Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Cl/HCO3 exchanger pendrin is downregulated during oral co-administration of exogenous mineralocorticoid and KCl in patients with primary aldosteronism

Abstract

In primary aldosteronism (PA), the occurrence of K+ loss and hypertension suggest alterations in renal tubular transport, but the molecular basis of these alterations in humans is unclear. In this study, urinary extracellular vesicles (uEVs) isolated from patients undergoing fludrocortisone suppression testing (FST, as a means of confirming or excluding PA) were analyzed using mass spectrometry-based proteomics to determine the combined effects of an aldosterone analogue, NaCl and KCl supplementation on renal tubular protein abundance. Of quantified proteins, the Cl/HCO3 exchanger pendrin decreased by a median 37% [−15, 57] (P < 0.01) and the potassium channel ROMK increased by a median 31% [−10, 85] (P < 0.01) during FST among 10 PA subjects. The trends remained, but to a lesser degree, in two subjects cured of PA by unilateral adrenalectomy. In PA subjects, plasma K+ increased from median 3.6 to 4.2 mM (P < 0.01) and 24 h urine K+ from 101 to 202 mmol (P < 0.01), while 24 h urine Na+/K+ decreased from 2.3 to 0.8 (P < 0.01). At baseline, pendrin negatively correlated with plasma K+ (P < 0.05) and positively correlated with plasma aldosterone (P < 0.01). There were no clear correlations between Δ pendrin (Δ = D4–D0) and changes in blood or urine variables, and no correlations between ROMK in any of the blood or urine variables either at baseline or during FST. We conclude that oral co-administration of mineralocorticoid and KCl in PA patients is associated with reduced pendrin and enhanced ROMK in uEVs. Pendrin reduction during FST suggests that the suppressive effects of oral KCl may outweigh pendrin upregulation by mineralocorticoids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Venn diagram summarizing quantified proteins and their overlap with Vesiclepedia, Exocarta and a renal transport protein database.
Fig. 2: Volcano plot depicting differentially abundant proteins affected by FST in 10 non-operated PA subjects.
Fig. 3: Changes in Pendrin, ROMK and EV markers (TSG101 and CD9) in non-operated and operated subjects who underwent FST.
Fig. 4: Baseline correlations and differences.

Similar content being viewed by others

Data availability

The MS data have been deposited to the ProteomeXchange Consortium via the PRIDE (add reference: https://www.nature.com/articles/nbt.2839) partner repository with the dataset identifier PXD017083 (Reviewer account details: username: reviewer92263@ebi.ac.uk, password: 4PUMbpN2).

References

  1. Briet M, Schiffrin EL. Vascular actions of aldosterone. J Vasc Res. 2013;50:89–99.

    Article  CAS  PubMed  Google Scholar 

  2. Pruthi D, McCurley A, Aronovitz M, Galayda C, Karumanchi SA, Jaffe IZ. Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler Thromb Vasc Biol. 2014;34:355–64.

    Article  CAS  PubMed  Google Scholar 

  3. Galmiche G, Pizard A, Gueret A, El Moghrabi S, Ouvrard-Pascaud A, Berger S, et al. Smooth muscle cell mineralocorticoid receptors are mandatory for aldosterone-salt to induce vascular stiffness. Hypertension. 2014;63:520–6.

    Article  CAS  PubMed  Google Scholar 

  4. Yan Y, Wang C, Lu Y, Gong H, Wu Z, Ma X, et al. Mineralocorticoid receptor antagonism protects the aorta from vascular smooth muscle cell proliferation and collagen deposition in a rat model of adrenal aldosterone-producing adenoma. J Physiol Biochem. 2018;74:17–24.

    Article  CAS  PubMed  Google Scholar 

  5. Dinh QN, Young MJ, Evans MA, Drummond GR, Sobey CG, Chrissobolis S. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res. 2016;1637:146–53.

    Article  CAS  PubMed  Google Scholar 

  6. Munoz-Durango N, Vecchiola A, Gonzalez-Gomez LM, Simon F, Riedel CA, Fardella CE, et al. Modulation of immunity and inflammation by the mineralocorticoid receptor and aldosterone. Biomed Res Int. 2015;2015:652738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC, et al. Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Ren Physiol. 2001;280:F675–82.

    Article  CAS  Google Scholar 

  8. Yang L, Frindt G, Lang F, Kuhl D, Vallon V, Palmer LG. SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone. Am J Physiol-Ren Physiol. 2017;312:F65–F76.

    Article  CAS  Google Scholar 

  9. Conn JW. Presidential address. I. Painting background. II. Primary aldosteronism, a new clinical syndrome. J Lab Clin Med. 1955;45:3–17.

    CAS  PubMed  Google Scholar 

  10. Conn JW, Cohen EL, Rovner DR, Nesbit RM. Normokalemic primary aldosteronism. A detectable cause of curable “essential” hypertension. JAMA. 1965;193:200–6.

    Article  CAS  PubMed  Google Scholar 

  11. Conn JW, Cohen EL, Rovner DR. Suppression of plasma renin activity in primary aldosteronism. JAMA. 1964;190:213–21.

    CAS  PubMed  Google Scholar 

  12. Conn JW. The evolution of primary aldosteronism: 1954-1967. Harvey Lect. 1966;62:257–91.

    PubMed  Google Scholar 

  13. Wu A, Wolley M, Stowasser M. The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway. J Hum Hypertens. 2019;33:508–23.

    Article  CAS  PubMed  Google Scholar 

  14. Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the renal NaCl cotransporter and its role in potassium homeostasis. Physiol Rev. 2020;100:321–56.

    Article  CAS  PubMed  Google Scholar 

  15. Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, et al. Direct and indirect mineralocorticoid effects determine distal salt transport. J Am Soc Nephrol. 2016;27:2436–45.

    Article  CAS  PubMed  Google Scholar 

  16. Huebner A, Somparn P, Benjachat T, Leelahavanichkul A, Avihingsanon Y, Fenton R, et al. Exosomes in urine biomarker discovery. In: Gao Y, editor. Urine proteomics in kidney disease biomarker discovery. Advances in experimental medicine and biology. 845: Netherlands: Springer; 2015. p. 43–58.

  17. Spanu S, van Roeyen CR, Denecke B, Floege J, Muhlfeld AS. Urinary exosomes: a novel means to non-invasively assess changes in renal gene and protein expression. PLoS ONE. 2014;9:e109631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Barros ER, Carvajal CA. Urinary exosomes and their cargo: potential biomarkers for mineralocorticoid arterial hypertension? Front Endocrinol. 2017;8:230.

    Article  Google Scholar 

  19. Wolley MJ, Wu AH, Xu SX, Gordon RD, Fenton RA, Stowasser M. In primary aldosteronism, mineralocorticoids influence exosomal sodium-chloride cotransporter abundance. J Am Soc Nephrol. 2017;28:56–63.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75:1895–904.

    Article  CAS  PubMed  Google Scholar 

  21. Ross PL, Huang YLN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteom. 2004;3:1154–69.

    Article  CAS  Google Scholar 

  22. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society Clinical Practice Guideline. J Clin Endocr Metab. 2016;101:1889–916.

    Article  CAS  PubMed  Google Scholar 

  23. Gheinani AH, Vogeli M, Baumgartner U, Vassella E, Draeger A, Burkhard FC, et al. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep. 2018;8:3945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–U60.

    Article  CAS  PubMed  Google Scholar 

  25. Lee JW, Chou CL, Knepper MA. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol. 2015;26:2669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huebner AR, Cheng L, Somparn P, Knepper MA, Fenton RA, Pisitkun T. Deubiquitylation of protein cargo is not an essential step in exosome formation. Mol Cell Proteom. 2016;15:1556–71.

    Article  CAS  Google Scholar 

  27. Pech V, Pham TD, Hong S, Weinstein AM, Spencer KB, Duke BJ, et al. Pendrin modulates ENaC function by changing luminal HCO3. J Am Soc Nephrol. 2010;21:1928–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soleimani M, Barone S, Xu J, Shull GE, Siddiqui F, Zahedi K, et al. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure. Proc Natl Acad Sci USA. 2012;109:13368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim YH, Pech V, Spencer KB, Beierwaltes WH, Everett LA, Green ED, et al. Reduced ENaC protein abundance contributes to the lower blood pressure observed in pendrin-null mice. Am J Physiol-Ren Physiol. 2007;293:F1314–F24.

    Article  CAS  Google Scholar 

  30. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet. 1997;17:411–22.

    Article  CAS  PubMed  Google Scholar 

  31. Taylor JP, Metcalfe RA, Watson PF, Weetman AP, Trembath RC. Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. J Clin Endocrinol Metab. 2002;87:1778–84.

    Article  CAS  PubMed  Google Scholar 

  32. Pela I, Bigozzi M, Bianchi B. Profound hypokalemia and hypochloremic metabolic alkalosis during thiazide therapy in a child with Pendred syndrome. Clin Nephrol. 2008;69:450–3.

    Article  CAS  PubMed  Google Scholar 

  33. Lemoine S, Eladari D, Juillard L, Bonnefond A, Froguel P, Dubourg L. The Case | Hypokalemia and severe renal loss of sodium. Kidney Int. 2020;97:1305–6.

    Article  CAS  PubMed  Google Scholar 

  34. Grimm PR, Lazo-Fernandez Y, Delpire E, Wall SM, Dorsey SG, Weinman EJ, et al. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Investig. 2015;125:2136–50.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, et al. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension. 2003;42:356–62.

    Article  CAS  PubMed  Google Scholar 

  36. Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA, Green ED, et al. NaCl restriction upregulates renal Slc26a4 through subcellular redistribution - Role in Cl- conservation. Hypertension. 2004;44:982–7.

    Article  CAS  PubMed  Google Scholar 

  37. Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P, Sohet F, et al. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol. 2013;24:1104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quentin F, Chambrey R, Trinh-Trang-Tan MM, Fysekidis M, Cambillau M, Paillard M, et al. The Cl-/HCO3- exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol-Ren Physiol. 2004;287:F1179–F88.

    Article  CAS  Google Scholar 

  39. Shibata S, Rinehart J, Zhang J, Moeckel G, Castaneda-Bueno M, Stiegler AL, et al. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab. 2013;18:660–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kassirer JP, London AM, Goldman DM, Schwartz WB. On the pathogenesis of metabolic alkalosis in hyperaldosteronism. Am J Med. 1970;49:306–15.

    Article  CAS  PubMed  Google Scholar 

  41. Mulatero P, Stowasser M, Loh KC, Fardella CE, Gordon RD, Mosso L, et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab. 2004;89:1045–50.

    Article  CAS  PubMed  Google Scholar 

  42. Stowasser M, Gordon RD, Gunasekera TG, Cowley DC, Ward G, Archibald C, et al. High rate of detection of primary aldosteronism, including surgically treatable forms, after ‘non-selective’ screening of hypertensive patients. J Hypertens. 2003;21:2149–57.

    Article  CAS  PubMed  Google Scholar 

  43. Burrello J, Monticone S, Losano I, Cavaglia G, Buffolo F, Tetti M, et al. Prevalence of hypokalemia and primary aldosteronism in 5100 patients referred to a tertiary hypertension unit. Hypertension. 2020;75:1025–33.

    Article  CAS  PubMed  Google Scholar 

  44. Jones JW, Sebastian A, Hulter HN, Schambelan M, Sutton JM, Biglieri EG. Systemic and renal acid-base effects of chronic dietary potassium-depletion in humans. Kidney Int. 1982;21:402–10.

    Article  CAS  PubMed  Google Scholar 

  45. Cannon PJ, Ames RP, Laragh JH. Relation between potassium balance and aldosterone secretion in normal subjects and in patients with hypertensive or renal tubular disease. J Clin Investig. 1966;45:865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakamura S, Amlal H, Galla JH, Soleimani M. NH4+ secretion in inner medullary collecting duct in potassium deprivation: role of colonic H+-K+-ATPase. Kidney Int. 1999;56:2160–7.

    Article  CAS  PubMed  Google Scholar 

  47. Hernandez RE, Schambelan M, Cogan MG, Colman J, Morris RC Jr., Sebastian A. Dietary NaCl determines severity of potassium depletion-induced metabolic alkalosis. Kidney Int. 1987;31:1356–67.

    Article  CAS  PubMed  Google Scholar 

  48. Dubose TD, Good DW. Effects of chronic hyperkalemia on renal production and proximal tubule transport of ammonium in rats. Am J Physiol. 1991;260:F680–F7.

    CAS  PubMed  Google Scholar 

  49. Dubose TD, Good DW. Chronic hyperkalemia impairs ammonium transport and accumulation in the inner medulla of the rat. J Clin Investig. 1992;90:1443–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu N, Hirohama D, Ishizawa K, Chang WX, Shimosawa T, Fujita T, et al. Hypokalemia and pendrin induction by aldosterone. Hypertension. 2017;69:855.

    Article  CAS  PubMed  Google Scholar 

  51. van der Lubbe N, Jansen PM, Salih M, Fenton RA, van den Meiracker AH, Danser AJ, et al. The phosphorylated sodium chloride cotransporter in urinary exosomes is superior to prostasin as a marker for aldosteronism. Hypertension. 2012;60:741–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

AW is supported by a scholarship from the Commonwealth Government of Australia. This work is supported by a grant from the Leducq Foundation (Potassium in Hypertension Network). Further funding to RAF is provided by the Novo Nordisk Foundation and the Danish Independent Research Fund: Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stowasser.

Ethics declarations

Conflict of interest

MS is currently Editor-in-Chief of the Journal of Human Hypertension, necessitating handling of the manuscript by one of the other co-editors. The remaining authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, A., Wolley, M.J., Wu, Q. et al. The Cl/HCO3 exchanger pendrin is downregulated during oral co-administration of exogenous mineralocorticoid and KCl in patients with primary aldosteronism. J Hum Hypertens 35, 837–848 (2021). https://doi.org/10.1038/s41371-020-00439-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-020-00439-7

This article is cited by

Search

Quick links