Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Right ventricular remodelling in mild hypertensive patients: role of left ventricular morpho-functional parameters

Abstract

Previous studies suggested that hypertensive patients with left ventricular (LV) hypertrophy display right ventricular (RV) remodelling. Few data are available about RV remodelling in naive hypertensives without severe cardiac organ damage. Our aim was to evaluate the relationship between RV and LV morpho-functional parameters in never-treated patients with grade 1 hypertension and whether central blood pressure (CBP), inflammatory and metabolic parameters are potentially associated with RV remodelling. 150 never-treated subjects without evidence of diabetes or other cardiovascular diseases were enrolled in our study. We recruited 100 patients with mild hypertension (twenty-four hours blood pressure (24 h BP) ≥ 130/80 mmHg) and 50 normotensive subjects matched for gender, age and body mass index. To estimate the LV/RV parameters, we performed echography as well as arterial tonometry to assess pulse wave analysis/velocity (PWA/PWV). We found 24 h BP, CBP and PWV were higher in hypertensive patients than in normotensives. In addition, LV mass index was higher in hypertensives, and greater RV free wall thickness was observed (5.3 ± 1.4 vs 4.6 ± 1.2 mm, P = 0.02). RV thickness correlated with interventricular septum (IVS), systolic CBP and RV E′ (r = 0.50, P = 0.0001, r = 0.30, P = 0.003, r = −0.24, P = 0.015); linear regression analysis showed a correlation with only IVS (β = 0.39, P = 0.001). RV E′ was correlated with IVS, LV E′ and systolic CBP (r = −0.35, P = 0.0001, r = 0.25, P = 0.012, r = −0.24, P = 0.019); the correlation with IVS and LV E′ (β = −0.310, P = 0.001; β = 0.27, P = 0.004) was confirmed by linear regression analysis. Our study shows RV remodelling is mostly correlated with IVS thickness, supporting the ventricular interdependence hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.

    Article  Google Scholar 

  2. Dìez J. Towards a new paradigm about hypertensive heart disease. Med Clin North Am. 2009;38:13–8.

    Google Scholar 

  3. Cuspidi C, Negri F, Giudici V, Valerio C, Meani S, Sala C, et al. Prevalence and clinical correlates of right ventricular hypertrophy in essential hypertension. J Hypertens. 2009;27:854–60.

    Article  CAS  Google Scholar 

  4. Pedrinelli R, Canale ML, Giannini C, Talini E, Penno G, Dell’Omo G, et al. Right ventricular dysfunction in early systemic hypertension: a tissue Doppler imaging study in patients with high-normal and mildly increased arterial blood pressure. J Hypertens. 2010;28:615–21.

    Article  CAS  Google Scholar 

  5. Schmeider R. The role of non haemodynamic factors of the genesis of LVH. Nephron Dial Transplant. 2005;20:2610–2.

    Article  Google Scholar 

  6. De Simone G, Pasanisi F, Contaldo F. Linking of nonhemodynamic factors to hemodynamic determinants of left ventricular hypertrophy. Hypertension. 2001;38:13–8.

    Article  Google Scholar 

  7. Nicolini E, Martegani G, Maresca AM, Marchesi C, Dentali F, Lazzarini A, et al. Left ventricular remodeling in patients with metabolic syndrome: influence of gender. Nutr Metab Cardiovasc Dis. 2013;23:771–5.

    Article  CAS  Google Scholar 

  8. Roman MJ, Ganau A, Saba PS, Pini R, Pickering TG, Devereux RB. Impact of arterial stiffening on left ventricular structure. Hypertension. 2000;36:489–94.

    Article  CAS  Google Scholar 

  9. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M et al. 2013 Guidelines for management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    Article  Google Scholar 

  10. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7:79–108.

    Article  Google Scholar 

  11. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.

  12. Berman EJ, Di Benedetto RJ, Causey DE, Mims T, Conneff M, Goodman LS, et al. Right ventricular hypertrophy detected by echocardiography in patients with newly diagnosed obstructive sleep apnoea. Chest. 1991;100:347–50.

    Article  CAS  Google Scholar 

  13. Chami HA, Devereux RB, Gottdiener JS, Mehra R, Roman MJ, Benjamin EJ, et al. Left ventricular morphology and systolic function in sleep-disordered breathing: the Sleep Heart Health Study. Circulation. 2008;117:2599–607.

    Article  Google Scholar 

  14. Guasti L, Marino F, Cosentino M, Maroni L, Maresca AM, Colombo F, et al. Cytokine production from peripheral blood mononuclear cells and polymorphonuclear leukocytes in patients studied for suspected obstructive sleep apnea. Sleep Breath. 2011;15:3–11.

    Article  Google Scholar 

  15. Parati G, Bilo G, Mancia G. Blood pressure measurement in research and in clinical practice: recent evidence. Curr Opin Nephrol Hypertens. 2004;13:343–57.

    Article  Google Scholar 

  16. Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Phisiol Rev. 2008;88:389–419.

    Article  CAS  Google Scholar 

  17. Gondi S, Dokainish H. Right ventricular tissue Doppler and strain imaging: ready for clinical use? Ecocardiography. 2007;24:522–32.

    Article  Google Scholar 

  18. Olivari MT, Fiorentini C, Polese A, Guazzi MD. Pulmonary hemodynamics and right ventricular function in hypertension. Circulation. 1978;57:1185–90.

    Article  CAS  Google Scholar 

  19. Fiorentini C, Barbier P, Galli C, Loaldi A, Tamborini G, Tosi E, et al. Pulmonary vascular overreactivity in systemic hypertension. A pathophysiological link between the greater and the lesser circulation. Hypertension. 1985;7:995–1002.

    Article  CAS  Google Scholar 

  20. Fagard R, Lijnen P, Staessen J, Verschuere J, Amery A. The pulmonary circulation in essential systemic hypertension. Am J Cardiol. 1988;61:1061–5.

    Article  CAS  Google Scholar 

  21. Guazzi MD, Alimento M, Fiorentini C, Pepi M, Polese A. Hypersensivity of lung vessel to catecholamines in sistemic hypertension. Br Med J. 1986;293:291–4.

    Article  CAS  Google Scholar 

  22. Santamore WP, Dell’Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40:289–308.

    Article  CAS  Google Scholar 

  23. Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129:1033–44.

    Article  Google Scholar 

  24. Nielsen EA, Sun M, Honjo O, Hjortdal VE, Redington AN, Friedberg MK. Dual endothelin receptor blockade abrogates right ventricular remodeling and biventricular fibrosis in isolated elevated right ventricular afterload. PLoS ONE. 2016;11:e0146767.

    Article  Google Scholar 

  25. Todiere G, Neglia D, Ghione S, Fommei E, Capozza P, Guarini G, et al. Right ventricular remodelling in systemic hypertension: a cardiac MRI study. Heart. 2011;97:1257–61.

    Article  Google Scholar 

  26. Leonetti G, Cuspidi C. Heart and vascular changes in hypertension. J Hypertens. 1995;13:S29–34.

    Article  CAS  Google Scholar 

  27. Jennings GLR, McMullen JR. Left ventricular hypertrophy: beyond the image and defining the human cardiac phenotype in hypertension. J Hypertens. 2007;25:941–7.

    Article  CAS  Google Scholar 

  28. Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation. 2007;115:1275–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Maria Maresca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maresca, A.M., Mongiardi, C., Corso, R. et al. Right ventricular remodelling in mild hypertensive patients: role of left ventricular morpho-functional parameters. J Hum Hypertens 34, 293–300 (2020). https://doi.org/10.1038/s41371-019-0185-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-019-0185-z

This article is cited by

Search

Quick links