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BACKGROUND: Lead is a persistent, ubiquitous pollutant whose historical sources have been largely addressed through regulation
and voluntary actions. The United States (U.S.) has achieved significant decreases in children’s blood lead levels (BLL) over the past
40 years; however, there is no known safe level of Pb exposure. Some communities continue to be disproportionately impacted by
exposure to Pb, including Black children and families living in older homes.
OBJECTIVE: To identify Ohio (OH) census tracts with children exposed to Pb and evaluate potential exposure determinants.
METHODS: We obtained individual children’s blood Pb data from 2005–2018 in OH. The percent of children with elevated BLL
(EBLL) was calculated for OH census tracts using three blood Pb reference values (3.5, 5, and 10 µg/dL). Getis-Ord Gi* geospatial
hotspot or top 20th percentile methodologies were then applied to identify “hotspots.” Findings across multiple time periods and
blood Pb reference values were evaluated and compared with existing Pb exposure indices and models.
RESULTS: Consistency was observed across different blood Pb reference values, with the main hotspots identified at 3.5 µg/dL, also
identified at 5 and 10 µg/dL. Substantial gains in public health were demonstrated, with the biggest decreases in the number of
census tracts with EBLL observed between 2008–2010 and 2011–2013. Across OH, 355 census tracts (of 2850) were identified as
hotspots across 17 locations, with the majority in the most populated cites. Generally, old housing and sociodemographic factors
were indicators of these EBLL hotspots. A smaller number of hotspots were not associated with these exposure determinants.
Variables of race, income, and education level were all strong predictors of hotspots.
IMPACT STATEMENT: The Getis-Ord Gi* geospatial hotspot analysis can inform local investigations into potential Pb exposures for
children living in OH. The successful application of a generalizable childhood blood Pb methodology at the census tract scale
provides results that are more readily actionable. The moderate agreement of the measured blood Pb results with public Pb indices
provide confidence that these indices can be used in the absence of available blood Pb surveillance data. While not a replacement
for universal blood Pb testing, a consistent approach can be applied to identify areas where Pb exposure may be problematic.
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INTRODUCTION
The United States (U.S.) has made tremendous strides in
eliminating many lead (Pb) sources through regulation of industry
and consumer products; however, the potential remains for
people to come into contact with Pb in their daily lives. Historical
reservoirs of environmental Pb exist from decades of emissions
and use [1, 2]. Pb is particularly harmful for young children, where
Pb exposure can impact neurocognition and behavior at relatively
low blood lead levels (BLL) [3–6]. Based on elevated BLL (EBLL)
prevalence (≥5 µg/dL) from the National Health and Nutrition
Examination Survey (NHANES), over 250,000 children aged 1–5
years in the U.S. are exposed to Pb at levels of potential concern
[7]. With the recent lowering of the blood Pb reference value to

3.5 µg/dL by the U.S. Centers for Disease Control and Prevention
(CDC) [8], this number is likely to be higher. Older housing may
contain contaminated dust from Pb-based paint or drinking water
from lead service lines (LSL), making it an important risk factor for
EBLL. Furthermore, significant disparities continue to persist in the
U.S., with non-Hispanic African American children having higher
BLL compared to non-Hispanic white children [9] and those from
lower income households having greater prevalence of EBLL
compared to higher income levels [10]. There is often overlap
between housing, race, income, and other stressors in inner cities,
where residents can be at greater risk of being impacted by Pb.
The U.S. government recognizes that Pb remains an important

public health issue where more can be done to reduce and
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eliminate exposures [11, 12]. The U.S. Environmental Protection
Agency (EPA) has a critical role to play in this whole of
government approach and has committed to take specific actions
to prevent childhood Pb exposures, particularly in overburdened
communities [13]. One goal of EPA’s strategy is to identify
communities with high Pb exposures through science-based
approaches using available data, statistical models, and geospatial
analyses at census tract or other local scales. Mapping of Pb data is
a key pillar underlying this goal and an initial step was undertaken
to summarize existing Pb exposure and risk indices, environmental
Pb indicators, and publicly available BLL data [14]. Challenges in
data availability have inhibited further scientific progress in
developing consistent and validated approaches for identifying
high Pb exposure locations [14]. To address this need, Xue et al.
[15] published a generalizable methodology for using individual-
level BLL data and Pb exposure indices to evaluate the
predictability of the latter for detecting true hotspots of EBLL at
the census tract scale in the state of Michigan. Using Michigan’s
extensive and robust BLL data, the results verified known hotspot
locations and identified additional census tracts for follow-up [15].
This analysis further tests and demonstrates the generalizable

mapping approach developed for MI [15] in another state with
robust BLL data. Furthermore, it evaluates the consistency of
findings across multiple periods and blood Pb reference values,
including the current CDC reference value of 3.5 µg/dL. The focus
was on Ohio, another midwestern state, where it has been shown
that childhood blood Pb screening historically captured many of
the EBLL cases that occurred [16]. According to a recent
assessment by the Ohio Housing Finance Agency (OHFA), 67%
of housing units in OH were built before 1980 and over 421,000
homes are an exposure risk to children for Pb-based paint [17].
The Ohio Department of Health (ODH) utilizes its BLL data for
statistical modeling to identify high-risk zip codes for targeting
blood Pb testing [18] and provides public access to summary
statistics of BLL results, making it a good candidate for this
analysis. The approach applied in this study augments ODH
findings by providing finer scale resolution (i.e., census tract) that
enables greater specificity in identifying neighborhoods where Pb
exposure may be an issue for young children. In the current
analysis, two different statistical methods were applied to
children’s individual-level blood Pb measurements to determine
the highest percentage EBLL census tracts and locations in OH.
These “hotspots” were then compared with existing Pb exposure
indices/models that are comprised of old housing and socio-
demographic variables to determine how well these indices/
models predict actual locations of EBLL.

MATERIALS AND METHODS
Data and materials
The OH blood Pb data analysis performed in this study was modeled after
that done by Xue et al. [15]. In brief, BLL data were combined at the census
tract scale and grouped by two- or three-year time periods to evaluate
trends in children’s blood Pb exceedance rates (defined in Section
“Statistical Methodology”) over time. Grouping census tract level BLL data
in 3-year increments (i.e., 2005–2007, 2008–2010, 2011–2013, 2014–2016)
made results more readily comparable to our initial work [15]. The
remaining two-year increment (2017–2018) reflects the most recent
available data in our dataset. We focused on examining the 2014–2016
results for consistency with prior work, since only 2 years of more recent
data were available at the time of the analysis.
Once this study was reviewed and approved by institutional review

boards at the ODH (2019-41) and the University of North Carolina at Chapel
Hill, NC (16-2302), a data use agreement (DUA) between EPA and ODH was
established. Through the Ohio Public Health Information Warehouse, we
obtained individual children’s BLL records (ages <6 years) for 2005–2018
that included over 2.3 million (2,348,680) data points.
Using ArcGIS (version 10.6.1; ESRI Inc.), geocoding for this data was

performed using the EPA Office of Environmental Information (OEI) Navteq
USA Geocode Service (via the ESRI ArcGIS desktop software suite). To

ensure function consistency and reliability, address matching was
automated using service defaults and manual spot checks were
conducted. Data were checked by an independent reviewer for quality
assurance and quality control purposes (QA/QC). 2,115,827 data points
were matched by point address; 188,514 matched by street address; and
7114 by street name. This resulted in 2,311,455 geocoded data points to
include in the analysis with a 98.4% success rate (27 data points were later
removed as they were geocoded to a location outside of Ohio resulting in
a new total of 2,311,428). BLL records that could not be geocoded to a
physical address were removed from the analysis (i.e., 37,225 records).
ODH provided census tract identification numbers (IDs) associated with

their childhood BLL surveillance data. For QA/QC purposes, we performed
an identity geoprocessing function in ArcGIS using the U.S. Census Bureau
2012 census tract polygon file to regenerate the IDs for the geocoded
points possessing a point address, street address, and street name match
type (the 2012 census tract file was selected as it represents an
approximate middle year for the 2005–2018 BLL dataset). This process
identified 98 duplicates for a total of 2,311,526 data points (2,311,428 of
which were unique). Duplication occurred from points that overlapped
census tract polygon boundaries, which was expected given that datasets
were developed with different geographic datums and resolutions. We
elected to retain duplicates and use the census tract IDs ODH provided as
they were an almost identical match with our QA/QC findings.
ODH’s BLL testing requirements mandate that if a capillary sample result

is ≥5 µg/dL, then it must be confirmed by venous draw. For this analysis, if
multiple blood Pb tests were obtained for the same child in a given year,
we randomly selected one measurement regardless of whether it was
venous or capillary. As our objective was to obtain a representative sample
of the population, we did not want to bias results high by selecting the
confirmatory venous sample. Furthermore, our sample size would have
been substantially reduced if we did not include capillary measurements,
significantly reducing the ability to identify EBLL hotspots. Prior sensitivity
analysis showed no appreciable difference in results based on selected
measurements, likely due to the millions of data points included in the
analysis [15]. There were 2,298,065 blood Pb measurements included in
the final geospatial analysis, comprised of 1,305,106 capillary samples
(57%), 882,819 venous samples (38%) and 110,140 unknown (5%). For
blood Pb samples obtained from children residing in Canton during the
years 2005–2013, the testing laboratories reported BLL at the detection
limit of 5 µg/dL for any samples below this level, resulting in more than
50% of the capillary sample results reported exactly at 5 µg/dL [19]. Thus,
Canton-affiliated census tracts were excluded from the analysis for these
years at blood Pb reference levels of 3.5 and 5 µg/dL. Besides Canton,
blood Pb laboratory analysis results below the limit of detection were not
manipulated in the analysis.

Statistical methodology
Robustness of the data set was determined based on blood Pb sample
quantity [15]. Comparing two different EBLL metrics based on number of
children tested and number of children living in each census tract enabled
an evaluation of “representativeness” (Eqs. 1 and 2), whereas a high
correlation between the rates demonstrated proportionality [15]. Once it
was determined that the OH blood Pb data were robust and
representative, we proceeded with identifying census tracts with EBLL
using the exceedance rate.
The exceedance rate (as a percent) was the primary calculation used in

the analysis and is defined per census tract as:

Exceedance rateð%EBLLÞ ¼ number of children tested with EBLL
number of children tested in census tract

´ 100

(1)

The population rate (as a percent) is defined per census tract as:

Population rateð%EBLLÞ ¼ number of children tested with EBLL
number of children in census tract

´ 100 (2)

The exceedance rate calculation was used for producing geospatial
results; the population rate was only used as a comparator with
exceedance rate to characterize the robustness and representativeness
of the blood Pb surveillance data.
Exclusion criteria for the analysis were: <50 children aged 0 to <6 years

living in the census tract with a blood Pb test; <10 children aged 0 to <6
years tested in the census tract in a given year; and less than half of the
years assessed not containing blood Pb data for the census tract.
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Three different blood Pb reference values were used as thresholds for
EBLL in the calculations: 10, 5, and 3.5 µg/dL. These values were selected to
represent changes over time to the U.S. CDC blood Pb “level of concern”
which was 10 µg/dL until 2012, when it was lowered to 5 µg/dL [8]. In 2021,
CDC lowered the blood Pb reference value to 3.5 µg/dL to reflect the most
recent data derived from NHANES [8]. As the calculations for exceedance
rate and population rate were based on number of children with EBLL
above the blood Pb reference value, there was no need to censor
measurement data at or below the limit of detection (with the exception of
Canton, as described previously).

Geospatial analyses
Hotspots are defined in this analysis as geographic locations with higher
prevalence of children’s Pb exposures, based on EBLL using two statistical
methods: top 20th (80th–100th) percentile and Getis-Ord Gi* geospatial
analysis [15]. The top 20th percentile method identified individual census
tracts with the uppermost BLL (i.e., 80th–100th percentile). The Getis-Ord
Gi* method [20] was executed using the ArcGIS Hot Spot Analysis tool
(ESRI) set to a 95% confidence interval, which identified statistically
significant hotspots of autocorrelated locations based on geospatial
patterns of exceedance rates (%EBLL). “Reference locations” are defined
as the highest population city (according to the 2015 Census Places file)
near or containing a top 20th percentile census tract or more than one
geospatial hotspot.
Further analyses were conducted based on Xue et al. [15] to classify

census tracts as rural or urban to better inform where EBLL were occurring
across the state. Census data [21] on rural and urban housing and
population by age (from Summary File 1 H2 and P14, respectively) were
joined to the results derived from both hotspot methodologies. Any
census tract with >50% urban housing was designated as “urban” and any
census tract with >50% rural housing was designated as “rural.” Briefly, the
criteria for designating an area as urban was that it must be comprised of a
densely settled core of census tracts and/or census blocks that encompass
at least 2500 people; otherwise the area is considered rural1. Ratios
between urban and rural census tracts identified as having hotspots and
not having hotspots were calculated, along with total population aged 0 to
<6 years old.
The exceedance rate Getis-Ord Gi* hotspot results were compared with

environmental justice (EJ) variables at the census tract scale, following the
methodology in Xue et al. [15]. Using EJSCREEN 2017 [22] and the
2011–2015 ACS [23], population variables (less than high school education,
total minority population, low income, and non-Hispanic African American)
were extracted, mapped, and spatially joined with the OH Getis-Ord Gi*
results. Comparisons between hotspots and non-hotspots by both
population number and percentage were completed and ratios derived.
Two publicly available indices, U.S. EPA’s EJScreen Pb Paint EJ Index and

U.S. Housing and Urban Development’s (HUD’s) Deteriorated Paint Index
(DPI), were applied to OH to evaluate the potential for identified hotspot
census tracts to be explained by housing and demographic variables. In
addition, a regression model for predicting children’s EBLL from the peer-
reviewed literature [24] was applied, after being slightly modified (i.e.,
using 2012–2016 ACS data) to better align with the years included in this
analysis [15]. We also applied a regression model for predicting the census
tract geometric mean BLL (in µg/dL units) among U.S. children aged
12–35 months [24]. Trained on children’s BLL surveillance records from the
State of Michigan Department of Community Health, years 1999–2009, the
model includes coefficients for sample type (capillary or venous), child’s
age in months, sampling year, and three census variables (percent of
population below poverty line, percent pre-1960 housing, percent of
population that is non-hispanic black). Our predictions were made for 24-
month-old child, venous blood, and used 2012–2016 ACS data to better
align with the years predicted in this analysis [15].
The spatial scale for these three indices/models were at the census tract

to foster comparisons with the observed BLL data. Further motivation for
this analysis was to assess if the use of existing indices/models may
appropriately serve as surrogates in the absence of blood Pb measure-
ments, particularly for states where universal blood Pb testing does
not occur.
Cohen’s kappa statistic was calculated to compare hotspot results within

different time periods; blood Pb reference values; spatial analysis

approaches; and Pb indices/models for identifying potential hotspot
locations. Interpretation of the kappa score is as follows: 0.41–0.6 indicates
moderate agreement; 0.61-0.8 indicates substantial agreement; and
0.81–0.99 indicates near perfect agreement [25]. Visual inspection was
also employed to characterize similarities and differences between OH
census tracts across the various comparators.
Geospatial mapping and Getis-Ord Gi* hotspot analyses were done

using ArcGIS version 10.6.1 and ArcGIS Pro version 2.8 (ESRI) and traditional
statistics were performed using SAS version 9.4 (SAS Institute, Inc.).

RESULTS
Figure 1 shows which census tract hotspots were identified for
2014–2016 using Getis-Ord Gi* and top 20th percentile for the
various blood Pb reference values. There were 102 census tracts
that were excluded in the analysis based on our inclusion criteria.
The results are robust across different blood Pb reference values,
with the most sizable hotspots identified at 3.5 µg/dL, also
identified at 5 and 10 µg/dL (i.e., Cleveland, Toledo, East
Liverpool). Similar findings were observed for the number of
census tracts with percentage of EBLL ≥ 3.5 and ≥5 µg/dL using
both Getis-Ord Gi* and top 20th percentile methodologies, with
kappa scores all above 0.8 (Table S-1 and S-2). The kappa score
was higher when the Getis-Ord Gi* methodology was applied
compared to the top 20th percentile because this metric considers
nearby census tracts to identify a hotspot. There was a slightly
stronger agreement for the years 2014–2016 compared to
2017–2018, likely due to more years and census tracts being
included in the former period. The agreement is not as strong for
comparisons between 3.5 or 5 µg/dL and 10 µg/dL, albeit there is
near perfect agreement for Getis-Ord Gi* when comparing 5 and
10 µg/dL for both periods. Given the near perfect agreement of
identified census tracts between 3.5 and 5 µg/dL, we focused our
results on the current CDC blood Pb reference value of 3.5 µg/dL.
Looking across the entire period evaluated (2005–2018), the

number of census tracts with the highest EBLL have decreased
over time (Table 1; Fig. S-1). In the earliest years, over 85% of
census tracts had percentage of EBLL greater than 10% when
using 3.5 µg/dL as the blood Pb reference value, which is over 23%
of children statewide. Large reductions in BLL are observed when
moving from 2008–2010 to 2011–2013. For the most recent years
(2017–2018), only four census tracts are in the uppermost EBLL
category and the statewide percentage of EBLL drops to 6.7%. The
time trend shows the exceedance rate for all census tracts
decreasing, with a few showing continued challenges with
addressing children’s exposure to Pb. There were high correlation
coefficients (>0.75) between exceedance rates (EBLL) and popula-
tion rates using 3.5 µg/dL as the threshold when the Getis-Ord Gi*
hotspot methodology was applied for all time periods (data not
shown).
As expected, the Getis-Ord Gi* analysis follows the same

pattern, with fewer hotspots identified as time progresses (Fig. S-2).
Major OH cities contain hotspots for the entire time series,
although the sizes of the hotspots decrease over time (Fig. S-1).
There was near perfect agreement when comparing the hotspots
identified in 2014–2016 to 2017–2018 (kappa statistic= 0.84;
Table S-3). The kappa statistic was a bit lower between 2014–2016
and 2017–2018 (0.69) using the top 20th percentile (Table S-4),
which is largely attributable to the independent manner that the
metric is derived. Unlike the Getis-Ord Gi* hotspot analysis, when
using 3.5 µg/dL as the EBLL threshold for the top 20th percentile,
the number of census tracts does not appear to decrease
appreciably over time and shifts from urban to more rural
locations (Fig. S-3).
When evaluating the Getis-Ord GI* hotspots for 2014–2016 and

their associated reference locations (highest population city near
or containing more than one geospatial hotspot), 355 census
tracts (of 2850) were identified across 17 locations. Many of the

1https://www.census.gov/programs-surveys/geography/guidance/
geo-areas/urban-rural/2010-urban-rural.html
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census tracts are in the most populated cites, which include
Cleveland (183) and Toledo (47) (Table 2). The highest percentage
of EBLL was observed for Bellaire at 35%, which contained two
census tracts in its hotspot with 214 children aged 0 to <6 years
old living in this area. In addition, hotspots in Cleveland,
Steubenville, Toledo, East Liverpool, Alliance, Mansfield and
Springfield reference locations all had EBLL rates above 20%.
The U.S. Census Bureau definitions of urban census tracts

included 353 of the hotspots, with only two being considered rural
(Table S-5). When using the population of children aged 0 to <6
years old in these hotspots, many more children reside in urban
than rural areas (over 77,000 and 541, respectively), providing
strong evidence that the greatest areas of potential Pb exposure
are in cities. The pattern holds when using the top 20th percentile
metric, albeit there are many more children residing in rural
census tracts with this methodology (Table S-5).
Further examination of these Getis-Ord GI* hotspots (containing

866,056 people) broken down by EJ-related variables provides
information on how the population compares with non-hotspot
census tracts (10,472,274 people) in the state (Table 3). There are
over four times as many non-Hispanic African Americans living in
OH census tracts identified as hotspots versus non-hotspots. This
is consistent with the hotspot/non-hotspot ratio observed for total
minority population which is over three times greater for hotspots.
Less than high-school education and low income are also
important EJ indicators of potential Pb exposure (Table 3).
There is moderate agreement across the three Pb indices/

models (i.e., EPA EJSCREEN, Schultz et al. [24], and HUD DPI)
evaluated for identifying census tracts of potential high Pb
exposure using Getis-Ord Gi* EBLL (Fig. 2; Table S-6). There was
consistency when each index/model was compared against the
others (kappa statistic ≥0.75). This is not surprising, given that the
variables that derive these indices/models are similar. The variable
common to all indices are housing age, albeit HUD DPI is based on
predicted percent of pre-1980 housing at risk of containing
deteriorated paint based on data from the American Housing
Survey (AHS) and American Community Survey (ACS) [26].

EJSCREEN 2017 Pb Paint EJ Index and Schultz et al. [24] both
include percent of pre-1960 homes, economic indicators (i.e.,
percent low income and percent below the poverty line,
respectively), and minority populations (i.e., percent minority
and percent non-Hispanic African American, respectively). EJSC-
REEN 2017 Pb Paint EJ Index and Schultz et al. [24] evaluated all
2952 OH census tracts, whereas the HUD DPI evaluated 2372
census tracts. When the Pb indices/models were compared with
the Getis-Ord Gi* hotspot results, the agreement was not as strong
(kappa statistic ranged from 0.54 to 0.64; Table S-6), although
visual inspection (Fig. 2) shows many overlapping reference
locations that include areas of Toledo, Cleveland, Columbus,
Youngstown, Springfield, Canton and Cincinnati. The hotspots that
do not align well with the Pb indices/model are Troy, East
Liverpool, Upper Sandusky, Pomeroy and Alliance.

DISCUSSION
The results demonstrate that the OH children’s blood Pb
surveillance program is robust and representative based on the
calculated exceedance rate and population rate and that BLL data
can be used in the generalizable approach initially published in
Xue et al. [15] in other states or locations. The kappa statistic over
time showed substantial to near perfect agreement, proving that
visual observation translated to quantitative concordance. This is
further supported by an analysis by Roberts et al. [16] who report a
high ascertainment ratio (0.93) for OH that reflects a high
likelihood that testing is comprehensively capturing those
children with EBLL. Although the statistical modeling was
conducted for 1999–2010 using 10 µg/dL for calculating pre-
valence [16], the ODH blood Pb screening guidance has been
consistent, such that these findings should hold for the years
included in the current analysis.
Comparing results across different EBLL thresholds facilitates

evaluation of the ability to properly detect census tracts of
potential Pb exposure. We demonstrated that the most recent
blood Pb reference value (3.5 µg/dL) can be used with the derived

Fig. 1 Comparison of hotspots for different blood Pb reference values. Individual panels represent different blood Pb reference values
(A ≥3.5 µg/dL; B ≥5 µg/dL; C ≥10 µg/dL) hotspots identified using Getis-Ord Gi* geospatial analysis and top 20th percentile EBLL for
2014–2016 (children aged 0 to <6 years old). Colored census tracts represent hotspots (red = census tracts identified by both methods;
orange = census tracts identified by Getis-Ord Gi* method only; blue = census tracts identified by top 20th percentile method only), whereas
grey shading denotes census tracts excluded from the analysis due to insufficient BLL sampling data.
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BLL metrics and spatial analysis approaches to identify areas for
targeting. The strong agreement between 5 and 3.5 µg/dL results
for the years analyzed provides confidence that blood Pb
surveillance programs will continue to identify areas containing
children most at risk for Pb exposure. The limit of quantification
per the ODH for capillary measurements is 3.3 µg/dL, so using a
cutoff of 3.5 µg/dL should not result in misclassification. In
addition, the EBLL rate utilizing percentages rather than absolute
values was intentionally derived for the generalizable approach to
avoid potential challenges in having to consider how to handle
limits of detection at the lower end of the BLL distribution.
The observed decrease in EBLL over time in OH was also

observed for MI [15]. As with MI, the biggest gains in lowered
numbers of census tracts with EBLL in OH were from 2005–2010,
with smaller improvements from 2011–2018. Similarly, there was a

shift in the BLL distribution to the left, with fewer census tracts
identified in the later years as being in the upper percentiles for
EBLL. For 2014–2016 with a blood Pb threshold of 5 µg/dL, the
percent of census tracts in OH with EBLL of >10% was 10.9%
compared to 7.7% for MI and the statewide percentage being
4.5% compared to 4.1%, respectively. The 2017–2018 data for OH
puts the number of census tracts with the percent of EBLL > 10%
similar to MI at 8.6%. These data can be contrasted to the 2.5%
national EBLL percentage that is used by CDC in their blood Pb
reference value that was lowered from 5 to 3.5 µg/dL in 2021.
From 2007–2018, over 150,000 children aged 0 to <6 years of

age were tested each year for blood Pb in OH [27]. Of those, 2.3 to
2.8% of children tested had a confirmed EBLL of 5 µg/dL or higher
[28]. OH requires a confirmation venous draw for any capillary
blood Pb result that is ≥5 µg/dL to identify individual children who
require follow-up care. In our analysis, the statewide EBLL
percentage was 3.5% for 2017–2018 when EBLL was defined as
≥5 µg/dL, which is higher than the 2.3 to 2.8% reported by ODH
[28]. This likely reflects the inclusion of both capillary and venous
blood Pb data in our methodology. This choice reflects our
interest in examining individual BLL data for patterns at the
community level, with the goal of providing valuable insights for
targeting outreach or mitigation efforts at this broader scale.
In a study that evaluated findings of OH site investigations of

children with reported BLL > 10 µg/dL, deteriorated interior paint,
deteriorated external paint, dust and bare soil were most
identified as hazards [29]. Of the 5% of cases where a bare soil
sample was collected, Pb concentrations were often in excess of
400 ppm, with the greatest concentrations occurring closest to
building structures where exterior paint and drip lines may be
potential Pb sources. These assessments most often occurred in
Mahoning County (that contains Youngstown) and Hamilton
County (that contains Cincinnati). Interestingly, higher soil Pb
concentrations did not necessarily correlate with EBLL where soil
was the only detected hazard, indicating that other sources were
likely contributing to those cases.
Many of the variables linked to hotspots in the current analysis

are also considered as risk factors by ODH (i.e., home age,
deteriorated paint, and income level), which provides confidence
in the results. OH law requires blood Pb testing for children at
ages 1 and 2 years under any of the following circumstances (1)
child is on Medicaid; (2) child lives in a zip code distinguished by
ODH; (3) child lives or regularly visits a home, child care facility or
school built before 1950; (4) child lives or regularly visits a home,
child care facility or school built before 1978 that has deteriorated
paint; (5) child lives or regularly visits a home, child care facility or
school built before 1978 that has recent ongoing or planed
renovation/remodeling; (6) child has sibling or playmate that has
EBLL; (7) child comes into contact with an adult who has a hobby

Table 1. Time series of the number of OH census tracts by percentage of children (0 to <6 years old) with elevated blood lead levels (EBLL) using
3.5 µg/dL as blood lead reference value.

2005–2007 2008–2010 2011–2013 2014–2016 2017–2018

EBLL (%) Number of Census Tracts

0–5 95 328 1029 1385 1586

>5–10 289 759 862 777 677

>10–20 978 981 512 436 374

>20–40 956 490 292 231 182

>40–70 354 156 45 21 4

Total 2672 2714 2750 2850 2823

% Census Tracts EBLL > 10% 86 60 31 24 20

Statewide EBLL (Avg. % of children)a 23 15 9.6 8.3 6.7
aCalculated as number of children with BLL ≥ 3.5 µg/dL in OH, divided by number of children tested in OH.

Table 2. List of Getis-Ord Gi* hotspot reference locations for
2014–2016 using 3.5 µg/dL as blood lead reference value (children 0 to
<6 years old).

Reference
Locationa

Number of
Census
Tracts

EBLL (%) Total Population
0 to < 6 Years
Old

Alliance 4 23.1 1324

Bellaire 2 34.7 214

Canton 10 18.4 3274

Cincinnati 20 17.5 4604

Cleveland 183 25.1 33912

Columbus 11 19.0 4338

Dayton 3 14.5 650

East Liverpool 9 23.9 2161

Elyria 4 12.2 1019

Mansfield 5 22.9 1356

Portsmouth 4 19.4 957

Springfield 11 21.0 2758

Steubenville 4 25.1 756

Toledo 47 24.6 11823

Troy 8 19.5 3483

Upper
Sandusky

2 17.1 520

Youngstown 24 19.9 4057
aA “Reference Location” is defined here as the highest population city
(according to the 2015 Census Places file) near or containing more than
one Getis-Ord Gi* hotspot census tract.
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involving Pb or works with Pb; and (8) child lives near an active or
former Pb smelter, battery recycling plant or other industry known
to generate airborne Pb dust [30].
The ODH targeted testing plan for Pb screening shows that

housing built before 1950, population of non-Hispanic African
Americans, population with a high school education, families
whose income-to-poverty ratio was greater than two, and
population under the age of 6 years were the most significant
predictors of EBLL at the census tract scale [18]. This was
consistent with earlier work to develop a Pb risk indicator at the
census tract scale for OH using 1997 BLL data, which included
housing built before 1950, residents of non-Hispanic African
American ethnicity, residents with less than a high school diploma,
and housing units that are renter-occupied in the final model [31].
Both populations of non-Hispanic African Americans and popula-
tions with less than a high school education were much more
likely to reside in an identified hotspot (by four or two times,
respectively) in our analysis, providing further confirmation of
prior findings. These EJ-related indicators appear to be stable over
time, with BLL data from the latest analysis highlighting the same
variables as those identified over 20 years ago.
LSLs in drinking water distribution systems can be a potential

source of household Pb exposure and contributor to children’s
EBLL. Although a comprehensive inventory of LSLs across the U.S.
does not exist, estimates have been calculated based on individual
community water system (CWS) surveys. The midwestern U.S. has
the largest share of LSLs, representing over half of those in the
entire U.S., with OH and Illinois estimated to have the greatest
number of LSLs in the region [32]. Housing age has also been
linked to LSL prevalence, with greater percentage of older housing
(pre-1960) related to increased percentage of water systems with
LSLs [32]. Thus, older housing as an identified risk factor in this
region could reflect both presence of Pb-based paint and LSLs.
In the analysis for OH, more census tracts in rural areas away

from major metropolitan areas were identified with the top 20th
percentile approach than the Getis-Ord Gi* approach. This is
consistent with the top 20th percentile results from MI, where 44%
of the census tracts with EBLL did not overlap with the hotspots
identified using Getis-Ord Gi* and generally were in more rural
locations. There were 102 OH census tracts that were not included
in the EBLL geospatial analysis, most of which were in urban areas
(73 urban, 19 rural, 10 neither). While some rural census tracts
were identified with our methodology, it is possible that children
in these communities are not regularly screened for blood Pb,
resulting in bias toward urban areas. Further evidence may be
provided in the OH childhood blood Pb testing requirements [30]
that specify high-risk zip codes where screening is mandatory;
there are seven OH counties that do not have zip codes on this list
(Adams, Fulton, Highland, Jackson, Paulding, Pike, and Union) and
six of these are considered “rural”2 based on the 2020 Census3.
Prior work from ODH demonstrated that both Carrol County and
Morrow County (classified as rural by the U.S. Census Bureau4) had
high observed probabilities and low predicted probabilities of
BLL ≥ 5 µg/dL in logistic regression modeling that included a
limited number of BLL samples from rural areas [18].
As shown by the urban/rural categorization, the geospatial

hotspot approach is better at detecting urban communities of
multiple census tracts where housing age is more homogenous.
Older housing is found in greater quantities in urban areas of OH,
with 89% of units build prior to 1980 and over 57% built before
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1950 [17]. A study in Toledo, OH reported age of housing as a key
indicator for children’s BLL > 5 µg/dL in the urban core but was
not a strong indicator for more rural areas [33].
By visual inspection, the high BLL zip codes specified by ODH in

their blood Pb screening criteria [30], contain nearly all the Pb
hotspots identified using our geospatial approach, including the
largest cities of Cleveland and Toledo. The mapped results from
the Pb indices/models compared well with EBLL data using 3.5 µg/
dL at the threshold for these two cities, as well as Youngstown,
Mansfield, Springfield, Elyria, and Canton. Thus, old housing and
demographics are good predictors of Pb exposure in these cities
and in the absence of any measured blood Pb data, these tools
could be used to target education or mitigation efforts.
In contrast, the reference locations of Troy and East Liverpool

that collectively contain nearly 20 census tracts and over 5000
children aged 0 to <6 years were not identified in maps produced
from the Pb indices/models. The zip codes containing Troy and
East Liverpool are included as high risk by ODH that require blood
Pb testing for young children who reside in these areas [30]. In
these communities, sources of Pb exposure are not readily
explained by housing age, race/ethnicity, or income variables in
our analysis, suggesting that community wide environmental Pb
sources or other risk factors may be contributing. One possibility is
exposure from Pb ammunition, which has been shown to result in
high soil Pb concentrations [34] and elevated EBLL [35], including
at firing ranges. Take-home Pb dust adhered to shooters may
result in a residential exposure pathway for children [34, 35] that
would not be captured herein. It is noteworthy that ODH does
include casting ammunition as a listed hobby for adults who are in
frequent contact with children less than 6 years of age on their
survey instrument for required blood Pb testing [30]. Non-
environmental sources could also be contributing, particularly
for refugees who settled in OH and were exposed to Pb prior to
immigration [36]. While the existing Pb indices/models do
relatively well to predict census tracts containing a few key Pb
exposure determinants (largely in urban areas), there will be

locations containing differing Pb risk factors that will prohibit
identification. Without widespread investigation or a comprehen-
sive screening program, it could be challenging to identify
children in these communities who are at increased risk for blood
Pb levels above CDC reference values.
The statistical agreement between the Pb indices/model and

OH EBLL hotspot data in this study ranged between 0.54 and 0.64,
with the Schultz et al. [24] model having the highest kappa value.
Both EJ Screen Pb Paint EJ index and the HUD DPI had weaker
agreement with the observed OH data (kappa= 0.58 and 0.54,
respectively), demonstrating that the Schultz et al. [24] regression
model derived with BLL measurements was a better predictor of
hotspots despite being developed using data from other states. It
is also noteworthy that the HUD DPI is a household-level predicted
risk metric for homes that may contain large areas of peeling paint
[14], and not intended specifically for identifying EBLL hotspots for
young children. When the same comparison between the Pb
indices/model was done for MI EBLL hotspots (albeit using 5 µg/dL
for the blood Pb reference value), kappa values were quite similar
(i.e., between 0.54 and 0.55) [15]. Possible explanations for the
slightly higher kappa values for OH may be more census tracts
being included for EJSCREEN and Schultz et al. [24] and the lower
threshold for the blood Pb reference value. Regardless, the
findings for OH and MI are consistent and provide evidence that
many locations of potential Pb exposure can be identified using
these approaches.
Our results suggest that the generalizable methodology

previously developed [15] is helpful to inform further investigation
and other actions in response to potential high-risk Pb exposures
for children living in hotspots in OH. The successful application of
the approach and the moderate agreement with public Pb indices
(i.e., EPA EJ SCREEN Pb paint EJ Index and HUD DPI) provide
additional confidence that these indices can be used in the
absence of sufficient available blood Pb testing data to screen for
potential Pb exposure risk [37]. This brings us closer to having a
consistent approach (i.e., whole-of-government systematic

Fig. 2 Census tracts identified using different Pb indices/model compared to EBLL data. The panels represent (A) EPA EJSCREEN Pb Paint EJ
Index (2952 census tracts evaluated), (B) Schultz et al. regression model [24] (2952 census tracts evaluated), (C) HUD Deteriorated Paint Index
(2372 census tracts evaluated), and (D) EBLL Getis-Ord Gi* geospatial analysis using a blood Pb reference value of 3.5 µg/dL for 2014–2016
(children aged 0 to <6 years old; 2850 census tracts evaluated). Legend note: brown = census tracts identified by index or model using Getis-
Ord Gi* analysis; red = EBLL census tracts identified using Getis-Ord Gi* analysis.
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roadmap or blueprint as described in [14]) that can be applied on
the national scale or state-specific scale to target those areas
where Pb continues to be problematic. However, census tracts
affected by environmental sources that are not associated with
housing age or demographics will likely not be identified by these
indices.
Universal blood Pb testing can inform targeted actions to help

children after they are exposed and identify places needing more
attention; surrogate Pb indices can inform preventative efforts
before exposure occurs. For states with robust and representative
BLL data at the community scale, investigations to pinpoint Pb
hazards and on-the-ground knowledge of contamination or other
risk factors could provide insight into exposure drivers. Future
work could enhance existing statistical methodologies by
incorporating environmental sources to this approach that can
be applied in states without extensive BLL data.
Inequities in EBLL prevalence persist, despite the progress in

reducing sources of Pb exposure. Non-Hispanic African American,
less than a high school education and income less than two times
the federal poverty level are indicators of much greater risk of
residing in an identified hotspot in both OH and MI. It is important
to recognize that these overlapping characteristics are often found
in environmental justice communities who experience dispropor-
tionate and cumulative exposures that may magnify the health
impacts from Pb. OH has prioritized testing for Pb exposure,
particularly for those children in high EBLL prevalence commu-
nities and of low income [38]. Continued and expanded screening
for BLL is essential for mapping and targeting high Pb exposure
risk locations and exposure disparities and for tracking progress as
the U.S. strives to achieve primary and secondary prevention of Pb
exposure [11].

DATA AVAILABILITY
This manuscript was prepared using statewide blood lead data through the Ohio
Public Health Information Warehouse under an approved Data Use Agreement with
the Ohio Department of Health. The Department specifically disclaims responsibility
for any analyses, interpretations, or conclusions from these data. Individual level data
are not publicly available, as they were obtained through a Data Use Agreement.
Census tract level data that comprise Figs. 1 and 2 are available as Supplementary
Material.

REFERENCES
1. Mielke HW, Gonzales CR, Powell ET, Egendorf SP. Lead in air, soil, and blood: Pb

poisoning in a changing world. Int J Environ Res Public Health. 2022;19:9500.
https://doi.org/10.3390/ijerph19159500.

2. Wang Z, Wade AM, Richter DD, Stapleton HM, Kaste JM, Vengosh A. Legacy of
anthropogenic lead in urban soils: co-occurrence with metal(loids) and fallout
radionuclides, isotopic fingerprinting, and in vitro bioaccessibility. Sci Total
Environ. 2022;806:151276. https://doi.org/10.1016/j.scitotenv.2021.151276.

3. Arnold OM, Liu J. Blood lead levels ≤10 micrograms/deciliter and executive
functioning across childhood development: a systematic review. Neurotoxicol
Teratol. 2020;80:106888. https://doi.org/10.1016/j.ntt.2020.106888.

4. Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, et al. Low-
level environmental lead exposure and children’s intellectual function: an inter-
national pooled analysis. Environ Health Perspect. 2005;113:894–9. https://
doi.org/10.1289/ehp.7688.

5. Rocha A, Trujillo KA. Neurotoxicity of low-level lead exposure: History, mechan-
isms of action, and behavioral effects in humans and preclinical models. Neu-
rotox. 2019;73:58–80. https://doi.org/10.1016/j.neuro.2019.02.021.

6. Sears CG, Lanphear BP, Xu Y, Chen A, Yolton K, Braun JM. Identifying periods of
heightened susceptibility to lead exposure in relation to behavioral problems. J
Expo Sci Environ Epidemiol. 2022;32:1–9. https://doi.org/10.1038/s41370-021-
00389-3.

7. Egan KB, Cornwell CR, Courtney JG, Ettinger AS. Blood lead levels in U.S. children
ages 1–11 years, 1976–2016. Environ Health Perspect. 2021;129:37003. https://
doi.org/10.1289/EHP7932.

8. Centers for Disease Control and Prevention (CDC). Blood Lead Reference Value.
2022. https://www.cdc.gov/nceh/lead/data/blood-lead-reference-value.htm. Acces-
sed 2 February 2023.

9. Teye SO, Yanosky JD, Cuffee Y, Weng X, Luquis R, Farace E, et al. Exploring
persistent racial/ethnic disparities in lead exposure among American children
aged 1-5 years: results from NHANES 1999-2016. Int Arch Occup Environ Health.
2021;94:723–30. https://doi.org/10.1007/s00420-020-01616-4.

10. Hauptman M, Niles JK, Gudin J, Kaufman HW. Individual- and community-level
factors associated with detectable and elevated blood lead levels in US children:
results from a National Clinical Laboratory. JAMA Pediatr. 2021;175:1252–60.
https://doi.org/10.1001/jamapediatrics.2021.3518.

11. Breysse PN, Cascio WE, Geller AM, Choiniere CJ, Ammon M. Targeting coordi-
nated federal efforts to address persistent hazardous exposures to lead. Am J
Public Health. 2022;112:S640–6. https://doi.org/10.2105/ajph.2022.306972.

12. President’s Task Force on Environmental Health Risks and Safety Risks to Chil-
dren. Federal Action Plan to Reduce Childhood Lead Exposures and Associated
Health Impacts, 2018. https://www.epa.gov/lead/federal-action-plan-reduce-
childhood-lead-exposure. Accessed 2 February 2023.

13. US Environmental Protection Agency (EPA). EPA Strategy to Reduce Lead Expo-
sures and Disparities in U.S. Communities, 2022. https://www.epa.gov/lead/final-
strategy-reduce-lead-exposures-and-disparities-us-communities. Accessed 2 Feb-
ruary 2023.

14. Zartarian V, Poulakos A, Garrison VH, Spalt N, Tornero-Velez R, Xue J, et al. Lead
data mapping to prioritize US locations for whole-of-government exposure
prevention efforts: state of the science, federal collaborations, and remaining
challenges. Am J Public Health. 2022;112:S658–69. https://doi.org/10.2105/
AJPH.2022.307051.

15. Xue J, Zartarian V, Tornero-Velez R, Stanek LW, Poulakos A, Walts A, et al. A
generalizable evaluated approach, applying advanced geospatial statistical
methods, to identify high lead exposure locations at census tract scale: michigan
case study. Environ Health Perspect. 2022;130:77004. https://doi.org/10.1289/
EHP9705.

16. Roberts EM, Madrigal D, Valle J, King G, Kite L. Assessing child lead poisoning case
ascertainment in the US, 1999-2010. Pediatrics. 2017;139:10. https://doi.org/
10.1542/peds.2016-4266.

17. Ohio Housing Finance Authority (OHFA). Fiscal Year 2021 Ohio Housing Needs
Assessment, 2022. https://ohiohome.org/research/housingneeds.aspx.

18. Ohio Department of Health (ODH) and Ohio Health Homes and Lead Poisoining
Prevention Program (OHHLPP). Final Report on Targeted Testing Plan for Child-
hood Lead Poisioning. April 2013.

19. Ohio Department of Health (ODH). Personal communication. 2023a. 14 April
2023.

20. Ord JK, Getis A. Local spatial autocorrelation statistics: distributional issues and an
application. Geogr Anal. 1995;27:286–306.

21. Census Bureau. 2010. 2010 Decennial Census. https://data.census.gov/cedsci/all?
g=0100000US%241400000&y=2010&d=DEC%20Summary%20File%201 [acces-
sed 16 June]. 2022.

22. US Environmental Protection Agency (EPA). EJSREEN Technical Documentation,
Washington, D.C., 2019. https://www.epa.gov/sites/default/files/2017-09/
documents/2017_ejscreen_technical_document.pdf. Accessed 23 January 2023.

23. Census Bureau. 2011–2015 American Commnity Survey 5-year estimates. 2015.
https://data.census.gov/cedsci/all?y=2015&d=ACS%205-Year%20Estimates%
20Detailed%20Tables. Accessed 5 May 2023.

24. Schultz BD, Morara M, Buxton BE, Weintraub M. Predicting blood-lead levels
among U.S. children at the census tract level. Environ Justice. 2017;10:129–36.
https://doi.org/10.1089/env.2017.0005.

25. Landis JR, Koch GG. The measurement of observer agreement for categorical
data. Biometrics. 1977;33:159–74.

26. Garrison VEH, Ashley PJ. Identifying jurisdictions at risk of containing housing
units with deteriorated paint: results and targeting implications for the US
Department of Housing and Urban Development. J Public Health Manag Pract.
2021;27:546–57. https://doi.org/10.1097/PHH.0000000000001191.

27. Ohio Department of Health (ODH). Number of Ohio Children, Less Than Six Years
of Age, Tested for Lead (1999–2021). 2023b. https://odh.ohio.gov/know-our-
programs/childhood-lead-poisoning/data-and-statistics/number-of-children-
tested. Accessed 5 April 2023.

28. Ohio Department of Health (ODH). Prevalence of Confirmed Elevated Blood Lead
Levels Among Tested Ohio Children. 2023c. https://odh.ohio.gov/know-our-
programs/childhood-lead-poisoning/data-and-statistics/prevalence-of-
confirmed-elevated-blood-lead-levels. Accessed 5 April 2023.

29. Obrycki JF, Serafini T, Hood DB, Alexander C, Blais P, Basta NT. Using public health
data for soil Pb hazard management in Ohio. J Public Health Manag Pr.
2018;24:E18–E24.

30. Ohio Department of Health (ODH). Blood Lead Testing Requirements For Ohio
Children less than 6 Years of Age. Ohio Healthy Homes and Lead Poisoning
Prevention Program, 2018. https://odh.ohio.gov/know-our-programs/childhood-
lead-poisoning/for-healthcare-providers/lead-testing-requirements-and-zip-
codes. Accessed 31 January 2023.

L.W. Stanek et al.

8

Journal of Exposure Science & Environmental Epidemiology

https://doi.org/10.3390/ijerph19159500
https://doi.org/10.1016/j.scitotenv.2021.151276
https://doi.org/10.1016/j.ntt.2020.106888
https://doi.org/10.1289/ehp.7688
https://doi.org/10.1289/ehp.7688
https://doi.org/10.1016/j.neuro.2019.02.021
https://doi.org/10.1038/s41370-021-00389-3
https://doi.org/10.1038/s41370-021-00389-3
https://doi.org/10.1289/EHP7932
https://doi.org/10.1289/EHP7932
https://www.cdc.gov/nceh/lead/data/blood-lead-reference-value.htm
https://doi.org/10.1007/s00420-020-01616-4
https://doi.org/10.1001/jamapediatrics.2021.3518
https://doi.org/10.2105/ajph.2022.306972
https://www.epa.gov/lead/federal-action-plan-reduce-childhood-lead-exposure
https://www.epa.gov/lead/federal-action-plan-reduce-childhood-lead-exposure
https://www.epa.gov/lead/final-strategy-reduce-lead-exposures-and-disparities-us-communities
https://www.epa.gov/lead/final-strategy-reduce-lead-exposures-and-disparities-us-communities
https://doi.org/10.2105/AJPH.2022.307051
https://doi.org/10.2105/AJPH.2022.307051
https://doi.org/10.1289/EHP9705
https://doi.org/10.1289/EHP9705
https://doi.org/10.1542/peds.2016-4266
https://doi.org/10.1542/peds.2016-4266
https://ohiohome.org/research/housingneeds.aspx
https://data.census.gov/cedsci/all?g=0100000US%241400000&y=2010&d=DEC%20Summary%20File%201
https://data.census.gov/cedsci/all?g=0100000US%241400000&y=2010&d=DEC%20Summary%20File%201
https://www.epa.gov/sites/default/files/2017-09/documents/2017_ejscreen_technical_document.pdf
https://www.epa.gov/sites/default/files/2017-09/documents/2017_ejscreen_technical_document.pdf
https://data.census.gov/cedsci/all?y=2015&d=ACS%205-Year%20Estimates%20Detailed%20Tables
https://data.census.gov/cedsci/all?y=2015&d=ACS%205-Year%20Estimates%20Detailed%20Tables
https://doi.org/10.1089/env.2017.0005
https://doi.org/10.1097/PHH.0000000000001191
https://odh.ohio.gov/know-our-programs/childhood-lead-poisoning/data-and-statistics/number-of-children-tested
https://odh.ohio.gov/know-our-programs/childhood-lead-poisoning/data-and-statistics/number-of-children-tested
https://odh.ohio.gov/know-our-programs/childhood-lead-poisoning/data-and-statistics/number-of-children-tested
https://odh.ohio.gov/know-our-programs/childhood-lead-poisoning/data-and-statistics/prevalence-of-confirmed-elevated-blood-lead-levels
https://odh.ohio.gov/know-our-programs/childhood-lead-poisoning/data-and-statistics/prevalence-of-confirmed-elevated-blood-lead-levels
https://odh.ohio.gov/know-our-programs/childhood-lead-poisoning/data-and-statistics/prevalence-of-confirmed-elevated-blood-lead-levels
https://odh.ohio.gov/know-our-programs/childhood-lead-poisoning/for-healthcare-providers/lead-testing-requirements-and-zip-codes
https://odh.ohio.gov/know-our-programs/childhood-lead-poisoning/for-healthcare-providers/lead-testing-requirements-and-zip-codes
https://odh.ohio.gov/know-our-programs/childhood-lead-poisoning/for-healthcare-providers/lead-testing-requirements-and-zip-codes


31. Litaker D, Kippes CM, Gallagher TE, O’Connor ME. Targeting lead screening: the
Ohio lead risk score. Pediatrics. 2000;106:E69. https://doi.org/10.1542/
peds.106.5.e69.

32. Cornwell DA, Brown RA, Via SH. National survey of lead service line occurrence. J Am
Water Works Assoc. 2016;108:E182–91. https://doi.org/10.5942/jawwa.2016.108.0086.

33. Stewart LR, Farver JR, Gorsevski PV, Miner JG. Spatial prediction of blood lead levels
in children in Toledo, OH using fuzzy sets and the site-specific IEUBK model. J. Appl
Geochem. 2014;45:120–9. https://doi.org/10.1016/j.apgeochem.2014.03.012.

34. Frank JJ, Poulakos AG, Tornero-Velez R, Xue J. Systematic review and meta-
analyses of lead (Pb) concentrations in environmental media (soil, dust, water,
food, and air) reported in the United States from 1996 to 2016. Sci Total Environ.
2019;694:133489. https://doi.org/10.1016/j.scitotenv.2019.07.295.

35. Laidlaw MA, Filippelli G, Mielke H, Gulson B, Ball AS. Lead exposure at firing
ranges-a review. Environ Health. 2017;16:34. https://doi.org/10.1186/s12940-017-
0246-0.

36. Shakya S, Bhatta MP. Elevated blood lead levels among resettled refugee children
in Ohio, 2009-2016. Am J Public Health. 2019;109:912–20. https://doi.org/
10.2105/ajph.2019.305022.

37. Zartarian VG, Xue J, Poulakos AG, Tornero-Velez R, Stanek LW, Snyder E, et al. A
U.S. lead exposure hotspots analysis. Environ Sci Technol. 2024;58:3311. https://
doi.org/10.1021/acs.est.3c07881

38. Office of the Governor, State of Ohio. Recommendations of the Governor’s Lead
Advisory Committee, 2021. https://governor.ohio.gov/media/news-and-media/
lead-advisory-committee-final-report-01302021. Accessed 6 January 2023.

ACKNOWLEDGEMENTS
We thank managers and senior leadership in EPA’s Office of Research and
Development Center for Public Health and Environmental Assessment, Center for
Computational Toxicology and Exposure, and Sustainable and Healthy Communities
research program for their support and feedback on this work. We appreciated the
critical input on interpretation of blood Pb data from staff and managers from the
Ohio Department of Health, including Chris Alexander, Jon Belt, Pam Blais and Gene
Phillips. Thanks to Nikki DeLuca and Nichole Kulikowski of EPA/ORD for technical
improvements to the manuscript that added much value. The views expressed in this
article are those of the authors and do not necessarily represent the views or policies
of the U.S. Environmental Protection Agency or its Contractor.

AUTHOR CONTRIBUTIONS
VZ, JX, AW, and KT were responsible for conceptualization of the work. LWS and JX
led development of the executed IRBs and DUA, and project and QA plans. JX, RTV,
AP, ES, LWS, and VZ were responsible for deriving the scientific analysis approach. JX
and AP conducted data curation activities, with JX being solely responsible for
cleaning and preparing the individual level BLL data for analysis. JX performed
statistical analyses and AP provided quality control checks. JX developed and
implemented the SAS code for the analysis. AP conducted geospatial mapping and
generated all figures. VZ, AW, KT, LWS, and ES provided oversight on research
planning and execution, including external outreach. LWS drafted the manuscript

and LWS, VZ, AP, RTV, and ES reviewed and edited all subsequent drafts of the
manuscript. All authors reviewed the final submitted manuscript.

FUNDING
The research described in this article has been funded in part by the U.S. EPA under
the ECHO–Multi Region Information Technology (IT) Services Support Contract and
the U.S. EPA Region 1 IT Services Support Task Order; specifically, LinTech Global,
Inc.’s ECHO Contract No. GS-35F-0343W/ 68HE0319F0020 with the U.S. Environmental
Protection Agency, Regions 1, 2 & 3.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41370-024-00666-x.

Correspondence and requests for materials should be addressed to
Lindsay W. Stanek.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in the US; foreign
copyright protection may apply 2024

L.W. Stanek et al.

9

Journal of Exposure Science & Environmental Epidemiology

https://doi.org/10.1542/peds.106.5.e69
https://doi.org/10.1542/peds.106.5.e69
https://doi.org/10.5942/jawwa.2016.108.0086
https://doi.org/10.1016/j.apgeochem.2014.03.012
https://doi.org/10.1016/j.scitotenv.2019.07.295
https://doi.org/10.1186/s12940-017-0246-0
https://doi.org/10.1186/s12940-017-0246-0
https://doi.org/10.2105/ajph.2019.305022
https://doi.org/10.2105/ajph.2019.305022
https://doi.org/10.1021/acs.est.3c07881
https://doi.org/10.1021/acs.est.3c07881
https://governor.ohio.gov/media/news-and-media/lead-advisory-committee-final-report-01302021
https://governor.ohio.gov/media/news-and-media/lead-advisory-committee-final-report-01302021
https://doi.org/10.1038/s41370-024-00666-x
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Identification of high lead exposure locations in Ohio at the census tract scale using a generalizable geospatial hotspot approach
	Introduction
	Materials and methods
	Data and materials
	Statistical methodology
	Geospatial analyses

	Results
	Discussion
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




