Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Central-to-brachial blood pressure amplification in type 2 diabetes: a systematic review and meta-analysis

Abstract

Due to systolic blood pressure (SBP) amplification, brachial SBP may not accurately reflect central SBP, the pressure the organs are exposed to. Patients with type 2 diabetes (T2D) have vascular irregularities that may affect blood pressure (BP) amplification and central BP indices (i.e. augmentation index [AIx] and augmentation pressure [AP]). By systematic review and meta-analysis, this study aimed firstly to determine the magnitude of central-to-brachial SBP and pulse pressure (PP) amplification in T2D compared to healthy controls and secondly, the difference in AIx and AP between the groups. Online databases were searched for published studies reporting invasive or non-invasive central and brachial SBP in T2D and healthy controls up to the 20th of February 2018. Random effects meta-analyses and meta-regression were used to analyze the studies. Eighteen studies (all non-invasive: 17 radial tonometry, 1 carotid tonometry, 2 brachial oscillometry) with a total of 2758 patients with T2D and 10,561 healthy controls were identified. There was no significant difference in SBP amplification between groups (T2D = 9.9 ± 4.7, healthy controls = 9.6 ± 4.5 mmHg, p = 0.84; pooled difference = 0.64 mmHg, 95%CI −0.27 1.54, p = 0.17) or PP amplification ratio (p = 0.16). However, among these studies, central BP indices (AIx corrected for heart rate and AP) were significantly higher in T2D (p < 0.05 for both). Despite a similar magnitude of central-to-brachial SBP amplification, patients with T2D have increased central systolic loading (AIx and AP) that cannot be discerned from brachial BP alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Psaty BM, Furberg CD, Kuller LH, Cushman M, Savage PJ, Levine D, et al. Association between blood pressure level and the risk of myocardial infarction, stroke, and total mortality: the cardiovascular health study. Arch Intern Med. 2001;161:1183–92.

    Article  CAS  PubMed  Google Scholar 

  2. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  3. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension. 2005;45:142–61.

    Article  CAS  PubMed  Google Scholar 

  4. Safar ME, Blacher J, Pannier B, Guerin AP, Marchais SJ, Guyonvarc’h PM, et al. Central pulse pressure and mortality in end-stage renal disease. Hypertension. 2002;39:735–8.

    Article  CAS  PubMed  Google Scholar 

  5. Agabiti-Rosei E, Mancia G, O’Rourke MF, Roman MJ, Safar ME, Smulyan H, et al. Central blood pressure measurements and antihypertensive therapy: a consensus document. Hypertension. 2007;50:154–60.

    Article  CAS  PubMed  Google Scholar 

  6. Picone DS, Schultz MG, Otahal P, Aakhus S, Al-Jumaily AM, Black JA, et al. Accuracy of cuff-measured blood pressure: systematic reviews and meta-analyses. J Am Coll Cardiol. 2017;70:572–86.

    Article  PubMed  Google Scholar 

  7. Millasseau S, Agnoletti D. Non-invasive estimation of aortic blood pressures: a close look at current devices and methods. Curr Pharm Des. 2015;21:709–18.

    Article  CAS  PubMed  Google Scholar 

  8. Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulou N, Stergiou GS. Association of central versus brachial blood pressure with target-organ DamageNovelty and significance. Hypertension. 2016;67:183–90.

    Article  CAS  PubMed  Google Scholar 

  9. McVeigh G, Brennan G, Johnston G, McDermott B, McGrath L, Henry W, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35:771–6.

    CAS  PubMed  Google Scholar 

  10. Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002;106:2085–90.

    Article  PubMed  Google Scholar 

  11. Agnoletti D, Lieber A, Zhang Y, Protogerou AD, Borghi C, Blacher J, et al. Central hemodynamic modifications in diabetes mellitus. Atherosclerosis. 2013;230:315–21.

    Article  CAS  PubMed  Google Scholar 

  12. Schram MT, Henry RM, van Dijk RA, Kostense PJ, Dekker JM, Nijpels G, et al. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes The Hoorn Study. Hypertension. 2004;43:176–81.

    Article  CAS  PubMed  Google Scholar 

  13. Megnien JL, Simon A, Valensi P, Flaud P, Merli I, Levenson J. Comparative effects of diabetes mellitus and hypertension on physical properties of human large arteries. J Am Coll Cardiol. 1992;20:1562–8.

    Article  CAS  PubMed  Google Scholar 

  14. Wilkinson IB, Prasad K, Hall IR, Thomas A, MacCallum H, Webb DJ, et al. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J Am Coll Cardiol. 2002;39:1005–11.

    Article  PubMed  Google Scholar 

  15. Mahmud A, Feely J. Effect of smoking on arterial stiffness and pulse pressure amplification. Hypertension. 2003;41:183–7.

    Article  CAS  PubMed  Google Scholar 

  16. Carlsen RK, Peters CD, Khatir DS, Laugesen E, Bøtker HE, Winther S, et al. Estimated aortic blood pressure based on radial artery tonometry underestimates directly measured aortic blood pressure in patients with advancing chronic kidney disease staging and increasing arterial stiffness. Kidney Int. 2016;90:869–77.

    Article  PubMed  Google Scholar 

  17. Boutouyrie P, London GM, Sharman JE. Estimating central blood pressure in the extreme vascular phenotype of advanced kidney disease. Kidney Int. 2016;90:736–9.

    Article  PubMed  Google Scholar 

  18. Sharman J, Stowasser M, Fassett R, Marwick T, Franklin S. Central blood pressure measurement may improve risk stratification. J Hum Hypertens. 2008;22:838–44.

    Article  PubMed  Google Scholar 

  19. Li Y, Gu H, Fok H, Alastruey J, Chowienczyk P. Forward and backward pressure waveform morphology in HypertensionNovelty and significance. Hypertension. 2017;69:375–81.

    Article  CAS  PubMed  Google Scholar 

  20. De Angelis L, Millasseau SC, Smith A, Viberti G, Jones RH, Ritter JM, et al. Sex differences in age-related stiffening of the aorta in subjects with type 2 diabetes. Hypertension. 2004;44:67–71.

    Article  PubMed  Google Scholar 

  21. Brooks B, Molyneaux L, Yue D. Augmentation of central arterial pressure in Type 2 diabetes. Diabeteic Med. 2001;18:374–80.

    Article  CAS  Google Scholar 

  22. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA.et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. Plos medicine, 2009;10:46–49.

  23. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283:2008–12.

    Article  CAS  PubMed  Google Scholar 

  24. Wells G. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis. 2004. http://www, ohri ca/programs/clinical_epidemiology oxford htm.

  25. Maple-Brown LJ, Piers LS, O’Rourke MF, Celermajer DS, O’Dea K. Central obesity is associated with reduced peripheral wave reflection in Indigenous Australians irrespective of diabetes status. J Hypertens. 2005;23:1403–7.

    Article  CAS  PubMed  Google Scholar 

  26. Maple-Brown LJ, Piers LS, O’Rourke MF, Celermajer DS, O’Dea K. Increased arterial stiffness in remote Indigenous Australians with high risk of cardiovascular disease. J Hypertens. 2007;25:585–91.

    Article  CAS  PubMed  Google Scholar 

  27. Scott JA, Coombes JS, Prins JB, Leano RL, Marwick TH, Sharman JE. Patients with type 2 diabetes have exaggerated brachial and central exercise blood pressure: relation to left ventricular relative wall thickness. Am J Hypertens. 2008;21:715–21.

    Article  PubMed  Google Scholar 

  28. Tamminen M, Westerbacka J, Vehkavaara S, Yki-Järvinen H. Insulin-induced decreases in aortic wave reflection and central systolic pressure are impaired in type 2 diabetes. Diabetes Care. 2002;25:2314–9.

    Article  CAS  PubMed  Google Scholar 

  29. Afsar B, Elsurer R. The relationship between central hemodynamics, morning blood pressure surge, glycemic control and sodium intake in patients with type 2 diabetes and essential hypertension. Diabetes Res Clin Pract. 2014;104:420–6.

    Article  CAS  PubMed  Google Scholar 

  30. Oehlert GW. A note on the delta method. Am Stat. 1992;46:27–9.

    Google Scholar 

  31. Chirinos JA, Segers P, Gillebert TC, De Buyzere ML, Khan ZA, Khawar U, et al. Central pulse pressure and its hemodynamic determinants in middle-aged adults with impaired fasting glucose and diabetes the asklepios study. Diabetes Care. 2013;36:2359–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ring M, Eriksson MJ, Fritz T, Nyberg G, Östenson CG, Krook A, et al. Influence of physical activity and gender on arterial function in type 2 diabetes, normal and impaired glucose tolerance. Diab Vasc Dis Res. 2015;12:315–24.

    Article  PubMed  Google Scholar 

  33. Climie RE, Srikanth V, Keith LJ, Davies JE, Sharman JE. Exercise excess pressure and exercise-induced albuminuria in patients with type 2 diabetes mellitus. Am J Physiol-Heart Circ Physiol. 2015;308:H1136–H42.

    Article  CAS  PubMed  Google Scholar 

  34. McEniery CM, Yasmin, McDonnell B, Munnery M, Wallace SM, Rowe CV, et al. Central pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. Hypertension. 2008;51:1476–82.

    Article  CAS  PubMed  Google Scholar 

  35. Recio-Rodriguez JI, Gomez-Marcos MA, Patino-Alonso MC, Agudo-Conde C, Rodriguez-Sanchez E, Garcia-Ortiz L. Abdominal obesity vs general obesity for identifying arterial stiffness, subclinical atherosclerosis and wave reflection in healthy, diabetics and hypertensive. BMC Cardiovasc Disord. 2012;12:3.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Weir MR, Townsend RR, Fink JC, Teal V, Anderson C, Appel L, et al. Hemodynamic correlates of proteinuria in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:2403–10.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Climie RE, Srikanth V, Beare R, Keith LJ, Fell J, Davies JE, et al. Aortic reservoir characteristics and brain structure in people with type 2 diabetes mellitus; a cross sectional study. Cardiovasc Diabetol. 2014;13:143.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kolade OO, O’Moore-Sullivan TM, Stowasser M, Coombes JS, Fassett RG, Marwick TH, et al. Arterial stiffness, central blood pressure and body size in health and disease. Int J Obes. 2012;36:93–9.

    Article  CAS  Google Scholar 

  39. Sacre JW, Holland DJ, Jenkins C, Sharman JE. Augmentation index immediately after maximal exercise in patients with type 2 diabetes mellitus. Med Sci Sports Exerc. 2012;44:75–83.

    Article  CAS  PubMed  Google Scholar 

  40. Climie R, Nikolic S, Otahal P, Keith L, Sharman J. Augmentation index and arterial stiffness in patients with type 2 diabetes mellitus. Artery Res. 2013;7:194–200.

    Article  Google Scholar 

  41. Schultz M, Climie R, Nikolic S, Ahuja K, Sharman J. Persistent elevation of central pulse pressure during postural stress in patients with type 2 diabetes mellitus. J Hum Hypertens. 2013;27:437.

    Article  CAS  PubMed  Google Scholar 

  42. Kimoto E, Shoji T, Shinohara K, Inaba M, Okuno Y, Miki T, et al. Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes. 2003;52:448–52.

    Article  CAS  PubMed  Google Scholar 

  43. Sharman JE, Fang ZY, Haluska B, Stowasser M, Prins JB, Marwick TH. Left ventricular mass in patients with type 2 diabetes is independently associated with central but not peripheral pulse pressure. Diabetes Care. 2005;28:937–9.

    Article  PubMed  Google Scholar 

  44. Wilkinson I, MacCallum H, Rooijmans D, Murray G, Cockcroft J, McKnight J, et al. Increased augmentation index and systolic stress in type 1 diabetes mellitus. QJM. 2000;93:441–8.

    Article  CAS  PubMed  Google Scholar 

  45. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005;46:1753–60.

    Article  PubMed  Google Scholar 

  46. Albaladejo P, Copie X, Boutouyrie P, Laloux B, Déclère AD, Smulyan H, et al. Heart rate, arterial stiffness, and wave reflections in paced patients. Hypertension. 2001;38:949–52.

    Article  CAS  PubMed  Google Scholar 

  47. Vergnaud AC, Protogerou AD, Li Y, Czernichow S, Vesin C, Blacher J, et al. Pulse pressure amplification, adiposity and metabolic syndrome in subjects under chronic antihypertensive therapy: the role of heart rate. Atherosclerosis. 2008;199:222–9.

    Article  CAS  PubMed  Google Scholar 

  48. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213–25.

    Article  CAS  PubMed  Google Scholar 

  49. Protogerou AD, Stergiou GS, Vlachopoulos C, Blacher J, Achimastos A. The effect of antihypertensive drugs on central blood pressure beyond peripheral blood pressure. Part II: Evidence for specific class-effects of antihypertensive drugs on pressure amplification. Curr Pharm Des. 2009;15:272–89.

    Article  CAS  PubMed  Google Scholar 

  50. Rahman S, Rahman T, Ismail AAS, Rashid ARA. Diabetes‐associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab. 2007;9:767–80.

    Article  CAS  PubMed  Google Scholar 

  51. Brüel A, Oxlund H. Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis. 1996;127:155–65.

    Article  PubMed  Google Scholar 

  52. Agnoletti D, Mansour A, Zhang Y, Protogerou A, Ouerdane S, Blacher J, et al. Clinical interaction between diabetes duration and aortic stiffness in type 2 diabetes mellitus. J Hum Hypertens. 2016;31:189–194.

  53. Reddy GK. AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats. Microvasc Res. 2004;68:132–42.

    Article  PubMed  Google Scholar 

  54. Hashimoto J, Ito S. Aortic stiffness determines diastolic blood flow reversal in the descending thoracic aorta potential implication for retrograde embolic stroke in hypertension. Hypertension. 2013;62:542–9.

    Article  CAS  PubMed  Google Scholar 

  55. Benchimol A, Desser KB, Gartlan JL. Bidirectional blood flow velocity in the cardiac chambers and great vessels studied with the Doppler ultrasonic flowmeter. Am J Med. 1972;52:467–73.

    Article  CAS  PubMed  Google Scholar 

  56. Chen XF, Wang JA, Lin XF, Tang LJ, Yu WF, Chen H, et al. Diabetes mellitus: is it protective against aortic root dilatation? Cardiology. 2009;112:138–43.

    Article  PubMed  Google Scholar 

  57. Picone DS, Climie RE, Ahuja KD, Keske MA, Sharman JE. Brachial-to-radial SBP amplification: implications of age and estimated central blood pressure from radial tonometry. J Hypertens. 2015;33:1876–83.

    Article  CAS  PubMed  Google Scholar 

  58. Climie RE, Picone DS, Keske MA, Sharman JE. Brachial-to-radial systolic blood pressure amplification in patients with type 2 diabetes mellitus. J Hum Hypertens. 2016;30:404–9.

  59. Hope SA, Tay DB, Meredith IT, Cameron JD. Use of arterial transfer functions for the derivation of central aortic waveform characteristics in subjects with type 2 diabetes and cardiovascular disease. Diabetes Care. 2004;27:746–51.

    Article  PubMed  Google Scholar 

  60. Sharman JE, Avolio AP, Baulmann J, Benetos A, Blacher J, Blizzard CL, et al. Validation of non-invasive central blood pressure devices: ARTERY Society task force consensus statement on protocol standardization. Eur Heart J. 2017;38;ehw632.

Download references

Acknowledgements

MGS is supported by a National Health and Medical Research Council Australian Early Career Fellowship (reference 1104731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel E. Climie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Climie, R.E., Schultz, M.G., Fell, J.W. et al. Central-to-brachial blood pressure amplification in type 2 diabetes: a systematic review and meta-analysis. J Hum Hypertens 33, 94–105 (2019). https://doi.org/10.1038/s41371-018-0124-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-018-0124-4

This article is cited by

Search

Quick links