric radial arterial wave capture to measure ambulatory blood pressure: the validation of a novel wrist-bound device in adults. J Hum Hypertens. 2008:22;220–2.

  40. 40.

    Stergiou GS, Tzamouranis D, Nasothimiou EG, Karpettas N, Protogerou A. Are there really differences between home and daytime ambulatory blood pressure? Comparison using a novel dual-mode ambulatory and home monitor. J Hum Hypertens. 2010;24:207–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Ragazzo F, Saladini F, Palatini P. Validation of the Microlife WatchBP O3 device for clinic, home, and ambulatory blood pressure measurement, according to the International Protocol. Blood Press Monit. 2010;15:59–62.

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Fania C, Lazzaretto I, Fontana U, Palatini P. Accuracy of the WatchBP O3 device for ambulatory blood pressure monitoring according to the new criteria of the ISO81060-2 2018 protocol. Blood Press Monit. 2020;25:285–90.

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, et al. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Gotzmann M, Hogeweg M, Seibert FS, Rohn BJ, Bergbauer M, Babel N, et al. Accuracy of fully automated oscillometric central aortic blood pressure measurement techniques. J Hypertens. 2020;38:235–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Gotzmann M, Hogeweg M, Bauer F, Seibert FS, Rohn BJ, Mugge A, et al. The impact of calibration approaches on the accuracy of oscillometric central aortic blood pressure measurement. J Hypertens. 2020;38:2154–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Mynard JP, Goldsmith G, Springall G, Eastaugh L, Lane GK, Zannino D, et al. Central aortic blood pressure estimation in children and adolescents: results of the KidCoreBP study. J Hypertens. 2020;38:821–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Shiraishi M, Murakami T, Higashi K. The accuracy of central blood pressure obtained by oscillometric noninvasive method using Mobil-O-Graph in children and adolescents. J Hypertens. 2020;38:813–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Rossen NB, Laugesen E, Peters CD, Ebbehoj E, Knudsen ST, Poulsen PL, et al. Invasive validation of arteriograph estimates of central blood pressure in patients with type 2 diabetes. Am J Hypertens. 2014;27:674–9.

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Echeverri D, Pizano A, Cabrales J, Moreno K. Validation of central and peripheral non-invasive hemodynamic variables using an oscillometric method. High Blood Press Cardiovasc Prev. 2018;25:65–77.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Shoji T, Nakagomi A, Okada S, Ohno Y, Kobayashi Y. Invasive validation of a novel brachial cuff-based oscillometric device (SphygmoCor XCEL) for measuring central blood pressure. J Hypertens. 2017;35:69–75.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Cheng HM, Sung SH, Shih YT, Chuang SY, Yu WC, Chen CH. Measurement accuracy of a stand-alone oscillometric central blood pressure monitor: a validation report for Microlife WatchBP Office Central. Am J Hypertens. 2013;26:42–50.

    PubMed  Article  Google Scholar 

  52. 52.

    Luzardo L, Lujambio I, Sottolano M, da Rosa A, Thijs L, Noboa O, et al. 24-h ambulatory recording of aortic pulse wave velocity and central systolic augmentation: a feasibility study. Hypertens Res. 2012;35:980–7.

    PubMed  Article  Google Scholar 

  53. 53.

    Sarafidis PA, Georgianos PI, Karpetas A, Bikos A, Korelidou L, Tersi M, et al. Evaluation of a novel brachial cuff-based oscillometric method for estimating central systolic pressure in hemodialysis patients. Am J Nephrol. 2014;40:242–50.

    PubMed  Article  Google Scholar 

  54. 54.

    Berukstis A, Jarasunas J, Daskeviciute A, Ryliskyte L, Baranauskas A, Steponeniene R, et al. How to interpret 24-h arterial stiffness markers: comparison of 24-h ambulatory Mobil-O-Graph with SphygmoCor office values. Blood Press Monit. 2019;24:93–8.

    PubMed  Article  Google Scholar 

  55. 55.

    Vaios V, Georgianos PI, Pikilidou MI, Eleftheriadis T, Zarogiannis S, Papagianni A, et al. Accuracy of a newly-introduced oscillometric device for the estimation of arterial stiffness indices in patients on peritoneal dialysis: a preliminary validation study. Adv Perit Dial. 2018;34:24–31.

    PubMed  Google Scholar 

  56. 56.

    Weber T, Wassertheurer S, Hametner B, Parragh S, Eber B. Noninvasive methods to assess pulse wave velocity: comparison with the invasive gold standard and relationship with organ damage. J Hypertens. 2015;33:1023–31.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Magometschnigg D. [Blood pressure and arterial stiffness. A comparison of two devices for measuring augmentationindex and pulse wave velocity]. Wien Med Wochenschr. 2005;155:404–10.

    PubMed  Article  Google Scholar 

  58. 58.

    Rajzer MW, Wojciechowska W, Klocek M, Palka I, Brzozowska-Kiszka M, Kawecka-Jaszcz K. Comparison of aortic pulse wave velocity measured by three techniques: Complior, SphygmoCor and Arteriograph. J Hypertens. 2008;26:2001–7.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Baulmann J, Schillings U, Rickert S, Uen S, Dusing R, Illyes M, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26:523–8.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    van Dijk SC, Enneman AW, Swart KM, van Schoor NM, Uitterlinden AG, Smulders YM, et al. Oscillometry and applanation tonometry measurements in older individuals with elevated levels of arterial stiffness. Blood Press Monit. 2013;18:332–8.

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Ring M, Eriksson MJ, Zierath JR, Caidahl K. Arterial stiffness estimation in healthy subjects: a validation of oscillometric (Arteriograph) and tonometric (SphygmoCor) techniques. Hypertens Res. 2014;37:999–1007.

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Kotovskaya YV, Kobalava ZD, Orlov AV. Validation of the integration of technology that measures additional “vascular” indices into an ambulatory blood pressure monitoring system. Med Devices. 2014;7:91–7.

    Google Scholar 

  63. 63.

    Gunjaca G, Jeroncic A, Budimir D, Mudnic I, Kolcic I, Polasek O, et al. A complex pattern of agreement between oscillometric and tonometric measurement of arterial stiffness in a population-based sample. J Hypertens. 2012;30:1444–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Butlin M, Alqahtani A, Qasem A, Turner M, Avolio AP. 6a.07. Aortic systolic pressure values but not indices derived from waveform features are consistent between brachial cuff-based devices used for estimation of central aortic pressure. J Hypertens. 2015;33(Supplement 1):e74–5.

    Article  Google Scholar 

  65. 65.

    Peng X, Schultz MG, Abhayaratna WP, Stowasser M, Sharman JE. Comparison of central blood pressure estimated by a cuff-based device with radial tonometry. Am J Hypertens. 2016;29:1173–8.

    PubMed  Article  Google Scholar 

  66. 66.

    Nakagomi A, Shoji T, Okada S, Ohno Y, Kobayashi Y. Validity of the augmentation index and pulse pressure amplification as determined by the SphygmoCor XCEL device: a comparison with invasive measurements. Hypertens Res. 2018;41:27–32.

    PubMed  Article  Google Scholar 

  67. 67.

    Garcia-Ortiz L, Recio-Rodriguez JI, Canales-Reina JJ, Cabrejas-Sanchez A, Gomez-Arranz A, Magdalena-Belio JF, et al. Comparison of two measuring instruments, B-pro and SphygmoCor system as reference, to evaluate central systolic blood pressure and radial augmentation index. Hypertens Res. 2012;35:617–23.

    PubMed  Article  Google Scholar 

  68. 68.

    Cheng HM, Lang D, Tufanaru C, Pearson A. Measurement accuracy of non-invasively obtained central blood pressure by applanation tonometry: a systematic review and meta-analysis. Int J Cardiol. 2013;167:1867–76.

    PubMed  Article  Google Scholar 

  69. 69.

    Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, Protogerou AD, Psaltopoulou T, Sharman JE, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens. 2016;34:1237–48.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Milan A, Zocaro G, Leone D, Tosello F, Buraioli I, Schiavone D, et al. Current assessment of pulse wave velocity: comprehensive review of validation studies. J Hypertens. 2019;37:1547–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Wilkinson IB, McEniery CM, Schillaci G, Boutouyrie P, Segers P, Donald A, et al. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity. Artery Res. 2010;4:34–40.

    Article  Google Scholar 

  72. 72.

    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    Article  Google Scholar 

  75. 75.

    Cheng HM, Chuang SY, Wang TD, Kario K, Buranakitjaroen P, Chia YC, et al. Central blood pressure for the management of hypertension: Is it a practical clinical tool in current practice? J Clin Hypertens. 2020;22:391–406.

    Article  Google Scholar 

  76. 76.

    Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulou N, Stergiou GS. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension. 2016;67:183–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Kim HL, Kim SH. Pulse wave velocity in atherosclerosis. Front Cardiovasc Med. 2019;6:41.

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Lioufas N, Hawley CM, Cameron JD, Toussaint ND. Chronic kidney disease and pulse wave velocity: a narrative review. Int J Hypertens. 2019;2019:9189362.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Watabe D, Hashimoto J, Hatanaka R, Hanazawa T, Ohba H, Ohkubo T, et al. Electrocardiographic left ventricular hypertrophy and arterial stiffness: the Ohasama study. Am J Hypertens. 2006;19:1199–205.

    PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Yucel C, Demir S, Demir M, Tufenk M, Nas K, Molnar F, et al. Left ventricular hypertrophy and arterial stiffness in essential hypertension. Bratisl Lek Listy. 2015;116:714–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Kouis P, Kousios A, Kanari A, Kleopa D, Papatheodorou SI, Panayiotou AG. Association of non-invasive measures of subclinical atherosclerosis and arterial stiffness with mortality and major cardiovascular events in chronic kidney disease: systematic review and meta-analysis of cohort studies. Clin Kidney J. 2020;13:842–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Protogerou AD, Argyris AA, Papaioannou TG, Kollias GE, Konstantonis GD, Nasothimiou E, et al. Left-ventricular hypertrophy is associated better with 24-h aortic pressure than 24-h brachial pressure in hypertensive patients: the SAFAR study. J Hypertens. 2014;32:1805–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Zhang Y, Kollias G, Argyris AA, Papaioannou TG, Tountas C, Konstantonis GD, et al. Association of left ventricular diastolic dysfunction with 24-h aortic ambulatory blood pressure: the SAFAR study. J Hum Hypertens. 2015;29:442–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Weber T, Wassertheurer S, Schmidt-Trucksass A, Rodilla E, Ablasser C, Jankowski P, et al. Relationship between 24-hour ambulatory central systolic blood pressure and left ventricular mass: a prospective multicenter study. Hypertension. 2017;70:1157–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Omboni S, Posokhov I, Parati G, Arystan A, Tan I, Barkan V, et al. Variable association of 24-h peripheral and central hemodynamics and stiffness with hypertension-mediated organ damage: the VASOTENS Registry. J Hypertens. 2020;38:701–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Ntineri A, Kollias A, Bountzona I, Servos G, Moyssakis I, Destounis A, et al. Twenty-four-hour ambulatory central blood pressure in adolescents and young adults: association with peripheral blood pressure and preclinical organ damage. J Hypertens. 2020;38:1980–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Yang WY, Mujaj B, Efremov L, Zhang ZY, Thijs L, Wei FF, et al. ECG voltage in relation to peripheral and central ambulatory blood pressure. Am J Hypertens. 2018;31:178–87.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Blanch P, Armario P, Oliveras A, Fernandez-Llama P, Vazquez S, Pareja J, et al. Association of either left ventricular hypertrophy or diastolic dysfunction with 24-hour central and peripheral blood pressure. Am J Hypertens. 2018;31:1293–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Fernandez-Llama P, Pareja J, Yun S, Vazquez S, Oliveras A, Armario P, et al. Cuff-based oscillometric central and brachial blood pressures obtained through ABPM are similarly associated with renal organ damage in arterial hypertension. Kidney Blood Press Res. 2017;42:1068–77.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    de la Sierra A, Pareja J, Fernandez-Llama P, Armario P, Yun S, Acosta E, et al. Twenty-four-hour central blood pressure is not better associated with hypertensive target organ damage than 24-h peripheral blood pressure. J Hypertens. 2017;35:2000–5.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  91. 91.

    Kusunoki H, Iwashima Y, Kawano Y, Hayashi SI, Kishida M, Horio T, et al. Association between circadian hemodynamic characteristics and target organ damage in patients with essential hypertension. Am J Hypertens. 2019;32:742–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Posokhov IN, Kulikova NN, Starchenkova IV, Grigoricheva EA, Evdokimov VV, Orlov AV, et al. The “Pulse Time Index of Norm” highly correlates with the left ventricular mass index in patients with arterial hypertension. Vasc Health Risk Manag. 2014;10:139–44.

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Aissopou EK, Argyris AA, Nasothimiou EG, Konstantonis GD, Tampakis K, Tentolouris N, et al. Ambulatory aortic stiffness is associated with narrow retinal arteriolar caliber in hypertensives: the SAFAR study. Am J Hypertens. 2016;29:626–33.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Sarafidis PA, Loutradis C, Karpetas A, Tzanis G, Piperidou A, Koutroumpas G, et al. Ambulatory pulse wave velocity is a stronger predictor of cardiovascular events and all-cause mortality than office and ambulatory blood pressure in hemodialysis patients. Hypertension. 2017;70:148–57.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Sarafidis PA, Loutradis C, Mayer CC, Karpetas A, Pagkopoulou E, Bikos A, et al. Weak within-individual association of blood pressure and pulse wave velocity in hemodialysis is related to adverse outcomes. J Hypertens. 2019;37:2200–8.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Matschkal J, Mayer CC, Sarafidis PA, Lorenz G, Braunisch MC, Guenthner R, et al. Comparison of 24-hour and office pulse wave velocity for prediction of mortality in hemodialysis patients. Am J Nephrol. 2019;49:317–27.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this paper, take responsibility for the integrity of the work as a whole, and have given final approval to the version to be published. SO drew the pictures and tables and drafted the paper. AA and BB critically revised and approved the final paper.

Corresponding author

Correspondence to Stefano Omboni.

Ethics declarations

Competing interests

SO is a scientific consultant of Biotechmed Ltd., the telemedicine service provider used in the VASOTENS Registry and for this position he has received fees for lectures and consultancies. SO is also a member of the editorial board of the Journal of Human Hypertension. The other authors declare no competing interests regarding the publication of this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Omboni, S., Arystan, A. & Benczur, B. Ambulatory monitoring of central arterial pressure, wave reflections, and arterial stiffness in patients at cardiovascular risk. J Hum Hypertens (2021). https://doi.org/10.1038/s41371-021-00606-4

Download citation

Search

Quick links