Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Relationship between blood pressure and kidney diseases in large randomized controlled trials: secondary analyses using SPRINT and ACCORD-BP trials

Abstract

Hypertension is a risk factor for acute kidney injury. In this study, we aimed to identify the optimal blood pressure (BP) targets for CKD and non-CKD patients. We analyzed the data of the Systolic Blood Pressure Intervention Trial (SPRINT) and the Action to Control Cardiovascular Risk in Diabetes Blood Pressure trial (ACCORD BP) to determine the nonlinear relationship between BP and renal disease development using the Generalized Additive Model (GAM). Optimal systolic BP/diastolic BP (SBP/DBP) with lowest renal risk were estimated using GAM. Logistic regression was employed to find odds ratios (ORs) of adverse renal outcomes by three BP groups (high/medium/low). Both study trials have demonstrated a “U”-shaped relationship between BP and renal outcomes. For non-CKD patients in SPRINT trial, risk of 30% reduction in eGFR among intensive group patients with DBP ≤ 70 mmHg was significantly higher than the group with DBP between 71 and 85 mmHg (OR = 2.31, 95% CI = 1.51–3.53). For non-CKD patients in ACCORD trial, risk of doubling of serum creatinine (SCr) or >20 mL/min decrease in eGFR among intensive group patients with DBP ≤ 70 mmHg was significantly higher than the group with DBP between 71 and 85 mmHg (OR = 1.49, 95% CI = 1.12–1.99). For CKD patients in SPRINT trial, there are no significant differences in renal outcomes by different SBP/DBP levels. Our analysis of both SPRINT and ACCORD datasets demonstrated that lower-than-optimal DBP may lead to poor renal outcomes in non-CKD patients. Healthcare providers should be cautious of too low DBP level in intensive BP management due to poor renal outcomes for non-CKD patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code availability

All statistical analyses were carried out using R 3.6.3 (R Core Team, 2014) and R codes for analysis are available upon request.

References

  1. Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011–2012. NCHS Data Brief. 2013;133:1–8.

  2. Campbell NR, Lackland DT, Lisheng L, Niebylski ML, Nilsson PM, Zhang XH. Using the Global Burden of Disease study to assist development of nation-specific fact sheets to promote prevention and control of hypertension and reduction in dietary salt: a resource from the World Hypertension League. J Clin Hypertens. 2015;17:165–7. https://doi.org/10.1111/jch.12479.

    Article  Google Scholar 

  3. Franklin SS. Cardiovascular risks related to increased diastolic, systolic and pulse pressure. An epidemiologist’s point of view. Pathol Biol. 1999;47:594–603.

    CAS  PubMed  Google Scholar 

  4. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52. https://doi.org/10.1161/01.hyp.0000107251.49515.c2.

    Article  CAS  PubMed  Google Scholar 

  5. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165:923–8. https://doi.org/10.1001/archinte.165.8.923

    Article  PubMed  Google Scholar 

  6. Chapter 1: CKD in the general population. Am J Kidney Dis. 2015;66:S11-S22. https://doi.org/10.1053/j.ajkd.2015.04.018.

  7. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80:1258–70. https://doi.org/10.1038/ki.2011.368.

    Article  PubMed  Google Scholar 

  8. Borrelli S, De Nicola L, Stanzione G, Conte G, Minutolo R. Resistant hypertension in nondialysis chronic kidney disease. Int J Hypertens.2013;2013:929183. https://doi.org/10.1155/2013/929183.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kovesdy CP, Bleyer AJ, Molnar MZ, Ma JZ, Sim JJ, Cushman WC. et al. Blood pressure and mortality in U.S. veterans with chronic kidney disease: a cohort study. Ann Intern Med. 2013;159:233–42. https://doi.org/10.7326/0003-4819-159-4-201308200-00004.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kovesdy CP, Lu JL, Molnar MZ, Ma JZ, Canada RB, Streja E. et al. Observational modeling of strict vs conventional blood pressure control in patients with chronic kidney disease. JAMA Intern Med. 2014;174:1442–9. https://doi.org/10.1001/jamainternmed.2014.3279.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Becker GJ, Wheeler DC, De Zeeuw D, Fujita T, Furth SL, Holdaas H, et al. Kidney disease: Improving global outcomes (KDIGO) blood pressure work group. KDIGO clinical practice guideline for management of blood pressure in CKD. Kidney Int Suppl. 2012;2:337–414.

    Article  Google Scholar 

  12. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–20. https://doi.org/10.1001/jama.2013.284427.

    Article  CAS  Google Scholar 

  13. Taler SJ, Agarwal R, Bakris G, Flynn JT, Nilsson PM, Rahman M. et al. KDOQI US Commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am J Kidney Dis. 2013;62:201–13. https://doi.org/10.1053/j.ajkd.2013.03.018.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hansson L, Zanchetti A, Carruthers SG, Dahlöf B, Elmfeldt D, Julius S. et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet . 1998;351:1755–62. https://doi.org/10.1016/S0140-6736(98)04311-6.

    Article  CAS  PubMed  Google Scholar 

  15. Bavishi C, Bangalore S, Messerli FH. Outcomes of intensive blood pressure lowering in older hypertensive patients. J Am Coll Cardiol. 2017;69:486–93. https://doi.org/10.1016/j.jacc.2016.10.077.

    Article  PubMed  Google Scholar 

  16. Wright JT,Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM. SPRINT Research Group et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl J Med. 2015;373:2103–16. https://doi.org/10.1056/NEJMoa1511939.

    Article  CAS  PubMed  Google Scholar 

  17. Reboldi G, Gentile G, Angeli F, Ambrosio G, Mancia G, Verdecchia P. Effects of intensive blood pressure reduction on myocardial infarction and stroke in diabetes: a meta-analysis in 73,913 patients. J Hypertens. 2011;29:1253–69. https://doi.org/10.1097/HJH.0b013e3283469976.

    Article  CAS  PubMed  Google Scholar 

  18. Ruggenenti P, Perna A, Loriga G, Ganeva M, Ene-lordache B, Turturro M. et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet . 2005;365:939–46. https://doi.org/10.1016/S0140-6736(05)71082-5.

    Article  PubMed  Google Scholar 

  19. Judd E, Calhoun DA. Management of hypertension in CKD: beyond the guidelines. Adv Chronic Kidney Dis. 2015;22:116–22. https://doi.org/10.1053/j.ackd.2014.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sarnak MJ, Greene T, Wang X, Beck G, Kusek JW, Collins AJ. et al. The effect of a lower target blood pressure on the progression of kidney disease: Long-term follow-up of the modification of diet in renal disease study. Ann Intern Med. 2005;142:342–51. https://doi.org/10.7326/0003-4819-142-5-200503010-00009.

    Article  PubMed  Google Scholar 

  21. Appel LJ, Wright JT, Greene T, Agodoa LY, Astor BC, Bakris GL. et al. Intensive blood-pressure control in hypertensive chronic kidney disease. N. Engl J Med. 2010;363:918–29. https://doi.org/10.1056/NEJMoa0910975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arguedas JA, Perez MI, Wright JM. Treatment blood pressure targets for hypertension. Cochrane Database Syst Rev. 2009;3:CD004349. https://doi.org/10.1002/14651858.CD004349.pub2.

  23. Perkovic V, Rodgers A. Redefining blood-pressure targets–SPRINT starts the marathon. N. Engl J Med. 2015;373:2175–8. https://doi.org/10.1056/NEJMe1513301.

    Article  PubMed  Google Scholar 

  24. Ninomiya T, Perkovic V, Turnbull F, Neal B, Barzi F. Blood Pressure Lowering Treatment Trialists’ Collaboration et al. Blood pressure lowering and major cardiovascular events in people with and without chronic kidney disease: meta-analysis of randomised controlled trials. BMJ . 2013;347:f5680. https://doi.org/10.1136/bmj.f5680.

    Article  PubMed  Google Scholar 

  25. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW. et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl J Med. 1994;330:877–84. https://doi.org/10.1056/NEJM199403313301301.

    Article  CAS  PubMed  Google Scholar 

  26. Whelton PK, Carey RM, Aronow WS, Casey DE,Jr, Collins KJ, Himmelfarb CD. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Soc Hypertens. 2018;12:579.e1–579.e73. https://doi.org/10.1016/j.jash.2018.06.010.

    Article  Google Scholar 

  27. Lewis JB. Blood pressure control in chronic kidney disease: is less really more?. J Am Soc Nephrol. 2010;21:1086–92. https://doi.org/10.1681/ASN.2010030236.

    Article  PubMed  Google Scholar 

  28. Verbeke F, Lindley E, Van Bortel L, Vanholder R, London G, Cochat P. et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease: Improving Global Outcomes (KDIGO) clinical practice guideline for the management of blood pressure in non-dialysis-dependent chronic kidney disease: an endorsement with some caveats for real-life application. Nephrol Dial Transplant. 2014;29:490–6. https://doi.org/10.1093/ndt/gft321.

    Article  PubMed  Google Scholar 

  29. Cushman WC, Evans GW, Byington RP, Goff DC,Jr, Grimm RH,Jr. ACCORD Study Group et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl J Med. 2010;362:1575–85. https://doi.org/10.1056/NEJMoa1001286.

    Article  CAS  PubMed  Google Scholar 

  30. Hastie, TJ. Generalized additive models. In: Chambers JM, Hastie TJ editors. Statistical models in S. New York: Routledge:1992. https://doi.org/10.1201/9780203738535.

  31. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE. et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003;139:244–52. https://doi.org/10.7326/0003-4819-139-4-200308190-00006.

    Article  CAS  PubMed  Google Scholar 

  32. Lv J, Ehteshami P, Sarnak MJ, Tighiouart H, Jun M, Ninomiya T. et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ . 2013;185:949–57. https://doi.org/10.1503/cmaj.121468.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bangalore S, Toklu B, Gianos E, Schwartzbard A, Weintraub H, Ogedegbe G. et al. Optimal systolic blood pressure target after SPRINT: insights from a network meta-analysis of randomized trials. Am J Med. 2017;130:707–19.e8. https://doi.org/10.1016/j.amjmed.2017.01.004.

    Article  PubMed  Google Scholar 

  34. Tomson C, Tomlinson LA. Stopping RAS inhibitors to minimize AKI: more harm than good?. Clin J Am Soc Nephrol. 2019;14:617–9. https://doi.org/10.2215/CJN.14021118.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brar S, Ye F, James MT, Hemmelgarn B, Klarenbach S, Pannu N. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with outcomes after acute kidney injury. JAMA Intern Med. 2018;178:1681–90. https://doi.org/10.1001/jamainternmed.2018.4749.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM. et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol. 2017;13:241–57. https://doi.org/10.1038/nrneph.2017.2.

    Article  PubMed  Google Scholar 

  37. Schoolwerth AC, Sica DA, Ballermann BJ, Wilcox CS. Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association Renal considerations in angiotensin converting enzyme inhibitor therapy: a statement for healthcare professionals from the Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association. Circulation. 2001;104:1985–91. https://doi.org/10.1161/hc4101.096153.

    Article  CAS  PubMed  Google Scholar 

  38. Naughton CA. Drug-induced nephrotoxicity. Am Fam Physician 2008;78:743–50.

    PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate Biologic Specimen and Data Repository Information Coordinating Center (BIOLINCC) of the National Heart, Lung, and Blood Institute (NHBLI) to allow us access to SPRINT and ACCORD trials data sets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Pezeshkian, K., Rayamajhi, S. et al. Relationship between blood pressure and kidney diseases in large randomized controlled trials: secondary analyses using SPRINT and ACCORD-BP trials. J Hum Hypertens 35, 859–869 (2021). https://doi.org/10.1038/s41371-020-00430-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-020-00430-2

Search

Quick links