Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diet-related gut microbial metabolites and sensing in hypertension

Abstract

Advances in sequencing technology have increased our understanding of the composition of the gut microbiota and their contribution to health and disease states, including in cardiovascular diseases such as hypertension. The gut microbiota is heavily influenced by diet and produce metabolites such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO) from various food sources. SCFAs, such as acetate, propionate, and butyrate, have been shown to have blood pressure, cardiac hypertrophy, and fibrosis lowering properties, while TMAO has been associated with increased risk of major cardiovascular adverse events and mortality. Some of these metabolites have known ligands (for example, SCFA receptors such as GPR41, GPR43, GPR109a, and Olf78 in mice/OR51E2 in humans) which could potentially be manipulated as therapeutic targets for hypertension. In this review, we discuss several types of diet-related gut microbial metabolites and their sensing mechanisms that are relevant for hypertension, and the future directions for the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Short-chain fatty acids and the G-protein coupled receptors they bind to.
Fig. 2: Human mRNA levels of short-chain fatty acid (SCFA) receptors.
Fig. 3: Summary of gut metabolites, SCFA receptors and their effects on various cells.

Similar content being viewed by others

References

  1. Jama H, Beale A, Shihata WA, Marques FZ. The effect of diet on hypertensive pathology: is there a link via gut microbiota-driven immune-metabolism? Cardiovasc Res. 2019;115:1435–47.

    CAS  PubMed  Google Scholar 

  2. Sacks FM, Rosner B, Kass EH. Blood pressure in vegetarians. Am J Epidemiol. 1974;100:390–8.

    CAS  PubMed  Google Scholar 

  3. Rouse IL, Armstrong BK, Beilin LJ, Vandongen R. Blood-pressure-lowering effect of a vegetarian diet: controlled trial in normotensive subjects. Lancet. 1983;321:5–10.

    Google Scholar 

  4. Margetts BM, Beilin LJ, Vandongen R, Armstrong BK. Vegetarian diet in mild hypertension: a randomised controlled trial. Br Med J (Clin Res Ed). 1986;293:1468–71.

    CAS  Google Scholar 

  5. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336:1117–24.

    CAS  PubMed  Google Scholar 

  6. Juraschek SP, Miller ER 3rd, Weaver CM, Appel LJ. Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J Am Coll Cardiol. 2017;70:2841–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dahl LK. Possible role of chronic excess salt consumption in the pathogenesis of essential hypertension. Am J Cardiol. 1961;8:571–5.

    CAS  PubMed  Google Scholar 

  8. Nissensohn M, Roman-Vinas B, Sanchez-Villegas A, Piscopo S, Serra-Majem L. The effect of the mediterranean diet on hypertension: a systematic review and meta-analysis. J Nutr Educ Behav. 2016;48:42–53.e41.

    PubMed  Google Scholar 

  9. Witteman JC, Willett WC, Stampfer MJ, Colditz GA, Sacks FM, Speizer FE, et al. A prospective study of nutritional factors and hypertension among US women. Circulation. 1989;80:1320–7.

    CAS  PubMed  Google Scholar 

  10. Eliasson K, Ryttig KR, Hylander B, Rössner S. A dietary fibre supplement in the treatment of mild hypertension. A randomized, double-blind, placebo-controlled trial. J Hypertens. 1992;10:195–9.

    CAS  PubMed  Google Scholar 

  11. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393:434–45.

    CAS  PubMed  Google Scholar 

  12. Hamaker BR, Tuncil YE. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol. 2014;426:3838–50.

    CAS  PubMed  Google Scholar 

  13. Brownawell AM, Caers W, Gibson GR, Kendall CW, Lewis KD, Ringel Y, et al. Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. J Nutr. 2012;142:962–74.

    CAS  PubMed  Google Scholar 

  14. Aljuraiban GS, Griep LM, Chan Q, Daviglus ML, Stamler J, Van Horn L, et al. Total, insoluble and soluble dietary fibre intake in relation to blood pressure: the INTERMAP study. Br J Nutr. 2015;114:1480–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pretorius RA, Bodinier M, Prescott SL, Palmer DJ. Maternal fiber dietary intakes during pregnancy and infant allergic disease. Nutrients. 2019;11. https://doi.org/10.3390/nu11081767.

  16. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.

    PubMed  Google Scholar 

  19. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574:117–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr. 2015;113:S1–5.

    CAS  PubMed  Google Scholar 

  21. Yassour M, Vatanen T, Siljander H, Hamalainen AM, Harkonen T, Ryhanen SJ, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. 2016;8:343ra381.

    Google Scholar 

  22. Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DR Jr, et al. Gut microbiota composition and blood pressure. Hypertension. 2019;73:998–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Menni C, Lin C, Cecelja M, Mangino M, Matey-Hernandez ML, Keehn L, et al. Gut microbial diversity is associated with lower arterial stiffness in women. Eur Heart J. 2018;39:2390–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14.

    PubMed  PubMed Central  Google Scholar 

  25. Kaye DM, Shihata WA, Jama HA, Tsyganov K, Ziemann M, Kiriazis H et al. Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation. 2020;141:1393–403. https://doi.org/10.1161/CIRCULATIONAHA.119.043081.

    Article  CAS  PubMed  Google Scholar 

  26. Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM Jr, et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2017;49:96–104.

    CAS  PubMed  Google Scholar 

  27. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Strauch UG, Obermeier F, Grunwald N, Gurster S, Dunger N, Schultz M, et al. Influence of intestinal bacteria on induction of regulatory T cells: lessons from a transfer model of colitis. Gut. 2005;54:1546–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med. 2018;215:21–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31:677–89.

    CAS  PubMed  Google Scholar 

  31. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167:1339–1353.e1321.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pouteau E, Nguyen P, Ballevre O, Krempf M. Production rates and metabolism of short-chain fatty acids in the colon and whole body using stable isotopes. Proc Nutr Soc. 2003;62:87–93.

    CAS  PubMed  Google Scholar 

  33. Siler SQ, Neese RA, Hellerstein MK. De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am J Clin Nutr. 1999;70:928–36.

    CAS  PubMed  Google Scholar 

  34. Yao CK, Muir JG, Gibson PR. Review article: insights into colonic protein fermentation, its modulation and potential health implications. Alimentary Pharmacol Ther. 2016;43:181–96.

    CAS  Google Scholar 

  35. Marques FZ, Jama HA, Tsyganov K, Gill PA, Rhys-Jones D, Muralitharan RR, et al. Guidelines for transparency on gut microbiome studies in essential and experimental hypertension. Hypertension. 2019;74:1279–93.

    CAS  PubMed  Google Scholar 

  36. Hoverstad T, Midtvedt T. Short-chain fatty acids in germfree mice and rats. J Nutr. 1986;116:1772–6.

    CAS  PubMed  Google Scholar 

  37. Gill PA, van Zelm MC, Muir JG, Gibson PR. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharm Ther. 2018;48:15–34.

    CAS  Google Scholar 

  38. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jama HA, Kaye DM, Marques FZ. The gut microbiota and blood pressure in experimental models. Curr Opin Nephrol Hypertens. 2019;28:97–104.

    PubMed  Google Scholar 

  40. Marques FZ, Mackay CR, Kaye DM. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2018;15:20–32.

    PubMed  Google Scholar 

  41. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135:964–77.

    CAS  PubMed  Google Scholar 

  42. Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018;132:701–18.

    CAS  Google Scholar 

  43. Bartolomaeus H, Balogh A, Yakoub M, Homann S, Markó L, Höges S, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation. 2019;139:1407–21.

    CAS  PubMed  Google Scholar 

  44. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110:4410–5.

    CAS  PubMed  Google Scholar 

  45. Sata Y, Marques FZ, Kaye DM. The emerging role of gut dysbiosis in cardio-metabolic risk factors for heart failure. Curr Hypertens Rep. 2020;22:38.

    PubMed  Google Scholar 

  46. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312–9.

    CAS  PubMed  Google Scholar 

  47. Ahmed K, Tunaru S, Offermanns S. GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol Sci. 2009;30:557–62.

    CAS  PubMed  Google Scholar 

  48. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133:2485S–2493S.

    CAS  PubMed  Google Scholar 

  49. Tan JK, McKenzie C, Marino E, Macia L, Mackay CR, Metabolite-Sensing G. Protein-coupled receptors-facilitators of diet-related immune regulation. Annu Rev Immunol. 2017;35:371–402.

    CAS  PubMed  Google Scholar 

  50. Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol. 2019;19:517–32.

    CAS  PubMed  Google Scholar 

  51. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734.

    CAS  PubMed  Google Scholar 

  52. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320.

    CAS  PubMed  Google Scholar 

  54. Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiolog Geno. 2016;48:826–34.

    CAS  Google Scholar 

  55. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell. 2015;163:1585–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG, et al. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight. 2018;3. https://doi.org/10.1172/jci.insight.99096.

  59. Li XS, Obeid S, Wang Z, Hazen BJ, Li L, Wu Y, et al. Trimethyllysine, a trimethylamine N-oxide precursor, provides near- and long-term prognostic value in patients presenting with acute coronary syndromes. Eur Heart J. 2019;40:2700–9.

    CAS  PubMed  Google Scholar 

  60. Li Q, Wu T, Liu R, Zhang M, Wang R. Soluble dietary fiber reduces trimethylamine metabolism via gut microbiota and co-regulates host AMPK pathways. Mol Nutr Food Res. 61, https://doi.org/10.1002/mnfr.201700473 (2017).

  61. Jaworska K, Huc T, Samborowska E, Dobrowolski L, Bielinska K, Gawlak M, et al. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PloS ONE. 2017;12:e0189310–e0189310.

    PubMed  PubMed Central  Google Scholar 

  62. Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 2017;6:e004947.

    PubMed  PubMed Central  Google Scholar 

  63. Rust P, Ekmekcioglu C. Impact of salt intake on the pathogenesis and treatment of hypertension. Adv Exp Med Biol. 2017;956:61–84.

    PubMed  Google Scholar 

  64. Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics. 2015;47:187–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bielinska K, Radkowski M, Grochowska M, Perlejewski K, Huc T, Jaworska K, et al. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats. Nutr (Burbank, Los Angeles Cty, Calif). 2018;54:33–9.

    CAS  Google Scholar 

  66. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med. 2018;215:21–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yan X, Jin J, Su X, Yin X, Gao J, Wang X, et al. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circ Res. 2020;126, 839–53. https://doi.org/10.1161/CIRCRESAHA.119.316394.

    Article  CAS  PubMed  Google Scholar 

  69. Cheema MU, Pluznick JL. Gut microbiota plays a central role to modulate the plasma and fecal metabolomes in response to angiotensin II. Hypertension. 2019;74:184–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Karbach SH, Schonfelder T, Brandao I, Wilms E, Hormann N, Jackel S, et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc. 2016;5. https://doi.org/10.1161/jaha.116.003698.

  71. Wallace JL, Motta J-P, Buret AG. Hydrogen sulfide: an agent of stability at the microbiome-mucosa interface. Am J Physiol-Gastrointest Liver Physiol. 2018;314:G143–G149.

    PubMed  Google Scholar 

  72. Iwaniak A, Minkiewicz P, Darewicz M, Food-Originating ACE. Inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr Rev Food Sci Food Saf. 2014;13:114–34.

    CAS  PubMed  Google Scholar 

  73. Amedei A, Morbidelli L. Circulating metabolites originating from gut microbiota control endothelial cell function. Molecules. 2019;24:3992.

    CAS  PubMed Central  Google Scholar 

  74. Beaney T, Schutte AE, Tomaszewski M, Ariti C, Burrell LM, Castillo RR, et al. May measurement month 2017: an analysis of blood pressure screening results worldwide. Lancet Glob Health. 2018;6:e736–e743.

    PubMed  Google Scholar 

Download references

Acknowledgements

RRM is supported by a scholarship from the Faculty of Science, Monash University. FZM is supported by a National Heart Foundation Future Leader Fellowship, a National Health and Medical Research Council Project Grant and National Heart Foundation Vanguard Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francine Z. Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R. Muralitharan, R., Marques, F.Z. Diet-related gut microbial metabolites and sensing in hypertension. J Hum Hypertens 35, 162–169 (2021). https://doi.org/10.1038/s41371-020-0388-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-020-0388-3

This article is cited by

Search

Quick links