Abstract
Augmentation index (AIx), derived from aortic pulse waveform, is related to arterial stiffness and increased cardiac workload. Sex differences were observed in the relationship between blood pressure (BP) and AIx at rest. In addition, positive correlation between BP and AIx in men during a pressor stimulus was observed previously. However, whether BP is important to acute changes of AIx also in women is yet to be investigated. Therefore, we sought to investigate whether there are sex differences on the relationship between BP and AIx. In all, 16 men (age 27 ± 5 yr; height 176 ± 1 cm; weight 77 ± 7 kg; mean ± SD) and 13 women (age 26 ± 5 yr; height 164 ± 0.3 cm; weight 63 ± 7 kg; mean ± SD) underwent 3 min of rest followed by 3 min of cold pressor test (CPT). Heart rate during CPT was similar to rest. CPT increased BP in both groups and the magnitude was similar between groups. AIx and left ventricle energy wasted (EW) increased (men Δ13 ± 5% and women Δ17 ± 3%; p > 0.05 for group; men Δ580 ± 242 dynes cm−2 s−1 and women Δ618 ± 123 dynes cm−2 s−1; p > 0.05 for group) similarly in men and women during CPT. A positive Pearson correlation was found between AIx and BP in men (systolic BP (SBP) r = 0.77, p = 0.01; diastolic BP (DBP) r = 0.79, p = 0.01 and mean arterial pressure (MAP) r = 0.83, p < 0.01), however no correlation was seen in women (SBP r = 0.04, p = 0.89; DBP r = 0.24, p = 0.44 and MAP r = 0.23, p = 0.44). The contribution of BP to acute changes in AIx at higher levels of BP is different between men and women.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505–11.
Nichols WW, O’Rourke MF. Aortic pulse wave velocity, reflection site distance, and augmentation index. Hypertension. 2009;53(1):e9.
Westerhof BE. Wave reflection: wasted effort in left ventricular hypertrophy. Am J Hypertens. 2008;21(3):243.
Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens. 2005;18(1 Pt 2):3S–10S.
Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997;95(7):1827–36.
Kelly RP, Millasseau SC, Ritter JM, Chowienczyk PJ. Vasoactive drugs influence aortic augmentation index independently of pulse-wave velocity in healthy men. Hypertension. 2001;37(6):1429–33.
Wilkinson IB, MacCallum H, Hupperetz PC, van Thoor CJ, Cockcroft JR, Webb DJ. Changes in the derived central pressure waveform and pulse pressure in response to angiotensin II and noradrenaline in man. J Physiol. 2001;530(Pt 3):541–50.
Lydakis C, Momen A, Blaha C, Herr M, Leuenberger UA, Sinoway LI. Changes of elastic properties of central arteries during acute static exercise and lower body negative pressure. Eur J Appl Physiol. 2008;102(6):633–41.
Prodel E, Fisher JP, Barbosa TC, Fernandes IA, Nobrega AC, Vianna LC. Relationship between aortic augmentation index and blood pressure during metaboreflex activation in healthy young men. Blood Press Monit. 2016;21(5):288–94.
Armentano RL, Levenson J, Barra JG, Fischer EI, Breitbart GJ, Pichel RH, et al. Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. Am J Physiol. 1991;260(6 Pt 2):H1870–7.
Casey DP, Curry TB, Charkoudian N, Joyner MJ, Hart EC. The effects of acute beta-adrenergic blockade on aortic wave reflection in postmenopausal women. Am J Hypertens. 2013;26(4):503–10.
Casey DP, Curry TB, Joyner MJ, Charkoudian N, Hart EC. Acute beta-adrenergic blockade increases aortic wave reflection in young men and women: differing mechanisms between sexes. Hypertension. 2012;59(1):145–50.
Seals DR. Sympathetic activation during the cold pressor test: influence of stimulus area. Clin Physiol. 1990;10(2):123–9.
Edwards DG, Gauthier AL, Hayman MA, Lang JT, Kenefick RW. Acute effects of cold exposure on central aortic wave reflection. J Appl Physiol. 2006;100(4):1210–4.
Edwards DG, Roy MS, Prasad RY. Wave reflection augments central systolic and pulse pressures during facial cooling. Am J Physiol Heart Circ Physiol. 2008;294(6):H2535–9.
Casey DP, Curry TB, Joyner MJ, Charkoudian N, Hart EC. Relationship between muscle sympathetic nerve activity and aortic wave reflection characteristics in young men and women. Hypertension. 2011;57(3):421–7.
Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43.
Wolinsky H, Glagov S. Structural basis for the static mechanical properties of the aortic media. Circ Res. 1964;14:400–13.
Charkoudian N, Joyner MJ, Johnson CP, Eisenach JH, Dietz NM, Wallin BG. Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol. 2005;568(Pt 1):315–21.
Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach JH, Joyner MJ. Sex differences in sympathetic neural-hemodynamic balance: implications for human blood pressure regulation. Hypertension. 2009;53(3):571–6.
Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.
King SG, Ahuja KD, Wass J, Shing CM, Adams MJ, Davies JE, et al. Effect of whole-body mild-cold exposure on arterial stiffness and central haemodynamics: a randomised, cross-over trial in healthy men and women. Eur J Appl Physiol. 2013;113(5):1257–69.
Kannel WB. The Framingham Study: historical insight on the impact of cardiovascular risk factors in men versus women. J Gend-Specif Med. 2002;5(2):27–37.
Briant LJ, Burchell AE, Ratcliffe LE, Charkoudian N, Nightingale AK, Paton JF, et al. Quantifying sympathetic neuro-haemodynamic transduction at rest in humans: insights into sex, ageing and blood pressure control. J Physiol. 2016;594(17):4753–68.
Kim A, Deo SH, Vianna LC, Balanos GM, Hartwich D, Fisher JP. et al. Sex differences in carotid baroreflex control of arterial blood pressure in humans: relative contribution of cardiac output and total vascular conductance. Am J Physiol Heart Circ Physiol. 2011;301(6):H2454–65.
Kneale BJ, Chowienczyk PJ, Brett SE, Coltart DJ, Ritter JM. Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. J Am Coll Cardiol. 2000;36(4):1233–8.
Schmitt JA, Joyner MJ, Charkoudian N, Wallin BG, Hart EC. Sex differences in alpha-adrenergic support of blood pressure. Clin Auton Res. 2010;20(4):271–5.
Minson CT, Halliwill JR, Young TM, Joyner MJ. Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation. 2000;101(8):862–8.
Sudhir K, Jennings GL, Funder JW, Komesaroff PA. Estrogen enhances basal nitric oxide release in the forearm vasculature in perimenopausal women. Hypertension. 1996;28(3):330–4.
Newton J, Joyce D, Pearce B, Revell C, Tyler J. Hormone levels in the normal menstrual cycle. J Reprod Fertil. 1971;27(3):481–4.
Hayward CS, Kelly RP. Gender-related differences in the central arterial pressure waveform. J Am Coll Cardiol. 1997;30(7):1863–71.
Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR, et al. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens. 1998;16(12 Pt 2):2079–84.
Chen CH, Ting CT, Nussbacher A, Nevo E, Kass DA, Pak P, et al. Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Hypertension. 1996;27(2):168–75.
O’Rourke M, Jiang XJ. Use of radial artery applanation tonometry. J Am Coll Cardiol. 1999;34(3):951–2.
O’Rourke MF, Adji A. Noninvasive generation of aortic pressure from radial pressure waveform by applanation tonometry, brachial cuff calibration, and generalized transfer function. Am J Hypertens. 2014;27(2):143–5.
Namasivayam M, Adji A, O’Rourke MF. Aortic augmentation index and aging: mathematical resolution of a physiological dilemma? Hypertension. 2010;56(1):e9–10.
Hart EC, Charkoudian N. Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiology. 2014;29(1):8–15.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001; the Brazilian National Council for Scientific and Technological Development (CNPq) and the Research Support Foundation of the State of Rio de Janeiro (FAPERJ).
Rights and permissions
About this article
Cite this article
Prodel, E., Barbosa, T.C., Galdino, I. et al. Sex differences in the contribution of blood pressure to acute changes in aortic augmentation index. J Hum Hypertens 32, 752–758 (2018). https://doi.org/10.1038/s41371-018-0111-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41371-018-0111-9