Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The association of cardiorespiratory fitness and the risk of hypertension: a systematic review and dose–response meta-analysis

Abstract

Established evidence has indicated a negative correlation between cardiorespiratory fitness (CRF) and hypertension risk. In this study, we performed a meta-analysis to investigate the categorical and dose–response relationship between CRF and hypertension risk and the effects of CRF changes on hypertension risk reduction. The PubMed, Web of Science, and Embase databases were searched for relevant studies. The summarized relative risk (RR) and 95% confidence interval (95% CI) were estimated using the DerSimonian and Laird random effect model, and the dose–response relationship between CRF and hypertension risk was characterized using generalized least-squares regression and restricted cubic splines. Nine cohorts describing 110,638 incident hypertension events among 1,618,067 participants were included in this study. Compared with the lowest category of CRF, the RR of hypertension was 0.63 (95% CI: 0.56–0.70) for the highest CRF category and 0.85 (95% CI: 0.80–0.91) for the moderate category of CRF. For a 1-metabolic equivalent increment in CRF, the pooled RR of hypertension was 0.92 (95% CI: 0.90–0.94) in the total population. The RR of hypertension was 0.71 (95% CI: 0.64–0.79) for participants with CRF increased compared with those whose CRF was decreased over time. In conclusion, our meta-analysis supports the widely held notion of a negative dose-dependent relationship between CRF and hypertension risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Categorical association between CRF and hypertension risk.
Fig. 2: Dose–response association between CRF and hypertension risk.
Fig. 3: Association between CRF increase and hypertension risk.

Similar content being viewed by others

References

  1. World Health Organization. A global brief on hypertension: Silent killer, global public health crisis. http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/, 2013.

  2. Liu X, Zhang D, Liu Y, Sun X, Han C, Wang B, et al. Dose-response association between physical activity and incident hypertension: a systematic review and meta-analysis of cohort studies. Hypertension. 2017;69:813–20.

    Article  CAS  PubMed  Google Scholar 

  3. Huai P, Xun H, Reilly KH, Wang Y, Ma W, Xi B. Physical activity and risk of hypertension: a meta-analysis of prospective cohort studies. Hypertension. 2013;62:1021–6.

    Article  CAS  PubMed  Google Scholar 

  4. Noonan V, Dean E. Submaximal exercise testing: clinical application and interpretation. Phys Ther. 2000;80:782–807.

    Article  CAS  PubMed  Google Scholar 

  5. Skinner JS, Wilmore KM, Krasnoff JB, Jaskolski A, Jaskolska A, Gagnon J, et al. Adaptation to a standardized training program and changes in fitness in a large, heterogeneous population: the HERITAGE Family Study. Med Sci Sports Exerc. 2000;32:157–61.

    Article  CAS  PubMed  Google Scholar 

  6. DeFina LF, Haskell WL, Willis BL, Barlow CE, Finley CE, Levine BD, et al. Physical activity versus cardiorespiratory fitness: two (partly) distinct components of cardiovascular health? Prog Cardiovasc Dis. 2015;57:324–9.

    Article  PubMed  Google Scholar 

  7. Gando Y, Sawada SS, Kawakami R, Momma H, Shimada K, Fukunaka Y, et al. Combined association of cardiorespiratory fitness and family history of hypertension on the incidence of hypertension: a long-term cohort study of Japanese males. Hypertension Res Off J Jpn Soc Hypertension. 2018;41:1063–9.

    Article  Google Scholar 

  8. Kunutsor SK, Kurl S, Laukkanen JA. Association of oxygen uptake at ventilatory threshold with risk of incident hypertension: a long-term prospective cohort study. J Hum hypertension. 2017;31:654–6.

    Article  CAS  Google Scholar 

  9. Crump C, Sundquist J, Winkleby MA, Sundquist K. Interactive effects of physical fitness and body mass index on the risk of hypertension. JAMA Intern Med. 2016;176:210–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carnethon MR, Gidding SS, Nehgme R, Sidney S, Jacobs DR, Liu K. Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors. JAMA. 2003;290:3092–100.

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Zhang D, Liu Y, Sun X, Hou Y, Wang B, et al. A J-shaped relation of BMI and stroke: systematic review and dose-response meta-analysis of 4.43 million participants. Nutr Metab Cardiovascular Dis. 2018;28:1092–9.

    Article  CAS  Google Scholar 

  12. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.

    Article  PubMed  Google Scholar 

  13. Faselis C, Doumas M, Kokkinos JP, Panagiotakos D, Kheirbek R, Sheriff HM, et al. Exercise capacity and progression from prehypertension to hypertension. Hypertension. 2012;60:333–8.

    Article  CAS  PubMed  Google Scholar 

  14. Juraschek SP, Blaha MJ, Whelton SP, Blumenthal R, Jones SR, Keteyian SJ, et al. Physical fitness and hypertension in a population at risk for cardiovascular disease: the Henry Ford ExercIse Testing (FIT) Project. J Am Heart Assoc. 2014;3:e001268.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carnethon MR, Evans NS, Church TS, Lewis CE, Schreiner PJ, Jacobs DR, et al. Joint associations of physical activity and aerobic fitness on the development of incident hypertension: coronary artery risk development in young adults. Hypertension. 2010;56:49–55.

    Article  CAS  PubMed  Google Scholar 

  16. Jae SY, Heffernan KS, Yoon ES, Park SH, Carnethon MR, Fernhall B, et al. Temporal changes in cardiorespiratory fitness and the incidence of hypertension in initially normotensive subjects. Am J Hum Biol Off J Hum Biol Counc. 2012;24:763–7.

    Article  Google Scholar 

  17. Jae SY, Kurl S, Laukkanen JA, Lee CD, Choi YH, Fernhall B, et al. Relation of C-reactive protein, fibrinogen, and cardiorespiratory fitness to risk of systemic hypertension in men. Am J Cardiol. 2015;115:1714–9.

    Article  CAS  PubMed  Google Scholar 

  18. Barlow CE, LaMonte MJ, Fitzgerald SJ, Kampert JB, Perrin JL, Blair SN, et al. Cardiorespiratory fitness is an independent predictor of hypertension incidence among initially normotensive healthy women. Am J Epidemiol. 2006;163:142–50.

    Article  PubMed  Google Scholar 

  19. Chase NL, Sui X, Lee DC, Blair SN. The association of cardiorespiratory fitness and physical activity with incidence of hypertension in men. Am J Hypertension. 2009;22:417–24.

    Article  Google Scholar 

  20. Shook RP, Lee DC, Sui X, Prasad V, Hooker SP, Church TS. Cardiorespiratory fitness reduces the risk of incident hypertension associated with a parental history of hypertension. Hypertension. 2012;59:1220–4.

    Article  CAS  PubMed  Google Scholar 

  21. Rankinen T, Church TS, Rice T, Bouchard C, Blair SN. Cardiorespiratory fitness, BMI, and risk of hypertension: the HYPGENE study. Med Sci Sports Exerc. 2007;39:1687–92.

    Article  PubMed  Google Scholar 

  22. Banda JA, Clouston K, Sui X, Hooker SP, Lee CD, Blair SN. Protective health factors and incident hypertension in men. Am J Hypertension. 2010;23:599–605.

    Article  Google Scholar 

  23. Sui X, Sarzynski MA, Lee DC, Lavie CJ, Zhang J, Kokkinos PF, et al. Longitudinal patterns of cardiorespiratory fitness predict the development of hypertension among men and women. Am J Med. 2017;130:469–476.e2.

    Article  PubMed  Google Scholar 

  24. Jae SY, Kurl S, Franklin BA, Laukkanen JA. Changes in cardiorespiratory fitness predict incident hypertension: a population-based long-term study. Am J Hum Biol 2017;29:1–5.

  25. Lee DC, Sui X, Church TS, Lavie CJ, Jackson AS, Blair SN. Changes in fitness and fatness on the development of cardiovascular disease risk factors hypertension, metabolic syndrome, and hypercholesterolemia. J Am Coll Cardiol. 2012;59:665–72.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Holmlund T, Ekblom B, Börjesson M, Andersson G, Wallin P, Ekblom-Bak E. Association between change in cardiorespiratory fitness and incident hypertension in Swedish adults. Eur J Prev Cardiol 2020.

  27. Wells BS, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

  28. American College of Sports Medicine, ACSM’s Metabolic Calculations Handbook, Lippincott Williams & Wilkins, Philadelphia, PA,, 2006.

  29. Andersen LB. A maximal cycle exercise protocol to predict maximal oxygen uptake. Scand J Med Sci Sports. 1995;5:143–6.

    Article  CAS  PubMed  Google Scholar 

  30. Hartemink N, Boshuizen HC, Nagelkerke NJ, Jacobs MA, van Houwelingen HC. Combining risk estimates from observational studies with different exposure cutpoints: a meta-analysis on body mass index and diabetes type 2. Am J Epidemiol. 2006;163:1042–52.

    Article  PubMed  Google Scholar 

  31. Hamling J, Lee P, Weitkunat R, Ambuhl M. Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med. 2008;27:954–70.

    Article  PubMed  Google Scholar 

  32. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose–response data. Stata J. 2006;6:40–57.

    Article  Google Scholar 

  33. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  34. Greenland S. Dose-response and trend analysis in epidemiology: alternatives to categorical analysis. Epidemiology. 1995;6:356–65.

    Article  CAS  PubMed  Google Scholar 

  35. Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline functions in public health research. Stat Med. 2010;29:1037–57.

    PubMed  Google Scholar 

  36. Bekkering GE, Harris RJ, Thomas, Mayer AM, Beynon R, Ness AR, et al. How much of the data published in observational studies of the association between diet and prostate or bladder cancer is usable for meta-analysis? Am J Epidemiol. 2008;167:1017–26.

    Article  PubMed  Google Scholar 

  37. Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ. 2003;326:219.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  39. Higgins JP, Thompson SG. Controlling the risk of spurious findings from meta-regression. Stat Med. 2004;23:1663–82.

    Article  PubMed  Google Scholar 

  40. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. Jama. 2009;301:2024–35.

    Article  CAS  PubMed  Google Scholar 

  42. Qiu S, Cai X, Yang B, Du Z, Cai M, Sun Z. et al. Association between cardiorespiratory fitness and risk of type 2 diabetes: a meta-analysis. Obesity. 2019;27:315–24.

    Article  PubMed  Google Scholar 

  43. Sieverdes JC, Sui X, Lee DC, Church TS, McClain A, Hand GA, et al. Physical activity, cardiorespiratory fitness and the incidence of type 2 diabetes in a prospective study of men. Br J Sports Med. 2010;44:238–44.

    Article  PubMed  Google Scholar 

  44. Bouchard C, Daw EW, Rice T, Perusse L, Gagnon J, Province MA, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998;30:252–8.

    Article  CAS  PubMed  Google Scholar 

  45. Repka CP, Hayward R. Oxidative stress and fitness changes in cancer patients after exercise training. Med Sci Sports Exerc. 2016;48:607–14.

    Article  CAS  PubMed  Google Scholar 

  46. Blond MB, Rosenkilde M, Gram AS, Tindborg M, Christensen AN, Quist JS, et al. How does 6 months of active bike commuting or leisure-time exercise affect insulin sensitivity, cardiorespiratory fitness and intra-abdominal fat? A randomised controlled trial in individuals with overweight and obesity. Br J Sports Med. 2019;53:1183–92.

    Article  PubMed  Google Scholar 

  47. Wedell-Neergaard AS, Krogh-Madsen R, Petersen G, Hansen AM, Pedersen BK, Lund R, et al. Cardiorespiratory fitness and the metabolic syndrome: Roles of inflammation and abdominal obesity. PLoS ONE. 2018;13:e0194991.

  48. Howe AS, Skidmore PM, Parnell WR, Wong JE, Lubransky AC, Black KE. Cardiorespiratory fitness is positively associated with a healthy dietary pattern in New Zealand adolescents. Public health Nutr. 2016;19:1279–87.

    Article  PubMed  Google Scholar 

  49. Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation. 2013;127:652–62.

    Article  PubMed  Google Scholar 

  50. Lavie CJ, McAuley PA, Church TS, Milani RV, Blair SN. Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J Am Coll Cardiol. 2014;63:1345–54.

    Article  PubMed  Google Scholar 

  51. Ortega R, Grandes G, Sanchez A, Montoya I, Torcal J. Cardiorespiratory fitness and development of abdominal obesity. Preventive Med. 2019;118:232–7.

    Article  Google Scholar 

  52. Konigstein K, Infanger D, Klenk C, Hinrichs T, Rossmeissl A, Baumann S, et al. Does obesity attenuate the beneficial cardiovascular effects of cardiorespiratory fitness? Atherosclerosis. 2018;272:21–26.

    Article  CAS  PubMed  Google Scholar 

  53. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci sports Exerc. 2011;43:1334–59.

    Article  PubMed  Google Scholar 

  54. Department of Health. Start Active, Stay Active: A Report on Physical Activity from the Four Home Countries’ Chief Medical Officers, Crown, London, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuaiyin Chen or Guangcai Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Zhang, D., Chen, S. et al. The association of cardiorespiratory fitness and the risk of hypertension: a systematic review and dose–response meta-analysis. J Hum Hypertens 36, 744–752 (2022). https://doi.org/10.1038/s41371-021-00567-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-021-00567-8

This article is cited by

Search

Quick links