Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Salt sensitivity and hypertension

Abstract

Salt sensitivity refers to the physiological trait present in mammals, including humans, by which the blood pressure (BP) of some members of the population exhibits changes parallel to changes in salt intake. It is commoner in elderly, females, Afro-Americans, patients with chronic kidney disease (CKD) and insulin resistance. Increased salt intake promotes an expansion of extracellular fluid volume and increases cardiac output. Salt-sensitive individuals present an abnormal kidney reaction to salt intake; the kidneys retain most of the salt due to an abnormal over-reactivity of sympathetic nervous system and a blunted suppression of renin–angiotensin axis. Moreover, instead of peripheral vascular resistance falling, salt-sensitive subjects present increased vascular resistance due mainly to impaired nitric oxide synthesis in endothelium. Recent studies have shown that part of the dietary salt loading accumulates in skin. Hypertensive and patients with CKD seem to have more sodium in skin comparing to healthy ones. However, we still have not fully explained the link between skin sodium, BP and salt sensitivity. Finally, although salt sensitivity plays a meaningful role in BP pathophysiology, it cannot be used by the physician in everyday patient’s care, mainly due to lack of a simple and practical diagnostic test.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms linking salt sensitivity to hypertension.

Similar content being viewed by others

References

  1. Ritz E. The history of salt—aspects of interest to the nephrologist. Nephrol Dial Transplant. 1996;11:969–75.

    CAS  PubMed  Google Scholar 

  2. Heerspink HL, Ritz E. Sodium chloride intake: is lower always better? J Am Soc Nephrol. 2012;23:1136–9.

    CAS  PubMed  Google Scholar 

  3. Lambers Heerspink HJ, Navis G, Ritz E. Salt intake in kidney disease—a missed therapeutic opportunity? Nephrol Dial Transplant. 2012;27:3435–42.

    CAS  PubMed  Google Scholar 

  4. Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension. 2016;68:e7–46.

    CAS  PubMed  Google Scholar 

  5. Cowley AW Jr. Salt and hypertension—future directions. Hypertension. 1991;17:I205–10.

    PubMed  Google Scholar 

  6. He J, Gu D, Chen J, Jaquish CE, Rao DC, Hixson JE, et al. Gender difference in blood pressure responses to dietary sodium intervention in the GenSalt study. J Hypertens. 2009;27:48–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Weir MR, Chrysant SG, McCarron DA, Canossa-Terris M, Cohen JD, Gunter PA, et al. Influence of race and dietary salt on the antihypertensive efficacy of an angiotensin-converting enzyme inhibitor or a calcium channel antagonist in salt-sensitive hypertensives. Hypertension. 1998;31:1088–96.

    CAS  PubMed  Google Scholar 

  8. Rocchini AP. Obesity hypertension, salt sensitivity and insulin resistance. Nutr Metab Cardiovasc Dis. 2000;10:287–94.

    CAS  PubMed  Google Scholar 

  9. Dahl LK, Heine M. Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res. 1975;36:692–6.

    CAS  PubMed  Google Scholar 

  10. Curtis JJ, Luke RG, Dustan HP, Kashgarian M, Whelchel JD, Jones P, et al. Remission of essential hypertension after renal transplantation. N Engl J Med. 1983;309:1009–15.

    CAS  PubMed  Google Scholar 

  11. Zicha J, Dobesova Z, Vokurkova M, Rauchova H, Hojna S, Kadlecova M, et al. Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res. 2012;61:S35–87.

    CAS  PubMed  Google Scholar 

  12. Meneely GR, Ball CO. Experimental epidemiology of chronic sodium chloride toxicity and the protective effect of potassium chloride. Am J Med. 1958;25:713–25.

    CAS  PubMed  Google Scholar 

  13. Denton D, Weisinger R, Mundy NI, Wickings EJ, Dixson A, Moisson P, et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat Med. 1995;1:1009–16.

    CAS  PubMed  Google Scholar 

  14. Geleijnse JM, Hofman A, Witteman JC, Hazebroek AA, Valkenburg HA, Grobbee DE. Long-term effects of neonatal sodium restriction on blood pressure. Hypertension. 1997;29:913–7.

    CAS  PubMed  Google Scholar 

  15. Stamler J, Rose G, Stamler R, Elliott P, Dyer A, Marmot M. INTERSALT study findings. Public health and medical care implications. Hypertension. 1989;14:570–7.

    CAS  PubMed  Google Scholar 

  16. Elliott P, Marmot M, Dyer A, Joossens J, Kesteloot H, Stamler R, et al. The INTERSALT study: main results, conclusions and some implications. Clin Exp Hypertens A. 1989;11:1025–34.

    CAS  PubMed  Google Scholar 

  17. Mueller NT, Noya-Alarcon O, Contreras M, Appel LJ, Dominguez-Bello MG. Association of age with blood pressure across the lifespan in isolated Yanomami and Yekwana Villages. JAMA Cardiol. 2018;3:1247–9.

    PubMed  PubMed Central  Google Scholar 

  18. Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014;371:624–34.

    PubMed  Google Scholar 

  19. O’Donnell M, Mann JF, Schutte AE, Staessen JA, Lopez-Jaramillo P, Thomas M, et al. Dietary sodium and cardiovascular disease risk. N Engl J Med. 2016;375:2404–6.

    PubMed  Google Scholar 

  20. Mente A, O’Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet. 2016;388:465–75.

    CAS  PubMed  Google Scholar 

  21. O’Donnell M, Mente A, Yusuf S. Commentary: accepting what we don’t know will lead to progress. Int J Epidemiol. 2016;45:260–2.

    PubMed  Google Scholar 

  22. Mente A, O’Donnell M, Rangarajan S, McQueen M, Dagenais G, Wielgosz A, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet. 2018;392:496–506.

    PubMed  Google Scholar 

  23. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the management of arterial hypertension. J Hypertens. 2018;36:2284–309.

    CAS  PubMed  Google Scholar 

  24. Weinberger MH. Salt sensitive human hypertension. Endocr Res. 1991;17:43–51.

    CAS  PubMed  Google Scholar 

  25. Gu D, Zhao Q, Chen J, Chen JC, Huang J, Bazzano LA, et al. Reproducibility of blood pressure responses to dietary sodium and potassium interventions: the GenSalt study. Hypertension. 2013;62:499–505.

    CAS  PubMed  Google Scholar 

  26. Galletti F, Ferrara I, Stinga F, Iacone R, Noviello F, Strazzullo P. Evaluation of a rapid protocol for the assessment of salt sensitivity against the blood pressure response to dietary sodium chloride restriction. Am J Hypertens. 1997;10:462–6.

    CAS  PubMed  Google Scholar 

  27. Kurtz TW, DiCarlo SE, Pravenec M, Morris RC Jr. An appraisal of methods recently recommended for testing salt sensitivity of blood pressure. J Am Heart Assoc. 2017;6:e005653.

    PubMed  PubMed Central  Google Scholar 

  28. Hall JE, Guyton AC, Coleman TG, Mizelle HL, Woods LL. Regulation of arterial pressure: role of pressure natriuresis and diuresis. Fed Proc. 1986;45:2897–903.

    CAS  PubMed  Google Scholar 

  29. Guyton AC, Young DB, DeClue JW, Trippodo N, Hall JE. Fluid balance, renal function, and blood pressure. Clin Nephrol. 1975;4:122–6.

    CAS  PubMed  Google Scholar 

  30. Lu Y, Wei J, Stec DE, Roman RJ, Ge Y, Cheng L, et al. Macula densa nitric oxide synthase 1beta protects against salt-sensitive hypertension. J Am Soc Nephrol. 2016;27:2346–56.

    CAS  PubMed  Google Scholar 

  31. Wang X, Chandrashekar K, Wang L, Lai EY, Wei J, Zhang G, et al. Inhibition of nitric oxide synthase 1 induces salt-sensitive hypertension in nitric oxide synthase 1alpha knockout and wild-type mice. Hypertension. 2016;67:792–9.

    CAS  PubMed  Google Scholar 

  32. Parfrey PS, Markandu ND, Roulston JE, Jones BE, Jones JC, MacGregor GA. Relation between arterial pressure, dietary sodium intake, and renin system in essential hypertension. Br Med J (Clin Res Ed). 1981;283:94–7.

    CAS  Google Scholar 

  33. Yatabe MS, Yatabe J, Yoneda M, Watanabe T, Otsuki M, Felder RA, et al. Salt sensitivity is associated with insulin resistance, sympathetic overactivity, and decreased suppression of circulating renin activity in lean patients with essential hypertension. Am J Clin Nutr. 2010;92:77–82.

    CAS  PubMed  Google Scholar 

  34. Laffer CL, Laniado-Schwartzman M, Wang MH, Nasjletti A, Elijovich F. 20-HETE and furosemide-induced natriuresis in salt-sensitive essential hypertension. Hypertension. 2003;41:703–8.

    CAS  PubMed  Google Scholar 

  35. Laffer CL, Elijovich F. Differential predictors of insulin resistance in nondiabetic salt-resistant and salt-sensitive subjects. Hypertension. 2013;61:707–15.

    CAS  PubMed  Google Scholar 

  36. Elijovich F, Laffer CL, Schiffrin EL, Gavras H, Amador E. Endothelin-aldosterone interaction and proteinuria in low-renin hypertension. J Hypertens. 2004;22:573–82.

    CAS  PubMed  Google Scholar 

  37. Campese VM, Romoff MS, Levitan D, Saglikes Y, Friedler RM, Massry SG. Abnormal relationship between sodium intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int. 1982;21:371–8.

    CAS  PubMed  Google Scholar 

  38. Guild SJ, McBryde FD, Malpas SC, Barrett CJ. High dietary salt and angiotensin II chronically increase renal sympathetic nerve activity: a direct telemetric study. Hypertension. 2012;59:614–20.

    CAS  PubMed  Google Scholar 

  39. Charkoudian N, Eisenach JH, Joyner MJ, Roberts SK, Wick DE. Interactions of plasma osmolality with arterial and central venous pressures in control of sympathetic activity and heart rate in humans. Am J Physiol Heart Circ Physiol. 2005;289:H2456–60.

    CAS  PubMed  Google Scholar 

  40. Ando K, Fujita T. Pathophysiology of salt sensitivity hypertension. Ann Med. 2012;44:S119–26.

    CAS  PubMed  Google Scholar 

  41. Nishimoto M, Fujita T. Renal mechanisms of salt-sensitive hypertension: contribution of two steroid receptor-associated pathways. Am J Physiol Ren Physiol. 2015;308:F377–87.

    CAS  Google Scholar 

  42. Huang BS, Amin MS, Leenen FH. The central role of the brain in salt-sensitive hypertension. Curr Opin Cardiol. 2006;21:295–304.

    PubMed  Google Scholar 

  43. Ando K, Fujita M. Reactive oxygen species and the central nervous system in salt-sensitive hypertension: possible relationship with obesity-induced hypertension. Clin Exp Pharmacol Physiol. 2012;39:111–6.

    CAS  PubMed  Google Scholar 

  44. Stocker SD, Monahan KD, Browning KN. Neurogenic and sympathoexcitatory actions of NaCl in hypertension. Curr Hypertens Rep. 2013;15:538–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Morisawa N, Kitada K, Fujisawa Y, Nakano D, Yamazaki D, Kobuchi S, et al. Renal sympathetic nerve activity regulates cardiovascular energy expenditure in rats fed high salt. Hypertens Res. 2020;43:482–91.

    CAS  PubMed  Google Scholar 

  46. Adams JM, Madden CJ, Sved AF, Stocker SD. Increased dietary salt enhances sympathoexcitatory and sympathoinhibitory responses from the rostral ventrolateral medulla. Hypertension. 2007;50:354–9.

    CAS  PubMed  Google Scholar 

  47. Wainford RD, Carmichael CY, Pascale CL, Kuwabara JT. Galphai2-protein-mediated signal transduction: central nervous system molecular mechanism countering the development of sodium-dependent hypertension. Hypertension. 2015;65:178–86.

    CAS  PubMed  Google Scholar 

  48. Kapusta DR, Pascale CL, Kuwabara JT, Wainford RD. Central nervous system Galphai2-subunit proteins maintain salt resistance via a renal nerve-dependent sympathoinhibitory pathway. Hypertension. 2013;61:368–75.

    CAS  PubMed  Google Scholar 

  49. Carmichael CY, Kuwabara JT, Pascale CL, Moreira JD, Mahne SE, Kapusta DR, et al. Hypothalamic paraventricular nucleus galphai2 (guanine nucleotide-binding protein alpha inhibiting activity polypeptide 2) protein-mediated neural control of the kidney and the salt sensitivity of blood pressure. Hypertension. 2020;75:1002–11.

    CAS  PubMed  Google Scholar 

  50. Rocchini AP, Key J, Bondie D, Chico R, Moorehead C, Katch V, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321:580–5.

    CAS  PubMed  Google Scholar 

  51. Sharma AM, Ruland K, Spies KP, Distler A. Salt sensitivity in young normotensive subjects is associated with a hyperinsulinemic response to oral glucose. J Hypertens. 1991;9:329–35.

    CAS  PubMed  Google Scholar 

  52. Murao S, Takata Y, Yasuda M, Osawa H, Kohi F. The influence of sodium and potassium intake and insulin resistance on blood pressure in normotensive individuals is more evident in women. Am J Hypertens. 2018;31:876–85.

    CAS  PubMed  Google Scholar 

  53. Strazzullo P, Barba G, Cappuccio FP, Siani A, Trevisan M, Farinaro E, et al. Altered renal sodium handling in men with abdominal adiposity: a link to hypertension. J Hypertens. 2001;19:2157–64.

    CAS  PubMed  Google Scholar 

  54. Cwynar M, Gasowski J, Gryglewska B, Gluszewska A, Kwater A, Krolczyk J, et al. Insulin resistance and renal sodium handling influence arterial stiffness in hypertensive patients with prevailing sodium intake. Am J Hypertens. 2019;32:848–57.

    PubMed  Google Scholar 

  55. Garg R, Sun B, Williams J. Effect of low salt diet on insulin resistance in salt-sensitive versus salt-resistant hypertension. Hypertension. 2014;64:1384–7.

    CAS  PubMed  Google Scholar 

  56. Wan Z, Wen W, Ren K, Zhou D, Liu J, Wu Y, et al. Involvement of NLRP3 inflammasome in the impacts of sodium and potassium on insulin resistance in normotensive Asians. Br J Nutr. 2018;119:228–37.

    CAS  PubMed  Google Scholar 

  57. Lund-Johansen P. Hemodynamic long-term effects of timolol at rest and during exercise in essential hypertension. Acta Med Scand. 1976;199:263–7.

    CAS  PubMed  Google Scholar 

  58. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11:76–82.

    CAS  PubMed  Google Scholar 

  59. Montani JP, Mizelle HL, Adair TH, Guyton AC. Regulation of cardiac output during aldosterone-induced hypertension. J Hypertens Suppl. 1989;7:S206–7.

    CAS  PubMed  Google Scholar 

  60. Sullivan JM, Ratts TE, Reed SW, Banna A, Riddle JC, Jordan C. Evidence for altered vascular reactivity in sodium-sensitive young subjects with borderline hypertension. Am J Med Sci. 1984;288:65–73.

    CAS  PubMed  Google Scholar 

  61. Sullivan JM, Prewitt RL, Ratts TE. Sodium sensitivity in normotensive and borderline hypertensive humans. Am J Med Sci. 1988;295:370–7.

    CAS  PubMed  Google Scholar 

  62. Schmidlin O, Sebastian AF, Morris RC Jr. What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks. Hypertension. 2007;49:1032–9.

    CAS  PubMed  Google Scholar 

  63. Schmidlin O, Forman A, Leone A, Sebastian A, Morris RC Jr. Salt sensitivity in blacks: evidence that the initial pressor effect of NaCl involves inhibition of vasodilatation by asymmetrical dimethylarginine. Hypertension. 2011;58:380–5.

    CAS  PubMed  Google Scholar 

  64. Laffer CL, Scott RC 3rd, Titze JM, Luft FC, Elijovich F. Hemodynamics and salt-and-water balance link sodium storage and vascular dysfunction in salt-sensitive subjects. Hypertension. 2016;68:195–203.

    CAS  PubMed  Google Scholar 

  65. Neumann JR, O’Meara AR, Herrmann RL. Cyclic AMP-dependent histone-specific nucleoplasmic protein kinase from rat liver. Biochem J. 1978;171:123–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Oberleithner H, Riethmuller C, Schillers H, MacGregor GA, de Wardener HE, Hausberg M. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci USA. 2007;104:16281–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Oberleithner H. Is the vascular endothelium under the control of aldosterone? Facts and hypothesis. Pflug Arch. 2007;454:187–93.

    CAS  Google Scholar 

  68. Ohno M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Investig. 1995;95:1363–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ying WZ, Sanders PW. Dietary salt modulates renal production of transforming growth factor-beta in rats. Am J Physiol. 1998;274:F635–41.

    CAS  PubMed  Google Scholar 

  70. Ying WZ, Sanders PW. Dietary salt increases endothelial nitric oxide synthase and TGF-beta1 in rat aortic endothelium. Am J Physiol. 1999;277:H1293–8.

    CAS  PubMed  Google Scholar 

  71. Ying WZ, Aaron K, Sanders PW. Mechanism of dietary salt-mediated increase in intravascular production of TGF-beta1. Am J Physiol Ren Physiol. 2008;295:F406–14.

    CAS  Google Scholar 

  72. Ying WZ, Sanders PW. The interrelationship between TGF-beta1 and nitric oxide is altered in salt-sensitive hypertension. Am J Physiol Ren Physiol. 2003;285:F902–8.

    CAS  Google Scholar 

  73. Ramick MG, Brian MS, Matthews EL, Patik JC, Seals DR, Lennon SL, et al. Apocynin and Tempol ameliorate dietary sodium-induced declines in cutaneous microvascular function in salt-resistant humans. Am J Physiol Heart Circ Physiol. 2019;317:H97–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Luft FC. Molecular genetics of salt-sensitivity and hypertension. Drug Metab Dispos. 2001;29:500–4.

    CAS  PubMed  Google Scholar 

  76. Liu Y, Shi M, Dolan J, He J. Sodium sensitivity of blood pressure in Chinese populations. J Hum Hypertens. 2020;34:94–107.

    CAS  PubMed  Google Scholar 

  77. Kumarhia D, He L, McCluskey LP. Inflammatory stimuli acutely modulate peripheral taste function. J Neurophysiol. 2016;115:2964–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rakova N, Juttner K, Dahlmann A, Schroder A, Linz P, Kopp C, et al. Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab. 2013;17:125–31.

    CAS  PubMed  Google Scholar 

  79. Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Muller DN, et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61:635–40.

    CAS  PubMed  Google Scholar 

  80. Titze J, Dahlmann A, Lerchl K, Kopp C, Rakova N, Schroder A, et al. Spooky sodium balance. Kidney Int. 2014;85:759–67.

    CAS  PubMed  Google Scholar 

  81. Schneider MP, Raff U, Kopp C, Scheppach JB, Toncar S, Wanner C, et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol. 2017;28:1867–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dahlmann A, Dorfelt K, Eicher F, Linz P, Kopp C, Mossinger I, et al. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int. 2015;87:434–41.

    CAS  PubMed  Google Scholar 

  83. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.

    CAS  PubMed  Google Scholar 

  84. Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287:H203–8.

    CAS  PubMed  Google Scholar 

  85. Selvarajah V, Maki-Petaja KM, Pedro L, Bruggraber SFA, Burling K, Goodhart AK, et al. Novel mechanism for buffering dietary salt in humans: effects of salt loading on skin sodium, vascular endothelial growth factor C, and blood pressure. Hypertension. 2017;70:930–7.

    CAS  PubMed  Google Scholar 

  86. Wenstedt EFE, Engberink R, Rorije NMG, van den Born BH, Claessen N, Aten J, et al. Salt-sensitive blood pressure rise in type 1 diabetes patients is accompanied by disturbed skin macrophage influx and lymphatic dilation-a proof-of-concept study. Transl Res. 2020;217:23–32.

    PubMed  Google Scholar 

  87. Selvarajah V, Connolly K, McEniery C, Wilkinson I. Skin sodium and hypertension: a paradigm shift? Curr Hypertens Rep. 2018;20:94.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigas G. Kalaitzidis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balafa, O., Kalaitzidis, R.G. Salt sensitivity and hypertension. J Hum Hypertens 35, 184–192 (2021). https://doi.org/10.1038/s41371-020-00407-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-020-00407-1

Search

Quick links