Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of DNA methylation and histone modifications in blood pressure: a systematic review

A Correction to this article was published on 27 August 2019

This article has been updated

Abstract

Epigenetic mechanisms might play a role in the pathophysiology of hypertension, a major risk factor for cardiovascular disease and renal failure. We aimed to systematically review studies investigating the association between epigenetic marks (global, candidate-gene or genome-wide methylation of DNA, and histone modifications) and blood pressure or hypertension. Five bibliographic databases were searched until the 7th of December 2018. Of 2984 identified references, 26 articles based on 25 unique studies met our inclusion criteria, which involved a total of 28,382 participants. The five studies that assessed global DNA methylation generally found lower methylation levels with higher systolic blood pressure, diastolic blood pressure, and/or presence of hypertension. Eighteen candidate-gene studies reported, in total, 16 differentially methylated genes, including renin–angiotensin-system-related genes (ACE promoter and AGTR1) and genes involved in sodium homeostasis and extracellular fluid volume maintenance system (NET promoter, SCNN1A, and ADD1). Between the three identified epigenome-wide association studies (EWAS), lower methylation levels of SULF1, EHMT2, and SKOR2 were found in hypertensive patients as compared with normotensive subjects, and lower methylation levels of PHGDH, SLC7A11, and TSPAN2 were associated with higher systolic and diastolic blood pressure. In summary, the most convincing evidence has been reported from candidate-gene studies, which show reproducible epigenetic changes in the interconnected renin–angiotensin and inflammatory systems. Our study highlights gaps in the literature on the role of histone modifications in blood pressure and the need to conduct high-quality studies, in particular, hypothesis-generating studies that may help to elucidate new molecular mechanisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

Change history

  • 27 August 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at Least 110 to 115 mmHg, 1990–2015. JAMA. 2017;317:165–82.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA, et al. Blood pressure, stroke, and coronary heart disease. Part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet. 1990;335:827–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Jiang S-Z, Lu W, Zong X-F, Ruan H-Y, Liu Y. Obesity and hypertension. Exp Ther Med. 2016;12:2395–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2017;4:CD004022.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Diaz KM, Shimbo D. Physical activity and the prevention of hypertension. Curr Hypertens Rep. 2013;15:659–68.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJC. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension. 2005;45:80–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50:1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49:403–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wain LV, Vaez A, Jansen R, Joehanes R, van der Most PJ, Erzurumluoglu AM, et al. Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney. Hypertension. 2017;70:e4–19.

  10. 10.

    Munroe PB, Barnes MR, Caulfield MJ. Advances in blood pressure genomics. Circ Res. 2013;112:1365–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Muka T, Koromani F, Portilla E, O’Connor A, Bramer WM, Troup J, et al. The role of epigenetic modifications in cardiovascular disease: a systematic review. Int J Cardiol. 2016;212:174–83.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Braun KV, Voortman T, Dhana K, Troup J, Bramer WM, Troup J, et al. The role of DNA methylation in dyslipidaemia: a systematic review. Prog Lipid Res. 2016;64:178–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Muka T, Nano J, Voortman T, Braun KVE, Ligthart S, Stranges S, et al. The role of global and regional DNA methylation and histone modifications in glycemic traits and type 2 diabetes: a systematic review. Nutr Metab Cardiovasc Dis. 2016;26:553–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Alexeeff SE, Baccarelli AA, Halonen J, Coull BA, Wright RO, Tarantini L, et al. Association between blood pressure and DNA methylation of retrotransposons and pro-inflammatory genes. Int J Epidemiol. 2013;42:270–80.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Bellavia A, Urch B, Speck M, Brook RD, Scott JA, Albetti B, et al. DNA hypomethylation, ambient particulate matter, and increased blood pressure: findings from controlled human exposure experiments. J Am Heart Assoc. 2013;2:1–10.

  18. 18.

    Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet. 2015;47:1282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    European Society of Hypertension-European Society of Cardiology Guidelines Committee. 2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens. 2003;21:1011–53.

    Article  Google Scholar 

  20. 20.

    Turcot V, Tchernof A, Deshaies Y, Perusse L, Belisle A, Marceau S, et al. LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin Epigenetics. 2012;4:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982;10:2709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, et al. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology. 2010;21:819–28.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Luttmer R, Spijkerman AM, Kok RM, Jakobs C, Blom HJ, Serne EH, et al. Metabolic syndrome components are associated with DNA hypomethylation. Obes Res Clin Pract. 2013;7:e106–15.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Smolarek I, Wyszko E, Barciszewska AM, Nowak S, Gawronska I, Jablecka A, et al. Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit. 2010;16:CR149–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Guay SP, Brisson D, Lamarche B, Biron S, Lescelleur O, Biertho L, et al. ADRB3gene promoter DNA methylation in blood and visceral adipose tissue is associated with metabolic disturbances in men. Epigenomics. 2014;6:33–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Peng P, Wang L, Yang X, Huang X, Ba Y, Chen X, et al. A preliminary study of the relationship between promoter methylation of the ABCG1, GALNT2 and HMGCR genes and coronary heart disease. PLoS ONE. 2014;9:1–8.

  27. 27.

    Mao SQ, Sun JH, Gu TL, Zhu FB, Yin FY, Zhang LN. Hypomethylation of interleukin-6 (IL-6) gene increases the risk of essential hypertension: a matched case-control study. J Hum Hypertens. 2017;31:530–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Macias-Gonzalez M, Martin-Nunez GM, Garrido-Sanchez L, Garcia-Fuentes E, Tinahones FJ, Morcillo S. Decreased blood pressure is related to changes in NF-kB promoter methylation levels after bariatric surgery. Surg Obes Relat Dis. 2018;14:1327–34.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Bao XJ, Mao SQ, Gu TL, Zheng SY, Zhao JS, Zhang LN. Hypomethylation of the Interferon gamma Gene as a Potential Risk Factor for Essential Hypertension: a Case–Control Study. Tohoku J Exp Med. 2018;244:283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Rangel M, Dos Santos JC, Ortiz PHL, Hirata M, Jasiulionis MG, Araujo RC, et al. Modification of epigenetic patterns in low birth weight children: Importance of hypomethylation of the ACE gene promoter. PLoS ONE. 2014;9:1–8.

  31. 31.

    Fan R, Mao S, Zhong F, Gong M, Yin F, Hao L, et al. Association of AGTR1 promoter methylation levels with essential hypertension risk: a matched case–control study. Cytogenet Genome Res. 2015;147:95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lin J, Lin S, Wu Y, Wang X, Wu S, Li H. Hypomethylation of the Angiotensin II type I receptor (AGTR1) gene along with environmental factors increases the risk for essential hypertension. Cardiology. 2017;137:126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Fan R, Wang WJ, Zhong QL, Duan SW, Xu XT, Hao LM, et al. Aberrant methylation of the GCK gene body is associated with the risk of essential hypertension. Mol Med Rep. 2015;12:2390–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Meng L, Chen D, Pei F, Hui R, Zheng Y, Chen J. DNA methylation in the norepinephrine transporter gene promoter region is not associated with depression and hypertension. Clin Exp Hypertens. 2017;39:539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mao S, Fan R, Gu T, Zhong Q, Gong M, Dong C, et al. Hypermethylation of SCNN1A gene-body increases the risk of essential hypertension. Int J Clin Exp Pathol. 2016;9:8047–56.

    CAS  Google Scholar 

  36. 36.

    Zhang LN, Liu PP, Wang L, Yuan F, Xu L, Xin Y, et al. Lower ADD1 gene promoter DNA methylation increases the risk of essential hypertension. PLoS ONE. 2013;8:1–7.

  37. 37.

    Bayoumy NMK, El-Shabrawi MM, Leheta OF, Omar HH. alpha-Adducin gene promoter DNA methylation and the risk of essential hypertension. Clin Exp Hypertens. 2017;39:1–5.

  38. 38.

    Jin F, Li X, Wang Z, Liu Y, Liu J, Sun D, et al. Association of mitofusin 2 methylation and essential hypertension: a case-control study in a Chinese population. Hypertens Res. 2018;41:605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Xu M, Li J, Chen X, Han L, Li L, Liu Y. MTHFD1 promoter hypermethylation increases the risk of hypertension. Clin Exp Hypertens. 2018;41:1–6.

  40. 40.

    Wang X, Falkner B, Zhu H, Shi H, Su S, Xu X, et al. A genome-wide methylation study on essential hypertension in young African American males. PLoS ONE. 2013;8:1–8.

  41. 41.

    Bostrom AE, Mwinyi J, Voisin S, Wu W, Schultes B, Zhang K, et al. Longitudinal genome-wide methylation study of Roux-en-Y gastric bypass patients reveals novel CpG sites associated with essential hypertension. BMC Med Genom. 2016;9:20.

    Article  CAS  Google Scholar 

  42. 42.

    Richard MA, Huan T, Ligthart S, Gondalia R, Jhun MA, Brody JA, et al. DNA methylation analysis identifies loci for blood pressure regulation. Am J Hum Genet. 2017;101:888–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kresovich JK, Zhang Z, Fang F, Zheng Y, Sanchez-Guerra M, Joyce BT, et al. Histone 3 modifications and blood pressure in the Beijing Truck Driver Air Pollution Study. Biomarkers. 2017;22:584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Gu Z, Wang H, Nekrutenko A. Li W-H. Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence. Gene. 2000;259:81–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Yang AS, Estécio MRH, Doshi K, Kondo Y, Tajara EH, Issa JPJ. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004;32:e38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Su J, Shao X, Liu H, Liu S, Wu Q, Zhang Y. Genome-wide dynamic changes of DNA methylation of repetitive elements in human embryonic stem cells and fetal fibroblasts. Genomics. 2012;99:10–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Hopkins PN, Hunt SC. Genetics of hypertension. Genet Med. 2003;5:413–29.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Matsuoka Y, Li X, Bennett V. Adducin: structure, function and regulation. Cell Mol Life Sci. 2000;57:884–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Liao X, Wang W, Zeng Z, Yang Z, Dai H, Lei Y. Association of alpha-ADD1 gene and hypertension risk: a meta-analysis. Med Sci Monit. 2015;21:1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ferrari P, Krozowski Z. Role of the 11beta-hydroxysteroid dehydrogenase type 2 in blood pressure regulation. Kidney Int. 2000;57:1374–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Mariniello B, Ronconi V, Sardu C, Pagliericcio A, Galletti F, Strazzullo P, et al. Analysis of the 11beta-hydroxysteroid dehydrogenase type 2 gene (HSD11B2) in human essential hypertension. Am J Hypertens. 2005;18:1091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Huan T, Esko T, Peters MJ, Pilling LC, Schramm K, Schurmann C, et al. A meta-analysis of gene expression signatures of blood pressure and hypertension. PLoS Genet. 2015;11:e1005035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Barfield RT, Almli LM, Kilaru V, Smith AK, Mercer KB, Duncan R, et al. Accounting for population stratification in DNA methylation studies. Genet Epidemiol. 2014;38:231–41.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ligthart S, Marzi C, Aslibekyan S, Mendelson MM, Conneely KN, Tanaka T, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016;17:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12:529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem. 2002;277:49175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Schelwies M, Brinson D, Otsuki S, Hong YH, Lotz MK, Wong CH, et al. Glucosamine‐6‐sulfamate analogues of heparan sulfate as inhibitors of endosulfatases. ChemBioChem. 2010;11:2393–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Fyhrquist F, Metsärinne K, Tikkanen I. Role of angiotensin II in blood pressure regulation and in the pathophysiology of cardiovascular disorders. J Hum Hypertens. 1995;9:S19–24.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Lu Z, Tian Y, Salwen HR, Chlenski A, Godley LA, Raj JU, et al. Histone lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, cell invasion, and DNA methylation of human neuroblastoma cells. Anticancer Drugs. 2013;24:484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Shinkai Y, Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 2011;25:781–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Minaki Y, Nakatani T, Mizuhara E, Inoue T, Ono Y. Identification of a novel transcriptional corepressor, Corl2, as a cerebellar Purkinje cell-selective marker. Gene Expr Patterns. 2008;8:418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Bennett KL, Lee W, Lamarre E, Zhang X, Seth R, Scharpf J, et al. HPV status‐independent association of alcohol and tobacco exposure or prior radiation therapy with promoter methylation of FUSSEL18, EBF3, IRX1, and SEPT9, but not SLC5A8, in head and neck squamous cell carcinomas. Genes Chromosomes Cancer. 2010;49:319–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Worgall TS. Sphingolipids: major regulators of lipid metabolism. Curr Opin Clin Nutr Metab Care. 2007;10:149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18:522–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Boks MP, Derks EM, Weisenberger DJ, Strengman E, Janson E, Sommer IE, et al. The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS ONE. 2009;4:e6767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. 2004;68(Pt 3):196–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    El-Maarri O, Becker T, Junen J, Manzoor SS, Diaz-Lacava A, Schwaab R, et al. Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males. Hum Genet. 2007;122:505–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The contributions of the authors were as follows: VG, EP, and MG screened title/abstract. VG obtained full text, determined eligibility of articles, and participated in data extraction. VG and EP assessed the quality of the included studies. EP participated in data synthesis/analysis and interpretation of the data. VG, EP, and JN drafted the final paper. All authors contributed to the critical revision of the paper and approved the final version.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valentina Gonzalez-Jaramillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Jaramillo, V., Portilla-Fernandez, E., Glisic, M. et al. The role of DNA methylation and histone modifications in blood pressure: a systematic review. J Hum Hypertens 33, 703–715 (2019). https://doi.org/10.1038/s41371-019-0218-7

Download citation

Further reading

Search

Quick links