Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Osteopontin associated with left ventricular hypertrophy and diastolic dysfunction in essential hypertension

Abstract

To investigate the relationship between circulating osteopontin (OPN) and left ventricular (LV) geometry, as well as systolic and diastolic function in patients with essential hypertension. One hundred and ninety-nine essential hypertensive patients were recruited (mean age 62.5 ± 9.5, male 59%) in this study and were classified into two groups by the median of lg OPN: patients with lg OPN <0.975 (n = 100, 50.3%, low-OPN group) and patients with lg OPN > 0.975 (n = 99, 49.7%, high-OPN group). Patients in high-OPN group had higher left ventricular mass index (LVMI) than low-OPN group (112 ± 25 vs. 106 ± 19 g/m2, p = 0.045) and higher ratio of peak early to tissue Doppler early diastolic (E/e’: 11.5 ± 3.4 vs. 10.6 ± 2.5, p = 0.03). There was no difference in LV diameter, relative wall thickness, or LV ejection fraction between groups. The prevalence of left ventricular diastolic dysfunction (LVDD) was significantly greater in patients with high-OPN than low-OPN group (27% vs. 12%, P = 0.005). LVMI independently correlated to age (β = 0.239, p = 0.001), 24-h mean systolic blood pressure (β = 0.379, p < 0.001) and lg OPN (β = 0.146, p = 0.04), while adversely correlated with 24-h mean heart rate (β = −0.172, p = 0.02) in multivariable stepwise linear regression analysis. E/e’ ratio was found independently correlated with age (β = 0.285, p < 0.001), sex (β = 0.204, p = 0.008) 24-h mean systolic blood pressure (β = 0.191, p = 0.01) and lg OPN (β = 0.152, p = 0.04) in multivariable stepwise linear regression analysis. In conclusion, circulating OPN was an independent risk factor for both LV hypertrophy and LVDD in essential hypertensive patients. However, OPN was not related to LV dimension and systolic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  Google Scholar 

  2. Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27:2458–64.

    Article  CAS  Google Scholar 

  3. ZileMR BaicuCF, Gaasch WH. Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9.

    Article  Google Scholar 

  4. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202.

    Article  Google Scholar 

  5. Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J Am Coll Cardiol. 2004;43:317–27.

    Article  Google Scholar 

  6. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF III, Dokainish H, Edvardsen T, et al. recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17:1321–60.

    Article  Google Scholar 

  7. Schellings MW, Pinto YM, Heymans S. Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res. 2004;64:24–31.

    Article  CAS  Google Scholar 

  8. Ashizawa N, Graf K, Do YS, Nunohiro T, Giachelli CM, Meehan WP, et al. Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)–induced DNA synthesis and collagen gel contraction. J Clin Investig. 1996;98:2218–27.

    Article  CAS  Google Scholar 

  9. Xie Z, Pimental DR, Lohan S, Vasertriger A, Pligavko C, Colucci WS, et al. Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species. J Cell Physiol. 2001;188:132–8.

    Article  CAS  Google Scholar 

  10. Wang KX, Denhardt DT. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev. 2008;19:333–45.

    Article  CAS  Google Scholar 

  11. Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol. 2007;27:2302–9.

    Article  CAS  Google Scholar 

  12. Wolak T, Kim H, Ren Y, Kim J, Vaziri ND, Nicholas SB. Osteopontin modulates angiotensin II-induced inflammation, oxidative stress, and fibrosis of the kidney. Kidney Int. 2009;76:32–43.

    Article  CAS  Google Scholar 

  13. Singh K, Sirokman G, Communal C, Robinson KG, Conrad CH, Brooks WW, et al. Myocardial osteopontin expression coincides with the development of heart failure. Hypertension. 1999;33:663–70.

    Article  CAS  Google Scholar 

  14. Graf K, Do YS, Ashizawa N, Meehan WP, Giachelli CM, Marboe CC, et al. Myocardial osteopontin expression is associated with left ventricular hypertrophy. Circulation. 1997;96:3063–71.

    Article  CAS  Google Scholar 

  15. Xie Z, Singh M, Singh K. Osteopontin modulates myocardial hypertrophy in response to chronic pressure overload in mice. Hypertension. 2004;44:826–31.

    Article  CAS  Google Scholar 

  16. Hou X, Hu Z, Huang X, Chen Y, He X, Xu H, et al. Serum osteopontin, but not OPN gene polymorphism, is associated with LVH in essential hypertensive patients. J Mol Med. 2014;92:487–95.

    Article  CAS  Google Scholar 

  17. Nakayama H, Nagai H, Matsumoto K, Oguro R, Sugimoto K, Kamide K, et al. Association between osteopontin promoter variants and diastolic dysfunction in hypertensive heart in the Japanese population. Hypertens Res. 2011;34:1141–6.

    Article  CAS  Google Scholar 

  18. Joint committee issued Chinese guideline for the management of dyslipidemia in adults. 2016 Chinese guideline for the management of dyslipidemia in adults. Zhonghua Xin Xue Guan Bing Za Zhi 2016;44:833–53.

    Google Scholar 

  19. Yang Y, Wang Y, Shi ZW, Zhu DL, Gao PJ. Association of E/E’ and NT-proBNP with renal function in patients with essential hypertension. PLoS ONE. 2013;8:e54513.

    Article  CAS  Google Scholar 

  20. Liu LS. Writing Group of 2010 Chinese Guidelines for the Management of Hypertension. 2010 Chinese guidelines for the management of hypertension. Zhonghua Xin Xue Guan Bing Za Zhi. 2011;39:579–615.

    PubMed  Google Scholar 

  21. Trueblood NA, Xie Z, Communal C, Sam F, Ngoy S, Liaw L, et al. Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res. 2001;88:1080–7.

    Article  CAS  Google Scholar 

  22. Krishnamurthy P, Peterson JT, Subramanian V, Singh M, Singh K. Inhibition of matrix metalloproteinases improves left ventricular function in mice lacking osteopontin after myocardial infarction. Mol Cell Biochem. 2009;322:53–62.

    Article  CAS  Google Scholar 

  23. Rosenberg M, Zugck C, Nelles M, Juenger C, Frank D, Remppis A, et al. Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail 2008;1:43–9.

    Article  CAS  Google Scholar 

  24. Stawowy P, Blaschke F, Pfautsch P, Goetze S, Lippek F, Wollert-Wulf B, et al. Increased myocardial expression of osteopontin in patients with advanced heart failure. Eur J Heart Fail. 2002;4:139–46.

    Article  CAS  Google Scholar 

  25. Szalay G, Sauter M, Haberland M, Zuegel U, Steinmeyer A, Kandolf R, et al. Osteopontin: a fibrosis-related marker molecule in cardiac remodeling of enterovirus myocarditis in the susceptible host. Circ Res. 2009;104:851–9.

    Article  CAS  Google Scholar 

  26. Francia P, Balla C, Ricotta A, Uccellini A, Frattari A, Modestino A, et al. Plasma osteopontin reveals left ventricular reverse remodelling following cardiac resynchronization therapy in heart failure. Int J Cardiol. 2011;153:306–10.

    Article  Google Scholar 

  27. Lorenzen JM, Nickel N, Krämer R, Golpon H, Westerkamp V, Olsson KM, et al. Osteopontin in patients with idiopathic pulmonary hypertension. Chest. 2011;139:1010–7.

    Article  CAS  Google Scholar 

  28. Rothermund L, Kreutz R, Kossmehl P, Fredersdorf S, Shakibaei M, Schulze-Tanzil G, et al. Early onset of chondroitin sulfate and osteopontin expression in angiotensin II-dependent left ventricular hypertrophy. Am J Hypertens. 2002;15(7 Pt 1):644–52.

    Article  CAS  Google Scholar 

  29. Ashizawa N, Graf K, Do YS, Nunohiro T, Giachelli CM, Meehan WP, et al. Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis andcollagen gel contraction. J Clin Investig. 1996;98:2218–27.

    Article  CAS  Google Scholar 

  30. Kupfahl C, Pink D, Friedrich K, Zurbrügg HR, Neuss M, Warnecke C, et al. Angiotensin II directly increases transforming growth factor beta1 and osteopontin and indirectly affects collagen mRNA expression in the human heart. Cardiovasc Res. 2000;46:463–75.

    Article  CAS  Google Scholar 

  31. Nagueh SF, Middleton KJ, Kopelan HA, Zoghbi WA, Quinones MA. Doppler tissue imaging: A noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.

    Article  CAS  Google Scholar 

  32. Rovner A, de las Fuentes L, Waggoner AD, Memon N, Chohan R, Dávila-Román VG. Characterization of left ventricular diastolic function in hypertension by use of Doppler tissue imaging and color M-mode techniques. J Am Soc Echocardiogr. 2006;19:872–9.

    Article  Google Scholar 

  33. Burlew BS, Weber KT. Connective tissue and the heart fununctional significance and regulatory mechanisms. Cardiol Clin. 2000;18:435–42.

    Article  CAS  Google Scholar 

  34. Yu Q, Vazquez R, Khojeini EV, Patel C, Venkataramani R, Larson DF. IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice. Am J Physiol Heart Circ Physiol. 2009;297:H76–85.

    Article  CAS  Google Scholar 

  35. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation. 2002;105:1503–8.

    Article  Google Scholar 

  36. Kim BS, Jeon DS, Shin MJ, Kim YO, Song HC, Lee SH, et al. Persistent elevation of C-reactive protein may predict cardiac hypertrophy and dysfunction in patients maintained on hemodialysis. Am J Nephrol. 2005;25:189–95.

    Article  Google Scholar 

  37. Shi B, Ni Z, Cai H, Zhang M, Mou S, Wang Q, et al. High-sensitivity C-reactive protein: an independent risk factor for left ventricular hypertrophy in patients with lupus nephritis. J Biomed Biotechnol. 2010;2010:373426.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81400179), General Program of Shanghai Municipal Health and Family Planning Commission (201440530), Science and Technology Fund Project of Shanghai Jiao Tong University School of Medicine (14XJ10070) and 2016 Wang Kuancheng Medical Reward Fund Project of Shanghai Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, Y. & Gao, Pj. Osteopontin associated with left ventricular hypertrophy and diastolic dysfunction in essential hypertension. J Hum Hypertens 34, 388–396 (2020). https://doi.org/10.1038/s41371-019-0246-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-019-0246-3

Search

Quick links