Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Left ventricular hypertrophy and cognitive function: a systematic review

Abstract

Cognitive impairment is common in patients with hypertension. Left ventricular hypertrophy (LVH) is recognised as a marker of hypertension-related organ damage and is a strong predictor of coronary artery disease, heart failure and stroke. There is evidence that LVH is independently associated with cognitive impairment, even after adjustment for the presence of hypertension. We conducted a systematic review that examined cognitive impairment in adults with LVH. Independent searches were performed in Ovid MEDLINE, Ovid psycInfo and PubMed with the terms left ventricular hypertrophy and cognition. Seventy-three studies were identified when both searches were combined. After limiting the search to studies that were: (1) reported in English; (2) conducted in humans; (3) in adults aged 50 years and older; and (4) investigated the relationship between LVH and cognitive performance, nine papers were included in this systematic review. The majority of studies found an association between LVH and cognitive performance. Inspection of results indicated that individuals with LVH exhibited a lower performance in cognitive tests, when compared to individuals without LVH. Memory and executive functions were the cognitive domains that showed a specific vulnerability to the presence of LVH. A possible mechanism for the relationship between LVH and cognition is the presence of cerebral white matter damage. White matter lesions occur frequently in patients with LVH and may contribute to cognitive dysfunction. Together, the results of this review suggest that memory impairment and executive dysfunction are the cognitive domains that showed a particular association with the presence of LVH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization. Global status report on noncommunicable diseases 2014. Geneva, Switzerland: World Health Organization; 2014. http://www.who.int/nmh/publications/ncd-status-report-2014/en/.

  2. Fox CS, Coady S, Sorlie PD, D’Agostino RB, Pencina MJ, Vasan RS, et al. Increasing cardiovascular disease burden due to diabetes mellitus the Framingham Heart Study. Circulation. 2007;115:1544–50.

    Article  PubMed  Google Scholar 

  3. Mozaffarian D, Benjamin E, Go A, Arnett D, Blaha M, Cushman M, et al. Executive Summary: Heart Disease and Stroke Statistics—2016 Update: a report from the American Heart Association. Circulation. 2016;133:447–54.

    Article  PubMed  Google Scholar 

  4. Elias M, Elias P, Sullivan L, Wolf P, D’agostino R. Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes. 2003;27:260–8.

    Article  CAS  Google Scholar 

  5. Kivipelto M, Helkala E-L, Hänninen T, Laakso M, Hallikainen M, Alhainen K, et al. Midlife vascular risk factors and late-life mild cognitive impairment a population-based study. Neurology. 2001;56:1683–989.

    Article  CAS  PubMed  Google Scholar 

  6. Gorelick PB, Scuteri A, Black SE, DeCarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wolf PA, D’Agostino RB, Kannel WB, Bonita R, Belanger AJ. Cigarette smoking as a risk factor for stroke: the Framingham Study. JAMA. 1988;259:1025–9.

    Article  CAS  PubMed  Google Scholar 

  8. Breteler M, Van Swieten J, Bots M, Grobbee D, Claus J, Van Den Hout J, et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population‐based study the Rotterdam Study. Neurology. 1994;44:1246–52.

    Article  CAS  PubMed  Google Scholar 

  9. Raz N, Yang Y, Dahle CL, Land S. Volume of white matter hyperintensities in healthy adults: contribution of age, vascular risk factors, and inflammation-related genetic variants. Biochim Biophys Acta. 2012;1822:361–9.

    Article  CAS  PubMed  Google Scholar 

  10. Levy D, Anderson KM, Savage DD, Kannel WB, Christiansen JC, Castelli WP. Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors: the Framingham Heart Study. Ann Intern Med. 1988;108:7–13.

    Article  CAS  PubMed  Google Scholar 

  11. Verdecchia P, Carini G, Circo A, Dovellini E, Giovannini E, Lombardo M, et al. Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. J Am Coll Cardiol. 2001;38:1829–35.

    Article  CAS  PubMed  Google Scholar 

  12. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  13. Vernooij JW, Van Der Graaf Y, Nathoe HM, Bemelmans RH, Visseren FL, Spiering W. Hypertensive target organ damage and the risk for vascular events and all-cause mortality in patients with vascular disease. J Hypertens. 2013;31:492–500.

    Article  CAS  PubMed  Google Scholar 

  14. Eggermont LH, De Boer K, Muller M, Jaschke AC, Kamp O, Scherder EJ. Cardiac disease and cognitive impairment: a systematic review. Heart. 2012;98:1334–40.

    Article  PubMed  Google Scholar 

  15. Elias MF, Sullivan LM, Elias PK, D’Agostino RB, Wolf PA, Seshadri S, et al. Left ventricular mass, blood pressure, and lowered cognitive performance in the Framingham offspring. Hypertension. 2007;49:439–45.

    Article  CAS  PubMed  Google Scholar 

  16. Roman GC. Vascular dementia. Advances in nosology, diagnosis, treatment and prevention. Panminerva Med. 2004;46:207–15.

    CAS  PubMed  Google Scholar 

  17. Messerli FH, Staessen JA, Zannad F. Of fads, fashion, surrogate endpoints and dual RAS blockade. Eur Heart J. 2010;31:2205–8.

    Article  CAS  PubMed  Google Scholar 

  18. Donangelo I, Braunstein GD. Update on subclinical hyperthyroidism. Am Fam Physician. 2011;83:933–8.

    PubMed  Google Scholar 

  19. de Francisco AL, Fernandez Fresnedo G, Rodrigo E, Pinera C, Heras M, Palomar R, et al. Past, present and future of erythropoietin use in the elderly. Int Urol Nephrol. 2002;33:187–93.

    Article  PubMed  Google Scholar 

  20. Weber MA. Outcomes of treating hypertension in the elderly: a short commentary on current issues. Am J Geriatr Cardiol. 2003;12:14–18.

    Article  PubMed  Google Scholar 

  21. Nucifora G, Miani D, Piccoli G, Proclemer A. Cardiac magnetic resonance imaging in Danon disease. Cardiology. 2012;121:27–30.

    Article  PubMed  Google Scholar 

  22. Riba-Llena I, Jarca CI, Mundet X, Tovar JL, Orfila F, Lopez-Rueda A, et al. Investigating silent strokes in hypertensives: a magnetic resonance imaging study (ISSYS): rationale and protocol design. BMC Neurol. 2013;13:130.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Majamaa-Voltti KA, Winqvist S, Remes AM, Tolonen U, Pyhtinen J, Uimonen S, et al. A 3-year clinical follow-up of adult patients with 3243A>G in mitochondrial DNA. Neurology. 2006;66:1470–5.

    Article  CAS  PubMed  Google Scholar 

  24. Chertow GM, Levin NW, Beck GJ, Depner TA, Eggers PW, Gassman JJ, et al. In-center hemodialysis six times per week versus three times per week. N Engl J Med. 2010;363:2287–2300. [Erratum appears in N Engl J Med. 2011 Jan 6;364(1):93]

    Article  CAS  PubMed  Google Scholar 

  25. Ma JZ, Ebben J, Xia H, Collins AJ. Hematocrit level and associated mortality in hemodialysis patients. J Am Soc Nephrol. 1999;10:610–9.

    CAS  PubMed  Google Scholar 

  26. Ok E, Duman S, Asci G, Tumuklu M, Onen Sertoz O, Kayikcioglu M, et al. Comparison of 4- and 8-h dialysis sessions in thrice-weekly in-centre haemodialysis: a prospective, case-controlled study. Nephrol Dial Transplant. 2011;26:1287–96.

    Article  PubMed  Google Scholar 

  27. Dogukan A, Guler M, Yavuzkir MF, Tekatas A, Poyrazoglu OK, Aygen B, et al. The effect of strict volume control on cognitive functions in chronic hemodialysis patients. Ren Fail. 2009;31:641–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kerola T, Nieminen T, Sulkava R, Vuolteenaho O, Hartikainen S, Kettunen R. Inverted mitral inflow pattern in echocardiography among the elderly—a marker of non-cardiovascular mortality and cognitive dysfunction. Int J Cardiol. 2012;155:70–74.

    Article  PubMed  Google Scholar 

  29. Mathew JP, Fontes ML, Tudor IC, Ramsay J, Duke P, Mazer CD, et al. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA. 2004;291:1720–9.

    Article  CAS  PubMed  Google Scholar 

  30. Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension. 2000;35:580–6.

    Article  CAS  PubMed  Google Scholar 

  31. Triantafyllidi H, Tzortzis S, Lekakis J, Ikonomidis I, Arvaniti C, Trivilou P, et al. Association of target organ damage with three arterial stiffness indexes according to blood pressure dipping status in untreated hypertensive patients. Am J Hypertens. 2010;23:1265–72.

    Article  PubMed  Google Scholar 

  32. Rocco MV, Lockridge RS Jr., Beck GJ, Eggers PW, Gassman JJ, Greene T, et al. The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial. Kidney Int. 2011;80:1080–91.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Eguchi K, Kario K, Hoshide S, Hoshide Y, Ishikawa J, Morinari M, et al. Greater change of orthostatic blood pressure is related to silent cerebral infarct and cardiac overload in hypertensive subjects. Hypertens Res. 2004;27:235–41.

    Article  PubMed  Google Scholar 

  34. Galluzzi S, Nicosia F, Geroldi C, Alicandri A, Bonetti M, Romanelli G, et al. Cardiac autonomic dysfunction is associated with white matter lesions in patients with mild cognitive impairment. J Gerontol A. 2009;64:1312–5.

    Article  Google Scholar 

  35. Drew DA, Tighiouart H, Scott TM, Lou KV, Fan L, Shaffi K, et al. FGF-23 and cognitive performance in hemodialysis patients. Hemodial Int. 2014;18:78–86.

    Article  PubMed  Google Scholar 

  36. Rutten JH, van der Velde N, van der Cammen TJ, ten Cate FJ, Vletter WB, Boomsma F, et al. Associations between plasma natriuretic peptides and echocardiographic abnormalities in geriatric outpatients. Arch Gerontol Geriatr. 2008;47:189–99.

    Article  CAS  PubMed  Google Scholar 

  37. Delgado Parada E, Suarez Garcia FM, Lopez Gaona V, Gutierrez Vara S, Solano Jaurrieta JJ. Mortality and functional evolution at one year after hospital admission due to heart failure (HF) in elderly patients. Arch Gerontol Geriatr. 2012;54:261–5.

    Article  PubMed  Google Scholar 

  38. Wells GA, Shea B, O’connell D, Petersen J, Welch V, Losos M et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Canada: Department of Epidemiology and Community Medicine, University of Ottawa; 2012. www.ohri.ca/programs/clinical_epidemiology/oxford.htm 2012.

  39. Kaffashian S, Dugravot A, Brunner EJ, Sabia S, Ankri J, Kivimaki M, et al. Midlife stroke risk and cognitive decline: a 10-year follow-up of the Whitehall II cohort study. Alzheimer’s Dement. 2013;9:572–9.

    Article  Google Scholar 

  40. van der Veen PH, Geerlings MI, Visseren FL, Nathoe HM, Mali WP, van der Graaf Y, et al. Hypertensive target organ damage and longitudinal changes in brain structure and function: The Second Manifestations of Arterial Disease-Magnetic Resonance Study. Hypertension. 2015;66:1152–8.

    Article  PubMed  Google Scholar 

  41. Hayakawa M, Yano Y, Kuroki K, Inoue R, Nakanishi C, Sagara S, et al. Independent association of cognitive dysfunction with cardiac hypertrophy irrespective of 24-h or sleep blood pressure in older hypertensives. Am J Hypertens. 2012;25:657–63.

    Article  PubMed  Google Scholar 

  42. Ble A, Ranzini M, Zurlo A, Menozzi L, Atti AR, Munari MR, et al. Leukoaraiosis is associated with functional impairment in older patients with Alzheimer’s disease but not vascular dementia. J Nutr Health Aging. 2006;10:31–35.

    CAS  PubMed  Google Scholar 

  43. Elkins JS, Knopman DS, Yaffe K, Johnston SC. Cognitive function predicts first-time stroke and heart disease. Neurology. 2005;64:1750–5.

    Article  PubMed  Google Scholar 

  44. Kähönen-Väre M. et al. Left ventricular hypertrophy and blood pressure as predictors of cognitive decline in old age. Aging Clin Exp Res. 2004;16:147–52.

    Article  PubMed  Google Scholar 

  45. Unverzagt F, McClure L, Wadley V, Jenny N, Go R, Cushman M, et al. Vascular risk factors and cognitive impairment in a stroke-free cohort. Neurology. 2011;77:1729–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scuteri A, Coluccia R, Castello L, Nevola E, Brancati AM, Volpe M. Left ventricular mass increase is associated with cognitive decline and dementia in the elderly independently of blood pressure. Eur Heart J. 2009;30:1525–9.

    Article  PubMed  Google Scholar 

  47. Devereux R, Alonso D, Lutas E, Gottlieb G, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.

    Article  CAS  PubMed  Google Scholar 

  48. Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke. 1991;22:312–8.

    Article  CAS  PubMed  Google Scholar 

  49. Callahan CM, Unverzagt FW, Hui SL, Perkins AJ, Hendrie HC. Six-item screener to identify cognitive impairment among potential subjects for clinical research. Med Care. 2002;40:771–81.

    Article  PubMed  Google Scholar 

  50. Casale PN, Devereux RB, Kligfield P, Eisenberg RR, Miller DH, Chaudhary BS, et al. Electrocardiographic detection of left ventricular hypertrophy: development and prospective validation of improved criteria. J Am Coll Cardiol. 1985;6:572–80.

    Article  CAS  PubMed  Google Scholar 

  51. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press. 2013;22:193–278.

    Article  Google Scholar 

  52. Jeerakathil T, Wolf PA, Beiser A, Massaro J, Seshadri S, D’Agostino RB, et al. Stroke risk profile predicts white matter hyperintensity volume—The Framingham Study. Stroke. 2004;35:1857–61.

    Article  PubMed  Google Scholar 

  53. Masterman DL, Cummings JL. Frontal–subcortical circuits: the anatomic basis of executive, social and motivated behaviors. J Psychopharmacol. 1997;11:107–14.

    Article  CAS  PubMed  Google Scholar 

  54. Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996;27:1641–7.

    Article  CAS  PubMed  Google Scholar 

  55. Debette S, Markus H. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Knopman D, Boland LL, Mosley T, Howard G, Liao D, Szklo M, et al. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology. 2001;56:42–48.

    Article  CAS  PubMed  Google Scholar 

  57. Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Jolles J, Koudstaal PJ, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain. 2005;128:2034–41.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by National Health and Medical Research Council of Australia—APP1059138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Burrell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

L.M. Burrell and A. Brodtmann are joint senior authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restrepo, C., Patel, S.K., Rethnam, V. et al. Left ventricular hypertrophy and cognitive function: a systematic review. J Hum Hypertens 32, 171–179 (2018). https://doi.org/10.1038/s41371-017-0023-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-017-0023-0

This article is cited by

Search

Quick links