Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sex differences in the contribution of blood pressure to acute changes in aortic augmentation index

Abstract

Augmentation index (AIx), derived from aortic pulse waveform, is related to arterial stiffness and increased cardiac workload. Sex differences were observed in the relationship between blood pressure (BP) and AIx at rest. In addition, positive correlation between BP and AIx in men during a pressor stimulus was observed previously. However, whether BP is important to acute changes of AIx also in women is yet to be investigated. Therefore, we sought to investigate whether there are sex differences on the relationship between BP and AIx. In all, 16 men (age 27 ± 5 yr; height 176 ± 1 cm; weight 77 ± 7 kg; mean ± SD) and 13 women (age 26 ± 5 yr; height 164 ± 0.3 cm; weight 63 ± 7 kg; mean ± SD) underwent 3 min of rest followed by 3 min of cold pressor test (CPT). Heart rate during CPT was similar to rest. CPT increased BP in both groups and the magnitude was similar between groups. AIx and left ventricle energy wasted (EW) increased (men Δ13 ± 5% and women Δ17 ± 3%; p > 0.05 for group; men Δ580 ± 242 dynes cm−2 s−1 and women Δ618 ± 123 dynes cm−2 s−1; p > 0.05 for group) similarly in men and women during CPT. A positive Pearson correlation was found between AIx and BP in men (systolic BP (SBP) r = 0.77, p = 0.01; diastolic BP (DBP) r = 0.79, p = 0.01 and mean arterial pressure (MAP) r = 0.83, p < 0.01), however no correlation was seen in women (SBP r = 0.04, p = 0.89; DBP r = 0.24, p = 0.44 and MAP r = 0.23, p = 0.44). The contribution of BP to acute changes in AIx at higher levels of BP is different between men and women.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505–11.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Nichols WW, O’Rourke MF. Aortic pulse wave velocity, reflection site distance, and augmentation index. Hypertension. 2009;53(1):e9.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Westerhof BE. Wave reflection: wasted effort in left ventricular hypertrophy. Am J Hypertens. 2008;21(3):243.

    PubMed  Article  Google Scholar 

  4. 4.

    Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens. 2005;18(1 Pt 2):3S–10S.

    PubMed  Article  Google Scholar 

  5. 5.

    Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997;95(7):1827–36.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Kelly RP, Millasseau SC, Ritter JM, Chowienczyk PJ. Vasoactive drugs influence aortic augmentation index independently of pulse-wave velocity in healthy men. Hypertension. 2001;37(6):1429–33.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Wilkinson IB, MacCallum H, Hupperetz PC, van Thoor CJ, Cockcroft JR, Webb DJ. Changes in the derived central pressure waveform and pulse pressure in response to angiotensin II and noradrenaline in man. J Physiol. 2001;530(Pt 3):541–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Lydakis C, Momen A, Blaha C, Herr M, Leuenberger UA, Sinoway LI. Changes of elastic properties of central arteries during acute static exercise and lower body negative pressure. Eur J Appl Physiol. 2008;102(6):633–41.

    PubMed  Article  Google Scholar 

  9. 9.

    Prodel E, Fisher JP, Barbosa TC, Fernandes IA, Nobrega AC, Vianna LC. Relationship between aortic augmentation index and blood pressure during metaboreflex activation in healthy young men. Blood Press Monit. 2016;21(5):288–94.

    PubMed  Article  Google Scholar 

  10. 10.

    Armentano RL, Levenson J, Barra JG, Fischer EI, Breitbart GJ, Pichel RH, et al. Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. Am J Physiol. 1991;260(6 Pt 2):H1870–7.

    CAS  PubMed  Google Scholar 

  11. 11.

    Casey DP, Curry TB, Charkoudian N, Joyner MJ, Hart EC. The effects of acute beta-adrenergic blockade on aortic wave reflection in postmenopausal women. Am J Hypertens. 2013;26(4):503–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Casey DP, Curry TB, Joyner MJ, Charkoudian N, Hart EC. Acute beta-adrenergic blockade increases aortic wave reflection in young men and women: differing mechanisms between sexes. Hypertension. 2012;59(1):145–50.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Seals DR. Sympathetic activation during the cold pressor test: influence of stimulus area. Clin Physiol. 1990;10(2):123–9.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Edwards DG, Gauthier AL, Hayman MA, Lang JT, Kenefick RW. Acute effects of cold exposure on central aortic wave reflection. J Appl Physiol. 2006;100(4):1210–4.

    PubMed  Article  Google Scholar 

  15. 15.

    Edwards DG, Roy MS, Prasad RY. Wave reflection augments central systolic and pulse pressures during facial cooling. Am J Physiol Heart Circ Physiol. 2008;294(6):H2535–9.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Casey DP, Curry TB, Joyner MJ, Charkoudian N, Hart EC. Relationship between muscle sympathetic nerve activity and aortic wave reflection characteristics in young men and women. Hypertension. 2011;57(3):421–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Wolinsky H, Glagov S. Structural basis for the static mechanical properties of the aortic media. Circ Res. 1964;14:400–13.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Charkoudian N, Joyner MJ, Johnson CP, Eisenach JH, Dietz NM, Wallin BG. Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol. 2005;568(Pt 1):315–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach JH, Joyner MJ. Sex differences in sympathetic neural-hemodynamic balance: implications for human blood pressure regulation. Hypertension. 2009;53(3):571–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.

    PubMed  Article  Google Scholar 

  22. 22.

    King SG, Ahuja KD, Wass J, Shing CM, Adams MJ, Davies JE, et al. Effect of whole-body mild-cold exposure on arterial stiffness and central haemodynamics: a randomised, cross-over trial in healthy men and women. Eur J Appl Physiol. 2013;113(5):1257–69.

    PubMed  Article  Google Scholar 

  23. 23.

    Kannel WB. The Framingham Study: historical insight on the impact of cardiovascular risk factors in men versus women. J Gend-Specif Med. 2002;5(2):27–37.

    PubMed  Google Scholar 

  24. 24.

    Briant LJ, Burchell AE, Ratcliffe LE, Charkoudian N, Nightingale AK, Paton JF, et al. Quantifying sympathetic neuro-haemodynamic transduction at rest in humans: insights into sex, ageing and blood pressure control. J Physiol. 2016;594(17):4753–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Kim A, Deo SH, Vianna LC, Balanos GM, Hartwich D, Fisher JP. et al. Sex differences in carotid baroreflex control of arterial blood pressure in humans: relative contribution of cardiac output and total vascular conductance. Am J Physiol Heart Circ Physiol. 2011;301(6):H2454–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Kneale BJ, Chowienczyk PJ, Brett SE, Coltart DJ, Ritter JM. Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. J Am Coll Cardiol. 2000;36(4):1233–8.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Schmitt JA, Joyner MJ, Charkoudian N, Wallin BG, Hart EC. Sex differences in alpha-adrenergic support of blood pressure. Clin Auton Res. 2010;20(4):271–5.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Minson CT, Halliwill JR, Young TM, Joyner MJ. Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation. 2000;101(8):862–8.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Sudhir K, Jennings GL, Funder JW, Komesaroff PA. Estrogen enhances basal nitric oxide release in the forearm vasculature in perimenopausal women. Hypertension. 1996;28(3):330–4.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Newton J, Joyce D, Pearce B, Revell C, Tyler J. Hormone levels in the normal menstrual cycle. J Reprod Fertil. 1971;27(3):481–4.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Hayward CS, Kelly RP. Gender-related differences in the central arterial pressure waveform. J Am Coll Cardiol. 1997;30(7):1863–71.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR, et al. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens. 1998;16(12 Pt 2):2079–84.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Chen CH, Ting CT, Nussbacher A, Nevo E, Kass DA, Pak P, et al. Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Hypertension. 1996;27(2):168–75.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    O’Rourke M, Jiang XJ. Use of radial artery applanation tonometry. J Am Coll Cardiol. 1999;34(3):951–2.

    PubMed  Article  Google Scholar 

  35. 35.

    O’Rourke MF, Adji A. Noninvasive generation of aortic pressure from radial pressure waveform by applanation tonometry, brachial cuff calibration, and generalized transfer function. Am J Hypertens. 2014;27(2):143–5.

    PubMed  Article  Google Scholar 

  36. 36.

    Namasivayam M, Adji A, O’Rourke MF. Aortic augmentation index and aging: mathematical resolution of a physiological dilemma? Hypertension. 2010;56(1):e9–10.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Hart EC, Charkoudian N. Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiology. 2014;29(1):8–15.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lauro C. Vianna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001; the Brazilian National Council for Scientific and Technological Development (CNPq) and the Research Support Foundation of the State of Rio de Janeiro (FAPERJ).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prodel, E., Barbosa, T.C., Galdino, I. et al. Sex differences in the contribution of blood pressure to acute changes in aortic augmentation index. J Hum Hypertens 32, 752–758 (2018). https://doi.org/10.1038/s41371-018-0111-9

Download citation

Search

Quick links