Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The influence of wasabi on the gut microbiota of high-carbohydrate, high-fat diet-induced hypertensive Wistar rats

Abstract

The human gut microbiota plays a critical role in the regulation of adiposity, obesity and metabolic and cardiovascular disease. Wasabi is a pungent spice and its active component, allyl isothiocyanate, improves plasma triacylglycerol, cholesterol and high blood pressure in rodents, but it is unclear if this occurs through alterations to the composition of the microbiota. The aim of this study was to determine the effectiveness of Wasabi japonica stem and rhizome blend on ameliorating cardiovascular disease parameters including plasma sodium concentration, systolic blood pressure (SBP), plasma endothelin-1 and angiotensin II concentrations by altering the gut microbiota in a Wistar rat model of obesity and metabolic syndrome. Rats were randomized to receive a corn starch or high-carbohydrate/high-fat diet for 8 weeks before being allocated to supplementation with wasabi powder (5% (w/w) in food) or not for an additional 8 weeks. At the end of the trial, rats were grouped according to blood pressure status. Wasabi supplementation prevented the development of hypertension and was also associated with significantly increased abundance of Allobaculum, Sutterella, Uncl. S247, Uncl. Coriobacteriaceae and Bifidobacterium. Hypertension was positively correlated with higher abundance of Oscillospira, Uncl. Lachnospiraceae and Uncl. Clostridiales, Uncl. Bacteroidales and Butyricimonas. Oscillospira and Butyricimonas abundances were specifically positively correlated with systolic blood pressure. Overall, the improved host cardiovascular health in diet-induced obese rats supplemented with wasabi powder may involve changes to the gut microbiota composition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measures of diversity, comparing normotensive to hypertensive rats.
Fig. 2: The linear discriminant analysis (LDA) and (LEfSe) analysis.
Fig. 3: Network analysis.
Fig. 4

Similar content being viewed by others

References

  1. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.

    PubMed  PubMed Central  Google Scholar 

  2. Al Khodor S, Reichert B, Shatat IF. The microbiome and blood pressure: can microbes regulate our blood pressure? Front Pediatr. 2017;5:138.

    PubMed  PubMed Central  Google Scholar 

  3. Serre CBdL, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol-Gastrointest Liver Physiol. 2010;299:G440–8.

    Google Scholar 

  4. Castaner O, Goday A, Park Y-M, Lee S-H, Magkos F, Shiow S-ATE, et al. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. 2018;2018:4095789.

    PubMed  PubMed Central  Google Scholar 

  5. Goodrich Julia K, Waters Jillian L, Poole Angela C, Sutter Jessica L, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Greenland P, Peterson E. The new 2017 ACC/AHA guidelines “Up the Pressure” on diagnosis and treatment of hypertension. J Am Med Assoc. 2017;318:2083–4.

    Google Scholar 

  7. Joshi U, Solanki V, Desai T, Tirgar DP. Investigation of antihypertensive mechanism of curculigo orchioides in doca salt induced hypertensive rats. Int J Phytopharmacol. 2012;3:178–85.

    Google Scholar 

  8. Ma J, Li H. The role of gut microbiota in atherosclerosis and hypertension. Front Pharmacol. 2018;9:1082.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Katsi V, Didagelos M, Skevofilax S, Armenis I, Kartalis A, Vlachopoulos C, et al. GUT microbiome-gut dysbiosis-arterial hypertension: new horizons. Curr Hypertens Rev. 2019;15:40–6.

    CAS  PubMed  Google Scholar 

  10. Razavi AC, Potts KS, Kelly TN, Bazzano LA. Sex, gut microbiome, and cardiovascular disease risk. Biol Sex Differ. 2019;10:29.

    PubMed  PubMed Central  Google Scholar 

  11. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14.

    PubMed  PubMed Central  Google Scholar 

  12. Gómez-Guzmán M, Toral M, Romero M, Jiménez R, Galindo P, Sánchez M, et al. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res. 2015;59:2326–36.

    PubMed  Google Scholar 

  13. Hsu C-N, Lin Y-J, Hou C-Y, Tain Y-L. Maternal administration of probiotic or prebiotic prevents male adult rat offspring against developmental programming of hypertension induced by high fructose consumption in pregnancy and lactation. Nutrients. 2018; 10:1229.

    PubMed Central  Google Scholar 

  14. Gomez-Arango FL, Barrett LH, McIntyre DH, Callaway KL, Morrison KM, Dekker Nitert KM. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension. 2016;68:974–81.

    CAS  PubMed  Google Scholar 

  15. Riedl R, Atkinson S, Burnett C, Grobe J, Kirby J. The gut microbiome, energy homeostasis, and implications for hypertension. Curr Hypertens Rep. 2017;19:1–7.

    CAS  Google Scholar 

  16. Kristek F, Drobna M, Cacanyiova S. Different structural alterations in individual conduit arteries of SHRs compared to Wistar rats from the prehypertensive period to late adulthood. Physiol Res. 2017;66:769–80.

    CAS  PubMed  Google Scholar 

  17. Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics. 2015;47:187–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang JH, Choi S, Jang JE, Ramalingam P, Ko YT, Kim SY, et al. Wasabia japonica is a potential functional food to prevent colitis via inhibiting the NF-kappaB signaling pathway. Food Funct. 2017;8:2865–74.

    CAS  PubMed  Google Scholar 

  19. Tanida N, Kawaura A, Takahashi A, Sawada K, Shimoyama T. Suppressive effect of wasabi (pungent Japanese spice) on gastric carcinogenesis induced by MNNG in rats. Nutr Cancer. 1991;16:53–8.

    CAS  PubMed  Google Scholar 

  20. Yamasaki M, Ogawa T, Wang L, Katsube T, Yamasaki Y, Sun X, et al. Anti-obesity effects of hot water extract from Wasabi (Wasabia japonica Matsum.) leaves in mice fed high-fat diets. Nutr Res Pr. 2013;7:267–72.

    CAS  Google Scholar 

  21. Henry PR, Casto PR, Printz PM. Diurnal cardiovascular patterns in spontaneously hypertensive and Wistar-Kyoto rats. Hypertension. 1990;16:422–8.

    CAS  PubMed  Google Scholar 

  22. Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, et al. Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension. 2019;73:e87–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomaz FS, Tomsett KI, Panchal SK, Worrall S, Dekker Nitert M. Wasabi supplementation alters the composition of the gut microbiota of diet-induced obese rats. J Funct Foods. 2020;67:103868.

    CAS  Google Scholar 

  24. John OD, Wanyonyi S, Mouatt P, Panchal SK, Brown L. Achacha (Garcinia humilis) Rind improves cardiovascular function in rats with diet-induced metabolic syndrome. Nutrients. 2018;10:1425.

    PubMed Central  Google Scholar 

  25. Panchal SK, Poudyal H, Iyer A, Nazer R, Alam MA, Diwan V, et al. High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol. 2011;57:611–24.

    PubMed  Google Scholar 

  26. Panchal SK, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V, et al. High-carbohydrate high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovas Pharmacol. 2011;57:51–64.

    CAS  Google Scholar 

  27. Lu PW, Briody JN, Howman-Giles R, Trube A, Cowell CT. DXA for bone density measurement in small rats weighing 150–250 grams. Bone. 1994;15:199–202.

    CAS  PubMed  Google Scholar 

  28. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. J Am Med Assoc. 2003;289:2560–72.

    CAS  Google Scholar 

  29. Doolette CL, Gupta VVSR, Lu Y, Payne JL, Batstone DJ, Kirby JK, et al. Quantifying the sensitivity of soil microbial communities to silver sulfide nanoparticles using metagenome sequencing. PloS ONE. 2016;11:e0161979.

    PubMed  PubMed Central  Google Scholar 

  30. Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion MJ, Berger B, et al. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics. 2017;33:782–3.

    CAS  PubMed  Google Scholar 

  31. Douglas GM, Beiko RG, Langille MGI. Predicting the functional potential of the microbiome from marker genes using PICRUSt. Methods Mol Biol. 2018;1849:169–77.

    CAS  PubMed  Google Scholar 

  32. Barrett HL, Gomez-Arango LF, Wilkinson SA, McIntyre HD, Callaway LK, Morrison M, et al. A vegetarian diet is a major determinant of gut microbiota composition in early pregnancy. Nutrients. 2018;10:890.

    PubMed Central  Google Scholar 

  33. Oowatari Y, Ogawa T, Katsube T, Iinuma K, Yoshitomi H, Gao M. Wasabi leaf extracts attenuate adipocyte hypertrophy through PPARγ and AMPK. Biosci, Biotechnol, Biochem. 2016;80:1594–601.

    CAS  Google Scholar 

  34. Tian S, Liu X, Lei P, Zhang X, Shan Y. Microbiota: a mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. J Sci Food Agric. 2018;98:1255–60.

    CAS  PubMed  Google Scholar 

  35. Huazano-Garcia A, Shin H, Lopez MG. Modulation of gut microbiota of overweight mice by agavins and their association with body weight loss. Nutrients. 2017;9:821.

    PubMed Central  Google Scholar 

  36. Qiao Y, Sun J, Xie Z, Shi Y, Le G. Propensity to high-fat diet-induced obesity in mice is associated with the indigenous opportunistic bacteria on the interior of Peyer’s patches. J Clin Biochem Nutr. 2014;55:120–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. An HM, Park SY, Lee DK, Kim JR, Cha MK, Lee SW, et al. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 2011;10:116.

    PubMed  PubMed Central  Google Scholar 

  38. Dan X, Mushi Z, Baili W, Han L, Enqi W, Huanhu Z, et al. Differential analysis of hypertension-associated intestinal microbiota. Int J Med Sci. 2019;16:872–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Richards EM, Pepine CJ, Raizada MK, Kim S. The gut, its microbiome, and hypertension. Curr Hypertens Rep. 2017;19:36.

    PubMed  PubMed Central  Google Scholar 

  40. Lee S-M, Han HW, Yim SY. Beneficial effects of soy milk and fiber on high cholesterol diet-induced alteration of gut microbiota and inflammatory gene expression in rats. Food Funct. 2015;6:492–500.

    CAS  PubMed  Google Scholar 

  41. Yang T, Aquino V, Lobaton Gilberto O, Li H, Colon‐Perez L, Goel R, et al. Sustained captopril‐induced reduction in blood pressure is associated with alterations in gut‐brain axis in the spontaneously hypertensive rat. J Am Heart Assoc. 2019;8:e010721.

    PubMed  PubMed Central  Google Scholar 

  42. Koren O, Spor A, Felin J, Fåk F, Stombaugh J, Tremaroli V, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4592–8.

    CAS  PubMed  Google Scholar 

  43. Wang Q, Du Z, Zhang H, Zhao L, Sun J, Zheng X, et al. Modulation of gut microbiota by polyphenols from adlay (Coix lacryma-jobi L. var. ma-yuen Stapf.) in rats fed a high-cholesterol diet. Int J Food Sci Nutr. 2015;66:783–9.

    CAS  PubMed  Google Scholar 

  44. Le Roy T, Lécuyer E, Chassaing B, Rhimi M, Lhomme M, Boudebbouze S, et al. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol. 2019;17:94.

    PubMed  PubMed Central  Google Scholar 

  45. Park S, Kang J, Choi S, Park H, Hwang E, Kang Y, et al. Cholesterol-lowering effect of Lactobacillus rhamnosus BFE5264 and its influence on the gut microbiome and propionate level in a murine model. PloS ONE. 2018;13:e0203150.

    PubMed  PubMed Central  Google Scholar 

  46. Zeng X, Gao X, Peng Y, Wu Q, Zhu J, Tan C, et al. Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front Cell Infect Microbiol. 2019;9:4.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tran L, MacLeod K, McNeill J. Endothelin-1 modulates angiotensin II in the development of hypertension in fructose-fed rats. Int J Chem Biol Health Dis. 2009;325:89–97.

    CAS  Google Scholar 

  48. Cheema MU, Pluznick JL. Gut microbiota plays a central role to modulate the plasma and fecal metabolomes in response to Angiotensin II. Hypertension. 2019;74:184–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14.

    PubMed  PubMed Central  Google Scholar 

  50. Toral M, Robles-Vera I, de la Visitación N, Romero M, Yang T, Sánchez M, et al. Critical role of the interaction gut microbiota—sympathetic nervous system in the regulation of blood pressure. Front Physiol. 2019;10.

  51. Beale AL, Kaye DM, Marques FZ. The role of the gut microbiome in sex differences in arterial pressure. Front Physiol. 2019;10:231.

    Google Scholar 

  52. Shimizu Y. Gut microbiota in common elderly diseases affecting activities of daily living. World J Gastroenterol. 2018;24:4750–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Smiljanec K, Lennon SL. Sodium, hypertension, and the gut: does the gut microbiota go salty? Am J Physiol-Heart Circulatory Physiol. 2019;317:H1173–82.

    CAS  Google Scholar 

  54. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates T(H)17 axis and disease. Nature. 2017;551:585–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chan YK, Brar MS, Kirjavainen PV, Chen Y, Peng J, Li D, et al. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE−/− mice. BMC Microbiol. 2016;16:264.

    PubMed  PubMed Central  Google Scholar 

  56. Robinson IM, Allison MJ, Hartman PA. Anaeroplasma abactoclasticum gen.nov., sp.nov.: an obligately anaerobic mycoplasma from the Rumen. Int J Syst Evolut Microbiol. 1975;25:173–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marloes Dekker Nitert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomaz, F.S., Altemani, F., Panchal, S.K. et al. The influence of wasabi on the gut microbiota of high-carbohydrate, high-fat diet-induced hypertensive Wistar rats. J Hum Hypertens 35, 170–180 (2021). https://doi.org/10.1038/s41371-020-0359-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-020-0359-8

This article is cited by

Search

Quick links