Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Blood–brain barrier dysfunction: the undervalued frontier of hypertension

Abstract

The blood–brain barrier (BBB) constitutes the complex anatomic and physiologic interface between the intravascular compartment and the central nervous system, and its integrity is paramount for the maintenance of the very sensitive homeostasis of the central nervous system. Arterial hypertension is a leading cause of morbidity and mortality. The BBB has been shown to be disrupted in essential hypertension. BBB integrity is important for central autonomic control and this may be implicated in the pathophysiology of hypertension. On the other hand, evidence from experimental studies indicates that BBB disruption can be present in both hypertensive disease and dementia syndromes, suggesting a possibly key position of loss of BBB integrity in the pathophysiological pathways linking arterial hypertension with cognitive decline. Although much still remains to be elucidated with respect to the exact underlying mechanisms, the discovery of novel pathological pathways has changed our understanding of adult dementia and central nervous system disease overall, pointing out—in parallel—new potential therapeutic targets. The aim of this review is to summarize current scientific knowledge relevant to the pathophysiologic pathways that are involved in the disruption of the BBB function and potentially mediate hypertension-induced cognitive impairment. In parallel, we underline the differential cognition-preserving effect of several antihypertensive agents of similar blood pressure-lowering capacity, highlighting the presence of previously under-recognized BBB-protective actions of these drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical representation of the basic mechanisms leading to blood–brain barrier (BBB) disruption.

Similar content being viewed by others

References

  1. Mohammadi MT, Dehghani GA. Acute hypertension induces brain injury and blood–brain barrier disruption through reduction of claudins mRNA expression in rat. Pathol Res Pr. 2014;210:985–89.

    Article  CAS  Google Scholar 

  2. Kalaria RN. Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr Rev. 2010;6:S74–S87.

    Article  Google Scholar 

  3. Keller A. Breaking and building the wall: the biology of the blood–brain barrier in health and disease. Swiss Med Wkly. 2013;143:w13892.

    PubMed  Google Scholar 

  4. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood–brain barrier. Nat Med. 2013;19:1584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood–brain barrier. Semin Cell Dev Biol. 2015;38:2–6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Smith PM, Ferguson AV. Circulating signals as critical regulators of autonomic state–central roles for the subfornical organ. Am J Physiol Regul Integr Comp Physiol. 2010;299:R405–15.

    Article  CAS  PubMed  Google Scholar 

  7. Waki H, Gouraud SS, Maeda M, Raizada MK, Paton JF. Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respir Physiol Neurobiol. 2011;178:422–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ronaldson PT, Davis TP. Targeting transporters: promoting blood–brain barrier repair in response to oxidative stress injury. Brain Res. 2015;1623:39–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013;304:H1598–H1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lippoldt A, Kniesel U, Liebner S, Kalbacher H, Kirsch T, Wolburg H, et al. Structural alterations of tight junctions are associated with loss of polarity instroke-prone spontaneously hypertensive rat blood–brain barrier endothelial cells. Brain Res. 2000;885:251–61.

    Article  CAS  PubMed  Google Scholar 

  11. Tan KH, Harrington S, Purcell WM, Hurst RD. Peroxynitrite mediatesnitric oxide-induced blood–brain barrier damage. Neurochem Res. 2004;29:579–87.

    Article  CAS  PubMed  Google Scholar 

  12. Sparks DL, Scheff SW, Liu H, Landers TM, Coyne CM, Hunsaker JC 3rd. Increased incidence of neurofibrillary tangles (NFT) in non-demented individuals with hypertension. J Neurol Sci. 1995;131:162–9.

    Article  CAS  PubMed  Google Scholar 

  13. Witt KA, Mark KS, Hom S, Davis TP. Effects of hypoxia-reoxygenation on rat blood–brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol. 2003;285:2820–31.

    Article  Google Scholar 

  14. Szarka N, Toth L, Czigler A, Kellermayer Z, Ungvari Z, Amrein K, et al. Single mild traumatic brain injury induces persistent disruption of the blood–brain barrier, neuroinflammation and cognitive decline in hypertensive rats. Int J Mol Sci. 2019;20:3223.

    Article  CAS  PubMed Central  Google Scholar 

  15. Parathath SR, Parathath S, Tsirka SE. Nitric oxide mediates neurodegeneration and breakdown of the blood–brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci. 2006;119:339–49.

    Article  CAS  PubMed  Google Scholar 

  16. Enciu AM, Gherghiceanu M, Popescu BO. Triggers and effectors of oxidative stress at blood–brain barrier level: relevance for brain ageing and neurodegeneration. Oxid Med Cell Longev. 2013;2013:297512.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood–brain barrier. Hypertension. 2014;63:572–9.

    Article  CAS  PubMed  Google Scholar 

  18. Fleegal‐DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT1 receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29:640–7.

    Article  PubMed  CAS  Google Scholar 

  19. Vital SA, Terao S, Nagai M, Granger DN. Mechanisms underlying the cerebral microvascular responses to angiotensin II‐induced hypertension. Microcirculation. 2010;17:641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yao ST, May CN. Intra‐carotid angiotensin II activates tyrosine hydroxylase‐expressing rostral ventrolateral medulla neurons following blood–brain barrier disruption in rats. Neuroscience. 2013;245:148–56.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T. Angiotensin II induced cerebral microvascular inflammation and increased blood–brain barrier permeability via oxidative stress. Neuroscience. 2010;171:852–8.

    Article  CAS  PubMed  Google Scholar 

  22. Carnevale D, Mascio G, D’Andrea I, Fardella V, Bell RD, Branchi I, et al. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension. 2012;60:188–97.

    Article  CAS  PubMed  Google Scholar 

  23. Oparil S, Zaman MA, Calhoun DA. Pathogenesis of hypertension. Ann Intern Med. 2003;139:761–76.

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the immune system in hypertension. Physiol Rev. 2017;97:1127–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. González-Marrero I, Castañeyra-Ruiz L, González-Toledo JM, Castañeyra-Ruiz A, de Paz-Carmona H, Castro R, et al. High blood pressure effects on the blood to cerebrospinal fluid barrier and cerebrospinal fluid protein composition: a two-dimensional electrophoresis study in spontaneously hypertensive rats. Int J Hypertens. 2013;2013:164653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shen XZ, Li Y, Li L, Shah KH, Bernstein KE, Lyden P, et al. Microglia participate in neurogenic regulation of hypertension. Hypertension. 2015;66:309–16.

    Article  CAS  PubMed  Google Scholar 

  27. Shi P, Raizada MK, Sumners C. Brain cytokines as neuromodulators in cardiovascular control. Clin Exp Pharm Physiol. 2010;37:e52–7.

    Article  CAS  Google Scholar 

  28. Stern JE, Son S, Biancardi VC, Zheng H, Sharma N, Patel KP. Astrocytes contribute to angiotensin II stimulation of hypothalamic neuronal activity and sympathetic outflow. Hypertension. 2016;68:1483–93.

    Article  CAS  PubMed  Google Scholar 

  29. Setiadi A, May CN, Yao ST. Ablation of astrocytes in the paraventricular nucleus disrupts the blood‐brain barrier and increases blood pressure in rats. FASEB J. 2017;31:1010.

    Google Scholar 

  30. Michalak Z, Lebrun A, Di Miceli M, Rousset MC, Crespel A, Coubes P, et al. IgG leakage may contribute to neuronal dysfunction in drug-refractory epilepsies with blood–brain barrier disruption. J Neuropathol Exp Neurol. 2012;71:826–38.

    Article  CAS  PubMed  Google Scholar 

  31. Meissner A, Minnerup J, Soria G, Planas AM. Structural and functional brain alterations in a murine model of Angiotensin II-induced hypertension. J Neurochem. 2017;140:509–21.

    Article  CAS  PubMed  Google Scholar 

  32. Yamazaki Y, Kanekiyo T. Blood–brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci. 2017;18:1965.

    Article  PubMed Central  CAS  Google Scholar 

  33. Sagare AP, Deane R, Zlokovic BV. Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharm Ther. 2012;136:94–105.

    Article  CAS  Google Scholar 

  34. Foulquier S, Namsolleck P, Van Hagen BT, Milanova I, Post MJ, Blankesteijn WM, et al. Hypertension-induced cognitive impairment: insights from prolonged angiotensin II infusion in mice. Hypertens Res. 2018;41:827.

    Article  CAS  Google Scholar 

  35. Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. 2013;33:1732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de la Torre JC, Stefano GB. Evidence that Alzheimer’s disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res Brain Res Rev. 2000;34:119–36.

    Article  PubMed  Google Scholar 

  37. Bueche CZ, Hawkes C, Garz C, Vielhaber S, Attems J, Knight RT, et al. Hypertension drives parenchymal β-amyloid accumulation in the brain parenchyma. Annals of Clinical and Translational. Neurology. 2014;1:124–9.

    CAS  Google Scholar 

  38. Faraco G, Iadecola C. Hypertension: a harbinger of stroke and dementia. Hypertension. 2013;62:810–7.

    Article  CAS  PubMed  Google Scholar 

  39. Apostolova LG, Mosconi L, Thompson PM, Green AE, Hwang KS, Ramirez, et al. Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol Aging. 2010;31:1077–88.

    Article  PubMed  Google Scholar 

  40. Bobinski M, Wegiel J, Wisniewski HM, Tarnawski M, Reisberg B, Mlodzik B, et al. Atrophy of hippocampal formation subdivisions correlates with stage and duration of Alzheimer disease. Dementia. 1995;6:205–10.

    CAS  PubMed  Google Scholar 

  41. Jennings JR, Muldoon MF, Ryan C, Price JC, Greer P, Sutton-Tyrrell K, et al. Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology. 2005;64:1358–65.

    Article  CAS  PubMed  Google Scholar 

  42. Tomimoto H, Akiguchi I, Suenaga T, Nishimura M, Wakita H, Nakamura S, et al. Alterations of the blood–brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer’s disease patients. Stroke. 1996;27:2069–74.

    Article  CAS  PubMed  Google Scholar 

  43. Montagne A, Nation DA, Pa J, Sweeney MD, Toga AW, Zlokovic BV. Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol. 2016;131:687–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaya M, Kalayci R, Küçük M, Arican N, Elmas I, Kudat H, et al. Effect of losartan on the blood–brain barrier permeability in diabetic hypertensive rats. Life Sci. 2003;73:3235–44.

    Article  CAS  PubMed  Google Scholar 

  45. Ganten D, Hermann K, Bayer C, Unger T, Lang RE. Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science. 1983;221:869–71.

    Article  CAS  PubMed  Google Scholar 

  46. Guyenet P. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–46.

    Article  CAS  PubMed  Google Scholar 

  47. Reaux A, Fournie-Zaluski MC, David C, Zini S, Roques BP, Corvol P, et al. Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci USA. 1999;96:13415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao J, Marc Y, Iturrioz X, Leroux V, Balavoine F, Llorens-Cortes C. A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors. Clin Sci. 2014;127:135–48.

    Article  CAS  Google Scholar 

  49. Tan J, Wang JM, Leenen FH. Inhibition of brain angiotensin converting enzyme by peripheral administration of trandolapril versus lisinopril in Wistar rats. Am J Hypertens. 2005;18:158–64.

    Article  CAS  PubMed  Google Scholar 

  50. Perret‐Guillaume C, Joly L, Jankowski P, Benetos A. Benefits of the RAS blockade: clinical evidence before the ONTARGET study. J Hypertens Suppl. 2009;27:S3–7.

    Article  PubMed  CAS  Google Scholar 

  51. Takeda S, Sato N, Takeuchi D, Kurinami H, Shinohara M, Niisato M, et al. Angiotensin receptor blocker prevented β-amyloid-induced cognitive impairment associated with recovery of neurovascular coupling. Hypertension. 2009;54:6.

    Article  CAS  Google Scholar 

  52. Pelisch N, Hosomi N, Ueno M, Nakano D, Hitomi H, Mogi M, et al. Blockade of AT1 receptors protects the blood–brain barrier and improves cognition in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2011;24:362–8.s.

    Article  CAS  PubMed  Google Scholar 

  53. Elkahloun AG, Hafko R, Saavedra JM. An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer’s disease. Alzheimers Res Ther. 2016;28:5.

    Article  CAS  Google Scholar 

  54. Davies NM, Kehoe PG, Ben-Shlomo Y, Martin RM. Associations of antihypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias. J Alzheimers Dis. 2011;26:699–708.

    Article  PubMed  Google Scholar 

  55. O’Caoimh R, Healy L, Gao Y, Svendrovski A, Kerins DM, Eustace J, et al. Effects of centrally acting angiotensin converting enzyme inhibitors on functional decline in patients with Alzheimer’s disease. J Alzheimers Dis. 2014;40:595–603.

    Article  PubMed  CAS  Google Scholar 

  56. Sink KM, Leng X, Williamson J, Kritchevsky SB, Yaffe K, Kuller L, et al. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med. 2009;169:1195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao Y, O’Caoimh R, Healy L, Kerins DM, Eustace J, Guyatt G, et al. Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia. BMJ Open. 2013;3:e002881.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tzourio C, Anderson C, Chapman N, Woodward M, Neal B, MacMahon S, et al. PROGRESS Collaborative Group. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med. 2003;163:1069–75.

    Article  CAS  PubMed  Google Scholar 

  59. Takakura S, Satoh Y, Satoh H, Mori J, Kohsaka M. Effects of nilvadipine on regional cerebral blood flow and skin blood flow in anesthetized cats. Arch Int Pharmacodyn Ther. 1992;319:38–48.

    CAS  PubMed  Google Scholar 

  60. Anderson C, Teo K, Gao P, Arima H, Dans A, Unger T, et al. ONTARGET and TRANSCEND Investigators. Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol. 2011;10:43–53.

    Article  CAS  PubMed  Google Scholar 

  61. Hanyu H, Hirao K, Shimizu S, Sato T, Kiuchi A, Iwamoto T. Nilvadipine prevents cognitive decline of patients with mild cognitive impairment. Int J Geriatr Psychiatry. 2007;22:1264–6.

    Article  PubMed  Google Scholar 

  62. Amenta F, Lanari A, Mignini F, Silvestrelli G, Traini E, Tomassoni D. Nicardipine use in cerebrovascular disease: a review of controlled clinical studies. J Neurological Sci. 2009;283:219–23.

    Article  Google Scholar 

  63. Paris D, Quadros A, Humphrey J, Patel N, Crescentini R, Crawford F, et al. Nilvadipine antagonizes both A beta vasoactivity in isolated arteries, and the reduced cerebral blood flow in APPSW transgenic mice. Brain Res. 2004;999:53–61.

    Article  CAS  PubMed  Google Scholar 

  64. Edvinsson L, Johansson BB, Larsson B, MacKenzie ET, Skärby T, Young AR. Calcium antagonists: effects on cerebral blood flow and blood–brain barrier permeability in the rat. Br J Pharm. 1983;79:141–8.

    Article  CAS  Google Scholar 

  65. Nukhet Turkel A, Ziya Ziylan Y. Protection of blood–brain barrier breakdown by nifedipine in adrenaline-induced acute hypertension. Int J Neurosci. 2004;114:517–28.

    Article  CAS  PubMed  Google Scholar 

  66. Laurens C, Abot A, Delarue A, Knauf C. Central effects of beta-blockers may be due to nitric oxide and hydrogen peroxide release independently of their ability to cross the blood–brain barrier. Front Neurosci. 2019;13:33.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gelber RP, Ross GW, Petrovitch H, Masaki KH, Launer LJ, White LR. Antihypertensive medication use and risk of cognitive impairment: the Honolulu-Asia Aging Study. Neurology. 2013;81:888–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Khachaturian AS, Zandi PP, Lyketsos CG, Hayden KM, Skoog I, Norton MC, et al. Antihypertensive medication use and incident Alzheimer disease: the Cache County Study. Arch Neurol. 2006;63:686–92.

    Article  PubMed  Google Scholar 

  69. Lenzsér G, Kis B, Bari F, Busija DW. Diazoxide preconditioning attenuates global cerebral ischemia-induced BBB permeability. Brain Res. 2005;1051:72–80.

    Article  PubMed  CAS  Google Scholar 

  70. Nishioku T, Takata F, Yamauchi A, Sumi N, Yamamoto I, Fujino A, et al. Protective action of indapamide, a thiazide-like diuretic, on ischemia-induced injury and barrier dysfunction in mouse brain microvascular endothelial cells. J Pharm Sci. 2007;103:323–7.

    Article  CAS  Google Scholar 

  71. Buttler L, Jordão MT, Fragas MG, Ruggeri A, Ceroni A, Michelini LC. Maintenance of blood–brain barrier integrity in hypertension: a novel benefit of exercise training for autonomic control. Front Physiol. 2017;8:1048.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthaios Didagelos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsi, V., Marketou, M., Maragkoudakis, S. et al. Blood–brain barrier dysfunction: the undervalued frontier of hypertension. J Hum Hypertens 34, 682–691 (2020). https://doi.org/10.1038/s41371-020-0352-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-020-0352-2

This article is cited by

Search

Quick links