Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-dipping pattern in early-stage diabetes: association with glycemic profile and hemodynamic parameters

Abstract

Patients with longstanding diabetes exhibit diminished nocturnal blood pressure (BP) drop, yet this phenomenon remains understudied in the early stages of the disease. Eighty patients with newly diagnosed (<6 months) Diabetes Mellitus type 2 (T2DM) and 80 non-T2DM individuals underwent office and 24-h ambulatory BP measurements, estimation of hemodynamic parameters using impedance cardiography and blood tests. Ten-year atherosclerotic cardiovascular disease (ASCVD) risk score was calculated. T2DM patients exhibited higher nighttime systolic blood pressure (SBP) (p = 0.028) and lower dipping (p < 0.001) compared to controls. In the total population, dipping correlated negatively with age, HbA1c, ASCVD risk score, and positively with HDL Cholesterol and Velocity Index (VI), a marker of myocardial contractility (p < 0.05). Nighttime SBP correlated positively with ASCVD risk, BMI, HbA1c, fasting glucose, eGFR, and negatively with VI (p < 0.05). After adjustment for other variables, HbA1c (p = 0.03), eGFR (p = 0.02) and VI (p = 0.004) independently predicted non-dipping. Multivariate analysis revealed HbA1c (p = 0.023), eGFR (p = 0.05), and VI (p = 0.006) as independent predictors of nighttime SBP. Patients diagnosed with T2DM concurrently present impaired circadian BP rhythm, which appears to be directly associated with impaired glycemic profile. The observed association with myocardial contractility might represent an additional mechanism for the aggravated cardiovascular risk in these patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the distribution of dipping patterns between newly diagnosed DM and normoglycemic controls.

Similar content being viewed by others

Data availability

The dataset analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Nikolaidou B, Gkaliagkousi E, Anyfanti P, Gavriilaki E, Lazaridis A, Triantafyllou A, et al. The impact of hyperglycemia on urinary albumin excretion in recent onset diabetes mellitus type II. BMC Nephrol. 2020;21:119.

    Article  CAS  PubMed  Google Scholar 

  2. Kosiborod M, Gomes MB, Nicolucci A, Pocock S, Rathmann W, Shestakova MV, et al. Vascular complications in patients with type 2 diabetes: prevalence and associated factors in 38 countries (the DISCOVER study program). Cardiovasc Diabetol. 2018;17:150.

    Article  CAS  PubMed  Google Scholar 

  3. American Diabetes A.11. Microvascular complications and foot care: standards of medical care in diabetes-2020. Diabetes Care. 2020;43 Suppl 1:S135–S51.

    Article  Google Scholar 

  4. Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet. 2012;380:601–10.

    Article  PubMed  Google Scholar 

  5. Nilsson PM, Cederholm J, Zethelius BR, Eliasson BR, Eeg-Olofsson K, Gudbj Rnsdottir S. Trends in blood pressure control in patients with type 2 diabetes: data from the Swedish National Diabetes Register (NDR). Blood Press. 2011;20:348–54.

    Article  PubMed  Google Scholar 

  6. Cuspidi C, Sala C, Tadic M, Gherbesi E, De Giorgi A, Grassi G, et al. Clinical and prognostic significance of a reverse dipping pattern on ambulatory monitoring: an updated review. J Clin Hypertens. 2017;19:713–21.

    Article  Google Scholar 

  7. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104. 2018

    Article  PubMed  Google Scholar 

  8. Kario K. Nocturnal hypertension: new technology and evidence. Hypertension. 2018;71:997–1009.

    Article  CAS  PubMed  Google Scholar 

  9. Fogari R, Zoppi A, Malamani GD, Lazzari P, Destro M, Corradi L. Ambulatory blood pressure monitoring in normotensive and hypertensive type 2 diabetes. Prevalence of impaired diurnal blood pressure patterns. Am J Hypertens. 1993;6:1–7.

    Article  CAS  PubMed  Google Scholar 

  10. Dost A, Klinkert C, Kapellen T, Lemmer A, Naeke A, Grabert M, et al. Arterial hypertension determined by ambulatory blood pressure profiles: contribution to microalbuminuria risk in a multicenter investigation in 2,105 children and adolescents with type 1 diabetes. Diabetes Care. 2008;31:720–5.

    Article  PubMed  Google Scholar 

  11. Najafi MT, Khaloo P, Alemi H, Jaafarinia A, Blaha MJ, Mirbolouk M, et al. Ambulatory blood pressure monitoring and diabetes complications: Targeting morning blood pressure surge and nocturnal dipping. Medicine. 2018;97:e12185.

    Article  PubMed  Google Scholar 

  12. Rossen NB, Knudsen ST, Fleischer J, Hvas AM, Ebbehoj E, Poulsen PL, et al. Targeting nocturnal hypertension in type 2 diabetes mellitus. Hypertension. 2014;64:1080–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kario K. Nondipping in nocturnal blood pressure in diabetes: an indicator of autonomic nervous dysfunction? Am J Hypertens. 2007;20:546–7.

    Article  PubMed  Google Scholar 

  14. Deyneli O, Yazici D, Toprak A, Yuksel M, Aydin H, Tezcan H, et al. Diurnal blood pressure abnormalities are related to endothelial dysfunction in patients with non-complicated type 1 diabetes. Hypertens Res. 2008;31:2065–73.

    Article  PubMed  Google Scholar 

  15. Felicio JS, de Souza AC, Kohlmann N, Kohlmann O Jr., Ribeiro AB, Zanella MT. Nocturnal blood pressure fall as predictor of diabetic nephropathy in hypertensive patients with type 2 diabetes. Cardiovasc Diabetol. 2010;9:36.

    Article  PubMed  Google Scholar 

  16. Verdecchia P, Schillaci G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F, et al. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation. 1990;81:528–36.

    Article  CAS  PubMed  Google Scholar 

  17. Nakano S, Uchida K, Kigoshi T, Azukizawa S, Iwasaki R, Kaneko M, et al. Circadian rhythm of blood pressure in normotensive NIDDM subjects. Its relationship to microvascular complications. Diabetes Care. 1991;14:707–11.

    Article  CAS  PubMed  Google Scholar 

  18. Draman MS, Dolan E, van der Poel L, Tun TK, McDermott JH, Sreenan S, et al. The importance of night-time systolic blood pressure in diabetic patients: Dublin Outcome Study. J Hypertens. 2015;33:1373–7.

    Article  CAS  PubMed  Google Scholar 

  19. Tsioufis C, Andrikou I, Thomopoulos C, Syrseloudis D, Stergiou G, Stefanadis C. Increased nighttime blood pressure or nondipping profile for prediction of cardiovascular outcomes. J Hum Hypertens. 2011;25:281–93.

    Article  CAS  PubMed  Google Scholar 

  20. Tsioufis C, Andrikou I, Thomopoulos C, Petras D, Manolis A, Stefanadis C. Comparative prognostic role of nighttime blood pressure and nondipping profile on renal outcomes. Am J Nephrol. 2011;33:277–88.

    Article  PubMed  Google Scholar 

  21. O’Flynn AM, Dolan E, Curtin RJ, O’Brien E, Perry IJ, Kearney PM. Night-time blood pressure and target organ damage: a comparative analysis of absolute blood pressure and dipping status. J Hypertens. 2015;33:2257–64.

    Article  PubMed  Google Scholar 

  22. Bouhanick B, Bongard V, Amar J, Bousquel S, Chamontin B. Prognostic value of nocturnal blood pressure and reverse-dipping status on the occurrence of cardiovascular events in hypertensive diabetic patients. Diabetes Metab. 2008;34:560–7.

    Article  CAS  PubMed  Google Scholar 

  23. Boggia J, Li Y, Thijs L, Hansen TW, Kikuya M, Bjorklund-Bodegard K, et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet. 2007;370:1219–29.

    Article  PubMed  Google Scholar 

  24. Lempiäinen PA, Vasunta RL, Bloigu R, Kesäniemi YA, Ukkola OH. Non-dipping blood pressure pattern and new-onset diabetes in a 21-year follow-up. Blood Press. 2019;28:300–8.

    Article  PubMed  Google Scholar 

  25. Lane-Cordova AD, Kalil GZ, Wagner CJ, Sindler AL, Fiedorowicz JG, Ajibewa T, et al. Hemoglobin A1c and C-reactive protein are independently associated with blunted nocturnal blood pressure dipping in obesity-related prediabetes. Hypertens Res. 2018;41:33–8.

    Article  CAS  PubMed  Google Scholar 

  26. World Health Organization & International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. World Health Organization. 2006. Available from: https://apps.who.int/iris/handle/10665/43588.

  27. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation. Geneva: World Health Organization; 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK304267/.

  28. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.2013

    Article  CAS  PubMed  Google Scholar 

  29. Van De Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML. Impedance cardiography: the next vital sign technology? Chest. 2003;123:2028–33.

    Article  Google Scholar 

  30. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e596–e646. 2019

    PubMed Central  PubMed  Google Scholar 

  31. Aung AT, Chan SP, Kyaing TT, Lee CH. Diabetes mellitus is associated with high sleep-time systolic blood pressure and non-dipping pattern. Postgrad Med. 2020;132:346–51.

    Article  PubMed  Google Scholar 

  32. Nakano S, Fukuda M, Hotta F, Ito T, Ishii T, Kitazawa M, et al. Reversed circadian blood pressure rhythm is associated with occurrences of both fatal and nonfatal vascular events in NIDDM subjects. Diabetes. 1998;47:1501–6.

    Article  CAS  PubMed  Google Scholar 

  33. Gavriilaki M, Anyfanti P, Nikolaidou B, Lazaridis A, Gavriilaki E, Douma S, et al. Nighttime dipping status and risk of cardiovascular events in patients with untreated hypertension: A systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2020;22:1951–9.

    Article  Google Scholar 

  34. Hermida RC, Crespo JJ, Dominguez-Sardina M, Otero A, Moya A, Rios MT, et al. Bedtime hypertension treatment improves cardiovascular risk reduction: the Hygia Chronotherapy Trial. Eur Heart J. 2020;41:4565–76.

    Article  CAS  PubMed  Google Scholar 

  35. Gkaliagkousi E, Nikolaidou B, Gavriilaki E, Lazaridis A, Yiannaki E, Anyfanti P, et al. Increased erythrocyte- and platelet-derived microvesicles in newly diagnosed type 2 diabetes mellitus. Diabetes Vasc Dis Res. 2019;16:458–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study. EG, SD, and BN participated in the design and conception of the study. BN, EG, EIG, PA, ArT, AL, actively participated in subjects’ enrollment. HZ and KM collected and recorded the data. ElG, BN, and PA analyzed and interpreted the data. BN, PA, ElG, and EG edited the final manuscript. SD, AT, and EG corrected and approved the final manuscript. All authors read and approved the final version of the manuscript and agreed to submit it for publication.

Corresponding author

Correspondence to Eugenia Gkaliagkousi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Approval was obtained from the ethics committee of the Aristotle University of Thessaloniki, School of medicine (approval number: 5.44/6/7/16). Written informed consent was obtained from all patients prior to participation in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaidou, B., Anyfanti, P., Gavriilaki, E. et al. Non-dipping pattern in early-stage diabetes: association with glycemic profile and hemodynamic parameters. J Hum Hypertens 36, 805–810 (2022). https://doi.org/10.1038/s41371-021-00587-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-021-00587-4

This article is cited by

Search

Quick links