Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Certain beta blockers (e.g., bisoprolol) may be reevaluated in hypertension guidelines for patients with left ventricular hypertrophy to diminish the ventricular arrhythmic risk

Abstract

Hypertensive left ventricular hypertrophy (HTN LVH) is associated with almost threefold increased risk of ventricular tachycardia (VT)/ventricular fibrillation (VF). Furthermore, HTN LVH increases the risk of sudden cardiac death (SCD). The reverse LV remodeling due to efficient antihypertensive therapy lowers the incidence rates of cardiovascular events and SCD and the vast majority of available arterial hypertension (HTN) guidelines recommend renin angiotensin system (RAS) blockers and calcium channel blockers (CCBs) for HTN LVH aiming for LVH regression. On the other hand, beta blockers (BBs) as a class are not recommended in HTN LVH due to their insufficient capacity to reverse LVH remodeling even though they are recommended as the first-line drugs for prevention/treatment of VT/VF (in general, unrelated to HTN LVH). Moreover, BBs are the best antiarrhythmic (against VT/VF) among antihypertensive drugs. Despite that, BBs are currently not recommended for LVH treatment in HTN Guidelines. It is important to prevent VT/VF in patients at high risk, such as those with HTN LVH. Therefore, certain BBs (such as Bisoprolol) may be reevaluated in guidelines for HTN (in the section of HTN LVH).

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PRISMA-like flow chart describing literature search.

References

  1. 1.

    Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy. Curr Hypertens Rep. 2020;22:11.

    PubMed  Google Scholar 

  2. 2.

    Lip GYH, Coca A, Kahan T, Boriani G, Manolis AS, Olsen MH, et al. Hypertension and cardiac arrhythmias: executive summary of a consensus document from the European Heart Rhythm Association (EHRA) and ESC Council on Hypertension, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE). Eur Heart J Cardiovasc Pharmacother. 2017;3:235–50.

    PubMed  Google Scholar 

  3. 3.

    Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75:1334–57.

    CAS  PubMed  Google Scholar 

  4. 4.

    Egan BM, Kjeldsen SE, Grassi G, Esler M, Mancia G. The global burden of hypertension exceeds 1.4 billion people: should a systolic blood pressure target below 130 become the universal standard? J Hypertens. 2019;37(Jun):1148–53.

    CAS  PubMed  Google Scholar 

  5. 5.

    Cuspidi C, Sala C, Negri F, Mancia G, Morganti A. Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens. 2012;26:343–9.

    CAS  PubMed  Google Scholar 

  6. 6.

    Nadar SK, Lip GYH The heart in hypertension. J Hum Hypertens. 2020 Oct 12, https://doi.org/10.1038/s41371-020-00427-x.

  7. 7.

    Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death–executive summary: A report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death) Developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Eur Heart J. 2006;27:2099–140.

    PubMed  Google Scholar 

  8. 8.

    Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36:2793–867.

    PubMed  Google Scholar 

  9. 9.

    Tasić I, Dragan Djordjević D, Svetlana, Kostić S. The effect of degree and type of left ventricular hypertrophy on ventricular arrhythmias in hypertension. FACTA UNIVERSITATIS Ser: Med Biol. 2017;19:27–31.

    Google Scholar 

  10. 10.

    Wannamethee G, Shaper AG, Macfarlane PW, Walker M. Risk factors for sudden cardiac death in middle-aged British men. Circulation. 1995;91:1749–56.

    CAS  PubMed  Google Scholar 

  11. 11.

    Jouven X, Zureik M, Desnos M, Guérot C, Ducimetière P. Resting heart rate as a predictive risk factor for sudden death in middle-aged men. Cardiovasc Res. 2001;50:373–8.

    CAS  PubMed  Google Scholar 

  12. 12.

    Pan H, Hibino M, Kobeissi E, Aune D. Blood pressure, hypertension and the risk of sudden cardiac death: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol. 2020;35:443–54.

    PubMed  Google Scholar 

  13. 13.

    Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet. 2014;383:1899–911.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tereshchenko LG, Soliman EZ, Davis BR, Oparil S. Risk stratification of sudden cardiac death in hypertension. J Electrocardiol. 2017;50:798–801.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Sanidas E, Malliaras K, Papadopoulos D, Velliou M, Tsakalis K, Zerva K, et al. Antihypertensive therapy and sudden cardiac death, should we expect the unexpected? J Hum Hypertens. 2020;34:339–45.

    CAS  PubMed  Google Scholar 

  16. 16.

    Laukkanen JA, Jennings JR, Kauhanen J, Makikallio TH, Ronkainen K, Kurl S. Relation of systemic blood pressure to sudden cardiac death. Am J Cardiol. 2012;110:378–82.

    PubMed  Google Scholar 

  17. 17.

    Verdecchia P, Angeli F, Cavallini C, Aita A, Turturiello D, De Fano M, et al. Sudden cardiac death in hypertensive patients. Hypertension. 2019;73:1071–8.

    CAS  PubMed  Google Scholar 

  18. 18.

    Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies [published correction appears in Lancet. 2003 Mar 22;361(9362):1060]. Lancet. 2002;360:1903–13.

    PubMed  Google Scholar 

  19. 19.

    Ataklte F, Erqou S, Laukkanen J, Kaptoge S. Meta-analysis of ventricular premature complexes and their relation to cardiac mortality in general populations. Am J Cardiol. 2013;112:1263–70.

    PubMed  Google Scholar 

  20. 20.

    Myerburg RJ, Kessler KM, Castellanos A. Sudden cardiac death: epidemiology, transient risk, and intervention assessment. Ann Intern Med. 1993;119:1187e1197.

    Google Scholar 

  21. 21.

    Galinier M, Balanescu S, Fourcade J, Dorobantu M, Boveda S, Massabuau P, et al. Prognostic value of ventricular arrhythmias in systemic hypertension. J Hypertens. 1997;15:1779–83.

    CAS  PubMed  Google Scholar 

  22. 22.

    Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Europace. 2020;22:1147–8.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ijiri H, Kohno I, Yin D, Iwasaki H, Takusagawa M, Iida T, et al. Cardiac arrhythmias and left ventricular hypertrophy in dipper and nondipper patients with essential hypertension. Jpn Circ J. 2000;64:499–504.

    CAS  PubMed  Google Scholar 

  24. 24.

    McLenachan JM, Henderson E, Morris KI, Dargie HJ. Ventricular arrhythmias in patients with hypertensive left ventricular hypertrophy. N Engl J Med. 1987;317:787–92.

    CAS  PubMed  Google Scholar 

  25. 25.

    Messerli FH, Ventura HO, Elizardi DJ, Dunn FG, Frohlich ED. Hypertension and sudden death. Increased ventricular ectopic activity in left ventricular hypertrophy. Am J Med. 1984;77:18–22.

    CAS  PubMed  Google Scholar 

  26. 26.

    Aro AL, Chugh SS. Clinical diagnosis of electrical versus anatomic left ventricular hypertrophy: prognostic and therapeutic implications. Circ Arrhythm Electrophysiol. 2016;9:e003629.

    Google Scholar 

  27. 27.

    Chatterjee S, Bavishi C, Sardar P, Agarwal V, Krishnamoorthy P, Grodzicki T, et al. Meta-analysis of left ventricular hypertrophy and sustained arrhythmias. Am J Cardiol. 2014;114:1049–52.

    Google Scholar 

  28. 28.

    Schmieder RE, Messerli FH. Determinants of ventricular ectopy in hypertensive cardiac hypertrophy. Am Heart J. 1992;123:89–95.

    CAS  PubMed  Google Scholar 

  29. 29.

    Vester EG, Kuhls S, Ochiulet-Vester J, Vogt M, Strauer BE. Electrophysiological and therapeutic implications of cardiac arrhythmias in hypertension. Eur Heart J. 1992;13:70–81.

    PubMed  Google Scholar 

  30. 30.

    Wolk R. Arrhythmogenic mechanisms in left ventricular hypertrophy. Europace. 2000;2:216–23.

    CAS  PubMed  Google Scholar 

  31. 31.

    Ghali JK, Kadakia S, Cooper RS, Liao YL. Impact of left ventricular hypertrophy on ventricular arrhythmias in the absence of coronary artery disease. J Am Coll Cardiol. 1991;17:1277–82.

    CAS  PubMed  Google Scholar 

  32. 32.

    Greenberg MD, Papademetriou V, Narayan P, Kokkinos P. Nonsustained ventricular tachycardia as a predictor of cardiovascular events in black men with hypertensive left ventricular hypertrophy. J Clin Hypertens (Greenwich). 2000;2:14–9.

    Google Scholar 

  33. 33.

    Kannel WB, Schatzkin A. Sudden death: lessons from subsets in population studies. J Am Coll Cardiol. 1985;5:141B–9B.

    CAS  PubMed  Google Scholar 

  34. 34.

    Levy D, Anderson KM, Savage DD, Balkus SA, Kannel WB, Castelli WP. Risk of ventricular arrhythmias in left ventricular hypertrophy: the Framingham Heart Study. Am J Cardiol. 1987;60:560e565.

    Google Scholar 

  35. 35.

    Shenasa M, Shenasa H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol. 2017;237:60–3.

    PubMed  Google Scholar 

  36. 36.

    Cunningham KS, Spears DA, Care M. Evaluation of cardiac hypertrophy in the setting of sudden cardiac death. Forensic Sci Res. 2019;4:223–40.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rautaharju PM, Soliman EZ. Electrocardiographic left ventricular hypertrophy and the risk of adverse cardiovascular events: a critical appraisal. J Electrocardiol. 2014;47:649–54.

    PubMed  Google Scholar 

  38. 38.

    Narayanan K, Reinier K, Teodorescu C, Uy-Evanado A, Chugh H, Gunson K, et al. Electrocardiographic versus echocardiographic left ventricular hypertrophy and sudden cardiac arrest in the community. Heart Rhythm. 2014;11:1040–6.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sundström J, Lind L, Arnlöv J, Zethelius B, Andrén B, Lithell HO. Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation. 2001;103:2346–51.

    Google Scholar 

  40. 40.

    Chugh SS. Einthoven and electrical risk: value of the electrocardiogram to predict sudden cardiac death. J Cardiovasc Electrophysiol. 2018;29:61–3.

    PubMed  Google Scholar 

  41. 41.

    Narayanan K, Reinier K, Teodorescu C, Uy-Evanado A, Aleong R, Chugh H, et al. Left ventricular diameter and risk stratification for sudden cardiac death. J Am Heart Assoc. 2014;3:e001193.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Narayanan K, Chugh SS. The 12-lead electrocardiogram and risk of sudden death: current utility and future prospects. Europace 2015;17:ii7–13.

    PubMed  Google Scholar 

  43. 43.

    Wachtell K, Okin PM, Olsen MH, Dahlof B, Devereux RB, Ibsen H, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy and reduction in sudden cardiac death: the LIFE study. Circulation. 2007;116:700–5.

    PubMed  Google Scholar 

  44. 44.

    Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, et al. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin- converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.

    CAS  PubMed  Google Scholar 

  45. 45.

    Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    PubMed  Google Scholar 

  46. 46.

    Bacharova L. Missing link between molecular aspects of ventricular arrhythmias and QRS complex morphology in left ventricular hypertrophy. Int J Mol Sci. 2019;21:48.

    PubMed Central  Google Scholar 

  47. 47.

    Zhang B, Zhen Y, Shen D, Zhang G. Significance of fragmented QRS complexes for identifying left ventricular hypertrophy in patients with hypertension. Ann Noninvasive Electrocardiol. 2015;20:175–80.

    PubMed  Google Scholar 

  48. 48.

    Eyuboglu M. Fragmented QRS as a marker of myocardial fibrosis in hypertension: a systematic review. Curr Hypertens Rep. 2019;21:73.

    PubMed  Google Scholar 

  49. 49.

    Aronson RS. Mechanisms of arrhythmias in ventricular hypertrophy. J Cardiovasc Electrophysiol. 1991;2:249–61.

    Google Scholar 

  50. 50.

    Devenyi RA, Ortega FA, Groenendaal W, Krogh-Madsen T, Christini DJ, Sobie EA. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility. J Physiol. 2017;595:2301–17.

    CAS  PubMed  Google Scholar 

  51. 51.

    Riaz B, Majeed SMI, Khan MA. Association of ventricular late potentials with left ventricular hypertrophy in patients with systemic arterial hypertension. Pak Armed Forces Med J. 2016;66:841–4.

    Google Scholar 

  52. 52.

    Tisdale JE, Chung MK, Campbell KB, Hammadah M, Joglar JA, Leclerc J, et al. American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing. Drug-Induced Arrhythmias: A Scientific Statement From the American Heart Association. Circulation. 2020;142:e214–e233.

    PubMed  Google Scholar 

  53. 53.

    Kahan T, Bergfeldt L. Left ventricular hypertrophy in hypertension: its arrhythmogenic potential. Heart 2005;91:250–6.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Grandi E, Ripplinger CM. Antiarrhythmic mechanisms of beta blocker therapy. Pharm Res. 2019;146:104274.

    CAS  Google Scholar 

  55. 55.

    Yagishita D, Chui RW, Yamakawa K, Rajendran PS, Ajijola OA, Nakamura K, et al. Sympathetic nerve stimulation, not circulating norepinephrine, modulates T-peak to T-end interval by increasing global dispersion of repolarization. Circ Arrhythm Electrophysiol. 2015;8:174–85.

    CAS  PubMed  Google Scholar 

  56. 56.

    Bombelli M, Maloberti A, Raina L, Facchetti R, Boggioni I, Pizzala DP, et al. Prognostic relevance of electrocardiographic Tpeak-Tend interval in the general and in the hypertensive population: data from the Pressioni Arteriose Monitorate E Loro Associazioni study. J Hypertens. 2016;34:1823–30.

    CAS  PubMed  Google Scholar 

  57. 57.

    Baumert M, Porta A, Vos MA, Malik M, Couderc JP, Laguna P, et al. QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology. Europace. 2016;18:925–44.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Kadi H, Kevser A, Ozturk A, Koc F, Ceyhan K. Fragmented QRS complexes are associated with increased left ventricular mass in patients with essential hypertension. Ann Noninvasive Electrocardiol. 2013;18:547–54.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Zaglia T, Mongillo M. Cardiac sympathetic innervation, from a different point of (re)view. J Physiol. 2017;595:3919–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Freeman K, Tao W, Sun H, Soonpaa MH, Rubart M. In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging. J Neurosci Methods. 2014;221:48–61.

    PubMed  Google Scholar 

  61. 61.

    Manolis AA, Manolis TA, Apostolopoulos EJ, Apostolaki NE, Melita H, Manolis AS. The role of the autonomic nervous system in cardiac arrhythmias: the neuro-cardiac axis, more foe than friend? Trends Cardiovasc Med. 2020;S1050-1738:30066–9.

    Google Scholar 

  62. 62.

    Clancy CE, Rudy Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 1999;400:566–9.

    CAS  PubMed  Google Scholar 

  63. 63.

    Aflaki M, Qi XY, Xiao L, Ordog B, Tadevosyan A, Luo X, et al. Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained β-adrenergic activation in guinea pig hearts. Circ Res. 2014;114:993–1003.

    CAS  PubMed  Google Scholar 

  64. 64.

    Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas AHEM, et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J. 2020;41:3504–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Galetta F, Franzoni F, Magagna A, Femia FR, Pentimone F, Santoro G, et al. Effect of nebivolol on QT dispersion in hypertensive patients with left ventricular hypertrophy. Biomed Pharmacother. 2005;59:15–9.

    CAS  PubMed  Google Scholar 

  66. 66.

    Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2018;72:e91–e220.

    PubMed  Google Scholar 

  67. 67.

    Piccini JP, Hranitzky PM, Kilaru R, Rouleau JL, White HD, Aylward PE, et al. Relation of mortality to failure to prescribe beta blockers acutely in patients with sustained ventricular tachycardia and ventricular fibrillation following acute myocardial infarction (from the VALsartan In Acute myocardial iNfarcTion trial [VALIANT] Registry). Am J Cardiol. 2008;102:1427–32.

    PubMed  Google Scholar 

  68. 68.

    Soar J, Perkins GD, Maconochie I, Böttiger BW, Deakin CD, Sandroni C, et al. European Resuscitation Council Guidelines for Resuscitation: 2018 Update—Antiarrhythmic drugs for cardiac arrest. Resuscitation. 2019;134:99–103.

    PubMed  Google Scholar 

  69. 69.

    Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS, et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation. 2013;127:e283–352.

    PubMed  Google Scholar 

  70. 70.

    Haugaa KH, Dan GA, Iliodromitis K, Lenarczyk R, Marinskis G, Osca J, et al. Management of patients with ventricular arrhythmias and prevention of sudden cardiac death-translating guidelines into practice: results of the European Heart Rhythm Association survey. Europace. 2018;20:f249–53.

    PubMed  Google Scholar 

  71. 71.

    George T, Ajit MS, Abraham G. Beta blockers & left ventricular hypertrophy regression. Indian Heart J. 2010;62:139–42.

    PubMed  Google Scholar 

  72. 72.

    Dahlöf B, Pennert K, Hansson L. Regression of left ventricular hypertrophy–a meta-analysis. Clin Exp Hypertens A. 1992;14:173–80.

    PubMed  Google Scholar 

  73. 73.

    Kuroda S, Mizukami A, Hayashi T, Yoshioka K, Suzuki M, Matsumura A. Verapamil-sensitive ventricular tachycardia demonstrating multiform QRS morphology in a patient with ischemic cardiomyopathy. Heart Rhythm Case Rep. 2019;5:573–7.

    Google Scholar 

  74. 74.

    Toba M, Nasu T, Nekomiya N, Itasaka R, Makino T, Yokoshiki H. Verapamil-sensitive reentrant upper septal ventricular tachycardia with an area of slow conduction in the longitudinally dissociated left-sided his bundle. J Cardiovasc Electrophysiol. 2019;30:2531–4.

    PubMed  Google Scholar 

  75. 75.

    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52.

    CAS  PubMed  Google Scholar 

  76. 76.

    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    Google Scholar 

  77. 77.

    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    PubMed  Google Scholar 

  78. 78.

    Siscovick DS, Raghunathan TE, Psaty BM, Koepsell TD, Wicklund KG, Lin X, et al. Diuretic therapy for hypertension and the risk of primary cardiac arrest. N Engl J Med. 1994;330:1852–7.

    CAS  PubMed  Google Scholar 

  79. 79.

    Lønnebakken MT, Izzo R, Mancusi C, Gerdts E, Losi MA, Canciello G, et al. Left ventricular hypertrophy regression during antihypertensive treatment in an outpatient clinic (the Campania Salute Network). J Am Heart Assoc. 2017;6:pii: e004152.

    Google Scholar 

  80. 80.

    Soliman EZ, Prineas RJ. Antihypertensive therapies and left ventricular hypertrophy. Curr Hypertens Rep. 2017;19:79.

    PubMed  Google Scholar 

  81. 81.

    Brooks JE, Soliman EZ, Upadhya B. Is left ventricular hypertrophy a valid therapeutic target? Curr Hypertens Rep. 2019;21:47.

    PubMed  Google Scholar 

  82. 82.

    Yildiz M, Oktay AA, Stewart MH, Milani RV, Ventura HO, Lavie CJ. Left ventricular hypertrophy and hypertension. Prog Cardiovasc Dis. 2020;63:10–21.

    PubMed  Google Scholar 

  83. 83.

    Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricularmass in essential hypertension. Am J Med. 2003;115:41–6.

    PubMed  Google Scholar 

  84. 84.

    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.

    PubMed  Google Scholar 

  85. 85.

    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    PubMed  Google Scholar 

  86. 86.

    Allonen J, Nieminen MS, Sinisalo J. Poor adherence to beta-blockers is associated with increased long-term mortality even beyond the first year after an acute coronary syndrome event. Ann Med. 2020;52:74–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Zhu L, Cui Q, Liu Y, Liu Z, Zhang Y, Liu F, et al. Effects of a secondary prevention combination therapy with beta-blocker and statin on major adverse cardiovascular events in acute coronary syndrome patients. Med Sci Monit. 2020;26:e925114.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Koracevic G, Micic S, Stojanovic M, Lovic D, Simic D, Colic M, et al. Compelling indications should be listed for individual beta-blockers (due to diversity), not for the whole class. Curr Vasc Pharmacol. 2020, https://doi.org/10.2174/1570161118666200518113833.

  89. 89.

    Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557–62.

    CAS  PubMed  Google Scholar 

  90. 90.

    Lloyd-Jones DM. The risk of congestive heart failure: sobering lessons from the Framingham Heart Study. Curr Cardiol Rep. 2001;3:184–90.

    CAS  PubMed  Google Scholar 

  91. 91.

    Academy of Medicine of Malaysia. The Clinical Practice Guidelines (CPGs); Management of Hypertension (5th Edition) 2018. Downloaded from: http://www.acadmed.org.my/index.cfm?menuid=67.

  92. 92.

    KENYA NATIONAL GUIDELINES FOR CARDIOVASCULAR DISEASES MANAGEMENT. 2018. Developed by the Division of Non-Communicable Diseases—Ministry of Health Downloaded from www.health.go.ke.

  93. 93.

    Seedat YK, Rayner BL, Veriava Y. South African hypertension practice guideline 2014. Cardiovasc J Afr. 2014;25:288–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018;138:e426–83.

    PubMed  Google Scholar 

  95. 95.

    Ruwald AC, Gislason GH, Vinther M, Johansen JB, Nielsen JC, Philbert BT, et al. Importance of beta-blocker dose in prevention of ventricular tachyarrhythmias, heart failure hospitalizations, and death in primary prevention implantable cardioverter-defibrillator recipients: a Danish nationwide cohort study. Europace. 2018;20:f217–f224.

    CAS  PubMed  Google Scholar 

  96. 96.

    Kostić T, Stanojević D, Gudelj O, Milić D, Putnik S, Perišić Z, et al. Implantable cardioverter defibrillator-powerful weapon in primary and secondary prevention of sudden cardiac death. Vojnosanit Pregl. 2019;76:1007–13.

    Google Scholar 

  97. 97.

    Gutman SJ, Costello BT, Papapostolou S, Voskoboinik A, Iles L, Ja J, et al. Reduction in mortality from implantable cardioverter-defibrillators in non-ischaemic cardiomyopathy patients is dependent on the presence of left ventricular scar. Eur Heart J. 2019;40:542–50.

    PubMed  Google Scholar 

  98. 98.

    Pedersen CT, Kay GN, Kalman J, Borggrefe M, Della-Bella P, Dickfeld T, et al. EP-Europace,UK. EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Heart Rhythm. 2014;11:e166–96.

    PubMed  Google Scholar 

  99. 99.

    Duncker D, König T, Hohmann S, Bauersachs J, Veltmann C. Avoiding untimely implantable cardioverter/defibrillator implantation by intensified heart failure therapy optimization supported by the wearable cardioverter/defibrillator-The PROLONG Study. J Am Heart Assoc. 2017;6:e004512.

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Kawel-Boehm N, Kronmal R, Eng J, Folsom A, Burke G, Carr JJ, et al. Left ventricular mass at MRI and long-term risk of cardiovascular events: the multi-ethnic study of atherosclerosis (MESA). Radiology 2019;293:107–14.

    PubMed  Google Scholar 

  101. 101.

    Tsilakis D, Parzakonis N, Andrikopoulos G, Fouskarinis I, Koulouris S, Manolis AS. The impact of reducing hypertensive left ventricular hypertrophy on sudden cardiac death. Hospital Chron. 2008;3:210–4.

    Google Scholar 

  102. 102.

    Koracevic GP. Hypertensive left ventricular hypertrophy is highly arrhythmogenic- compelling indication for some β blockers? Int J Cardiol. 2012;159:160–1.

    PubMed  Google Scholar 

  103. 103.

    Wolf SJ, Lo B, Shih RD, Smith MD, Fesmire FM. Clinical policy: critical issues in the evaluation and management of adult patients in the emergency department with asymptomatic elevated blood pressure. Ann Emerg Med. 2013;62:59–68.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Serbian Ministry of Education and Science, Belgrade, Serbia, grants No.175092 and No. III41018.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milovan Stojanovic.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koracevic, G., Stojanovic, M., Lovic, D. et al. Certain beta blockers (e.g., bisoprolol) may be reevaluated in hypertension guidelines for patients with left ventricular hypertrophy to diminish the ventricular arrhythmic risk. J Hum Hypertens 35, 564–576 (2021). https://doi.org/10.1038/s41371-021-00505-8

Download citation

Search

Quick links