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BACKGROUND: National-scale linear regression-based modeling may mischaracterize localized patterns, including hyperlocal
peaks and neighborhood- to regional-scale gradients. For studies focused on within-city differences, this mischaracterization poses
a risk of exposure misclassification, affecting epidemiological and environmental justice conclusions.
OBJECTIVE: Characterize the difference between intraurban pollution patterns predicted by national-scale land use regression
modeling and observation-based estimates within a localized domain and examine the relationship between that difference and
urban infrastructure and demographics.
METHODS:We compare highly resolved (0.01 km2) observations of NO2 mixing ratio and ultrafine particle (UFP) count obtained via
mobile monitoring with national model predictions in thirteen neighborhoods in the San Francisco Bay Area. Grid cell-level
divergence between modeled and observed concentrations is termed “localized difference.” We use a flexible machine learning
modeling technique, Bayesian Additive Regression Trees, to investigate potentially nonlinear relationships between discrepancy
between localized difference and known local emission sources as well as census block group racial/ethnic composition.
RESULTS:We find that observed local pollution extremes are not represented by land use regression predictions and that observed
UFP count significantly exceeds regression predictions. Machine learning models show significant nonlinear relationships among
localized differences between predictions and observations and the density of several types of pollution-related infrastructure
(roadways, commercial and industrial operations). In addition, localized difference was greater in areas with higher population
density and a lower share of white non-Hispanic residents, indicating that exposure misclassification by national models differs
among subpopulations.
IMPACT: Comparing national-scale pollution predictions with hyperlocal observations in the San Francisco Bay Area, we find
greater discrepancies near major roadways and food service locations and systematic underestimation of concentrations in
neighborhoods with a lower share of non-Hispanic white residents. These findings carry implications for using national-scale
models in intraurban epidemiological and environmental justice applications and establish the potential utility of supplementing
large-scale estimates with publicly available urban infrastructure and pollution source information.
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INTRODUCTION
Better representation of within-city air pollution gradients—
necessary to reduce exposure misclassification in epidemiological
studies [1–4] and better quantify exposure disparity in environ-
mental justice research [5–9]—has motivated major innovation in
both modeling and measurement methods [10–17]. Currently
available modeled products for the United States offer both broad
geographic coverage and fine scale intraurban spatial resolution
[17–19]. In theory, this facilitates an assessment of exposure
variation within any city in the continental US. However, when
these high-resolution products are used to estimate exposure
within a single urban area or other model subdomain, they may
confer patterns of exposure misclassification that differ from those

evaluated over a larger geographic domain. For studies focused on
characterizing within-city exposure differences, it is important to
examine whether national-scale predictions are more susceptible to
misestimation near certain pollution-related infrastructure and
whether that misestimation differentially affects exposure estimates
among subpopulations.
Challenges in characterizing intraurban gradients vary among

pollutants. For PM2.5 estimates, the application of modeling and
remote sensing—including satellite-based remote sensing [14],
reduced complexity mechanistic models [16], and ensemble
machine learning techniques [17]—has generally provided
moderate intraurban resolution (1 km2). Because of the strong
secondary contribution to PM2.5, variation at the <1 km scale is
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relatively low and this spatial resolution adequately characterizes
intraurban gradients [20]. In contrast, the small-scale atmospheric
dynamics of a reactive pollutant with strong near-source peaks,
such as oxides of nitrogen (NO and NO2) and ultrafine particle
count (UFP), can result in two- to ten-fold decay at a distance of
50m to 300m from a source such as a highway [21, 22]. The
markedly different short-scale spatial patterns of NO2 and UFP
compared with urban PM2.5 carry implications for both exposure
modeling and health. NO2 may harm the body along a different
mechanistic pathway than PM2.5, and while controlling for PM2.5 in
pollutant mixtures, NO2 is found to have associations with allergic
diseases, acute respiratory disease exacerbations, cancers and
related cellular damage, and stroke [23, 24]. UFP is considered to
have a greater toxicity than particles in larger size categories due
to its physical characteristics, including a size that allows
penetration into the alveoli of the lungs and transport to the
bloodstream [25]. While growing evidence implicates the ultrafine
PM fraction in a range of adverse health effects including stroke,
brain cancer, and childhood respiratory illness, accurately
estimating UFP exposure remains a barrier in distinguishing its
effects from total PM2.5 [25–29].
For NO2 and UFP, linear regression-based modeling (land use

regression or LUR) has been used to predict the highly localized
variation exhibited by these pollutants within national-scale
models [18, 19], providing estimates of how exposure varies
within cities across the US [8, 30]. However, there are limitations to
LUR that affect its representation of both highly localized peaks
(< 100 m) and medium-scale intraurban concentration gradients
(< 500 m) within a small subdomain. LUR models must assume
generalized relationships between geographic predictors and
pollution levels, established using a relatively small number of
monitoring sites located across a wide geographic area. These
relationships may not be representative within a small subset of
the model domain, leading to over- or under-estimation around
areas with particular features. Additionally, LUR is designed to
predict more accurately around the central tendency rather than
capturing outliers, and typically does not consider interactions
among predictors nor the possibility of other complex nonlinear
relationships between predictors and exposure. Thus, near-source
peaks and decay patterns may not be represented even if the set
of geospatial variables includes close proximity (<50m) to major
roads and point sources. Better understanding how gradients
around known local sources differ between empirical and
modeled data could inform efforts to adjust or supplement
exposure metrics for pollutants known to vary significantly over
short distances.
Inaccurate representation of near-source gradients may dis-

proportionately affect exposure estimates for people of color
(POC). Observations from previous work evaluating racial/ethnic
inequity in air pollution exposure have established that a
disproportionate share of POC live closer to highways and major
roads as well as point sources such as industrial operations or
restaurants [31–35]. In cities where monitoring is sparse, large-
domain modeling estimates may be the only near-term option for
assessing local exposure inequity. In such cases, targeted knowl-
edge of how possible exposure misclassification relates to readily
observed features of the urban environment may inform the
design of studies evaluating within-city differences in air pollution
exposure.
This study (1) characterizes the discrepancy between high

resolution national-scale regression-based predictions and mobile
monitoring measurements of two pollutants with high localized
variability (UFP and NO2), (2) investigates whether this discrepancy
is more pronounced near particular features of the urban
environment, and (3) examines whether exposure misclassification
by LUR predictions differently affects different racial/ethnic groups.
We use Bayesian Additive Regression Trees (BART), a machine
learning method designed specifically to model and characterize

uncertainty about nonlinearities and higher-order interactions that
might describe localized hot spots but are typically absent from
national-scale regression models. These findings inform the
interpretation of intraurban patterns observed in national-scale
exposure modeling and motivate future improvements in modeling
techniques or measurement error adjustments.

METHODS
Data collection and processing
Hyperlocal observations from mobile monitoring. Spatially continuous
measurements from mobile monitoring, for which vehicle-mounted instru-
ments are operated in motion, have been demonstrated to reveal local
gradients absent from both regression predictions and fixed-site monitoring
[36, 37], and mobile monitoring in multiple domains has identified hot spots
associated with known neighborhood features [10, 11, 38]. Mobile
monitoring for this study, as described in previous publications, was
conducted throughout the 18-month period fromMay 2015-December 2017
[10, 37]. Two Google Street View vehicles were equipped with the Aclima Ei
measurement and data acquisition platform [39], which provides 1 Hz
measurements that include NO2 mixing ratio via cavity-attenuated phase-
shift spectroscopy (Teledyne, Model T500U), UFP count 2.5 nm to >3 µm
using a water-based condensation particle counter (TSI, CPC 3788 WCPC),
and GPS location data with nominal 1m precision. Instruments were
installed in a passenger vehicle and ambient air was sampled through an
inlet mounted on the roof. Vehicles were driven during weekday daytime
hours, covering every road segment within assigned areas. The total
sampling domain (93 km2) comprised thirteen discontinuous domains in the
San Francisco Bay Area and surrounding region (Fig. S1) representing a
variety of land uses and neighborhood characteristics. Area assignments
were distributed across seasons to provide measurements representative of
average annual pollution conditions.
Using vehicle GPS coordinates, each 1 Hz on-road measurement was

assigned to a unique 100m × 100m (0.01 km2) grid cell. Previously
established methods were followed to evenly weight each unique visit to
the grid cell in time-integrated concentration values [22]. For the set of
measurements in each grid cell, time stamp data were examined to isolate
individual drive passes at that location and calculate the drive pass mean NO2

and UFP measurements. A single time-integrated concentration value was
calculated for each grid cell as the median of these drive pass means.

Land use regression and integrated empirical geographic regression models.
We compare mobile monitoring observations of UFP and NO2 with
predictions from two highly spatially resolved national-scale models that
rely on a multiple linear regression framework. Modeled UFP (expressed as
particle number count, PNC) is produced as described by Saha et al. (2021)
using conventional Land Use Regression (LUR) techniques, including
stepwise forward selection of land use variables [19]. This UFP modeling
relied on measurements from 38 urban and rural stationary
monitoring sites and intensive measurements in three cities. Modeled
NO2 (ppb) is produced as described by Kim et al. (2020) using an approach
termed Integrated Empirical Geographic (IEG) Regression [18], distin-
guished from a conventional LUR by its expanded set of geospatial
prediction variables and a more complex statistical approach. The NO2

model was trained on observations from the United States EPA regulatory
monitoring sites (n= 292). Despite methodological differences, we refer
here to both UFP and NO2 geographic linear regression models as LUR. For
both LUR models, predictions were generated for residential or populated
census blocks, the smallest census areal unit. The present analysis
considers predictions at the next largest unit, block group, which provides
greater spatial coverage by estimating concentrations in unpopulated
census blocks via aggregation with populated blocks [18]. Block group
predictions are available for download via the Center for Air, Climate, and
Energy Solutions [40]. Regression prediction values were assigned to the
mobile monitoring grid based on area-weighted averaging of overlapping
block groups.

Urban feature and population data. Locations of pollution-relevant local
features (known local sources, KLS) were obtained from OpenStreetMap
(OSM) using the “osmdata” R package [41]. OSM was chosen because it is
freely and readily available in urban areas across the United States. We
chose seven specific source types categorized as (1) road traffic
(residential, arterial, highway, and on-ramp), (2) select commercial
operations (food service and gas stations), and (3) industrial operations,
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identified as locations where land use is described as “industrial”. Features
were selected based on known associations with UFP and NO2 or
precursors of those pollutants. This selection was not intended to identify
features that were missing from LUR input data; KLS types are among the
many geospatial predictors considered during variable selection for the
LUR models considered here. The objective is instead to investigate how
local inaccuracies in LUR predictions may relate to nonlinear dynamics
around recognized pollution-related infrastructure.
We calculate road density (km road/km2), commercial operation

density (# locations/km2), and industrial land use share (% area labeled
“industrial”) for each grid cell based on features located within 50 m,
150 m, and 300 m of the grid cell edge to capture peaks associated with
sources in close proximity as well as diffuse concentrations from more
distant sources.
Total population and populations of different census-based racial

and ethnic identities were obtained for census block groups from
the American Community Survey (ACS) for the year 2016 using the
“tidycensus” R package [42]. Racial and ethnic groupings were processed to
produce five non-overlapping categories: non-Hispanic Asian; non-Hispanic
Black; non-Hispanic Native American, Alaskan or Hawaiian, Pacific Islander,
one or more races, or other, collectively categorized as “Other”; non-Hispanic
white, and Hispanic/Latino. Census block group population data were
reallocated to grid cells by area-weighted averaging.
The full set of data used for this analysis shared a common resolution of

0.01 km2 and included for each grid cell (a) mobile monitoring observations
of UFP and NO2, (b) LUR predictions of UFP and NO2 from overlapping
census block groups, (c) density for each of the seven KLS types and at three
buffer sizes, and (d) demographic information including total population and
racial/ethnic composition.

Statistical approach
To characterize the alignment of LUR predictions with local peaks and
neighborhood-scale gradients that may be directly observed, we consider
mobile monitoring (MM)-based estimates as the benchmark value and
consider LUR performance relative to MM. We consider the limitations of
regarding MM as a benchmark in the discussion section. We first describe
LUR performance in terms of accuracy within the subdomain and ability to
identify localized peaks by directly comparing gridded LUR predictions
with MM observations, comparing marginal distributions and examining
the linear relationship between predicted and observed values. Subse-
quent analyses use as the dependent variable the localized difference (LD),

LDi ¼ MMi � LURi (1)

where MMi is mobile monitoring observations in grid cell i and LURi is the
national LUR prediction resampled to grid cell i. Thus, a positive LD
indicates areas where MM observations are greater than LUR predictions.
The range of LD reveals the degree to which LUR predictions diverge from
observed values across the domain. The divergence between predicted
and observed values is termed “localized difference” rather than “error”
because estimates of long-term concentrations based on MM are also
subject to substantial uncertainty, and in this work only represent
estimates of daytime weekday conditions. Nonetheless, MM provides
entirely independent high-resolution estimates and has been shown to
detect highly localized pollution peaks [10, 11].
We further probe patterns in LD relating to urban features and local

population characteristics using a machine learning technique—Bayesian
Additive Regression Trees (BART)—with the ability to estimate highly flexible
models with nonlinearities and higher-order interactions among variables.
Among other uses, this technique has been used in an epidemiological
context to investigate relationships between neighborhood-level risk factors
and rates of disease [43]. BART, implemented using the bartMachine R
package [44], is formulated as a “sum of trees,” where multiple simple
regression trees are summed together to produce a larger more complicated
regression tree structure for the specified outcome. BART offers several
advantages over generalized linear models as it better accommodates
prediction of extreme values and potential non-linear relationships among
predictors and outcomes. We prioritized these in our modeling efforts for LD
specifically because these features are (a) expected to hold relevance at an
intraurban scale and (b) very difficult to specify within a national multiple
linear regression model. A distinguishing feature of BART relative to other
similar tree-based machine learning methods is the full specification of a
statistical model so that inferences from BART are based on the posterior
distribution of predicted values based on Markov chain Monte Carlo,
producing a full account of estimation uncertainty.

Modeling localized difference as a function of known local sources. Using
BART, we examine whether LD shows significant and potentially non-linear
relationships with KLS and whether these relationships may account for
local extremes that appear in MM observations but not LUR predictions.
We construct a model

LD ¼ fðKLS1 50; KLS1 150; ¼ ; KLS7 300Þ þ ε (2)

where LD is predicted as a function of each of seven KLS variables at each
of three buffer distances (a set of 21 total KLS predictors) and ε is a random
error with normal distribution centered at zero and variance σ2. We
consider the overall model fit (pseudo-R2 and NRMSE [absolute value of
root mean squared error normalized to the observed mean]) to evaluate
the share of variability in LD explained by the full set of KLS, and examine
the relationship between individual KLS variables and LD using Partial
Dependence Plots (PDPs) [45]. From Friedman (2001), the PDP of KLSj gives
the average value of predicted LD (cLD) when KLSj is fixed and the set of all
other KLS values varies over their marginal distributions, dP(KLS-j), and is
estimated by computing

cLDjðKLSjÞ ¼ 1
n

X
n

i¼1

cLDðKLSj ; KLS�j;iÞ (3)

where n is the number of observations and cLD denotes predictions via the
BART model [44]. The quantity LDj(KLSj) and its associated posterior
uncertainty is then plotted over a range of values for KLSj, depicting how
cLD (y-axis, in units of the pollutant modeled) varies as a function of a given
KLS-buffer pair (x-axis, shown as quantile values of feature density). The
PDP includes 95% posterior credible intervals around cLD. To determine
which KLS-buffer pairs provide the most explanatory power for the LD of
each pollutant, we calculate the variablinclusion proportion (VIP) for each
term and focus our analysis on the eight highest-ranked variables [46].

Neighborhood demographics and localized difference. To investigate how
LD may differentially accrue among subpopulations, we compare LD across
racial/ethnic groups. First, taking an aggregate population perspective, we
examine whether the population-weighted distribution of LD differs
among groups. Second, taking an area-focused perspective, we examine
whether LD varies with the racial/ethnic composition of local residents.
Using BART we construct Model A,

LD ¼ fðPop; RE share1; ¼ ; RE share5Þ þ ε (4)

in which LD is predicted by the racial/ethnic composition of the census block
groups overlapping each grid cell, where RE_share is the share of population
identifying as each of the five racial/ethnic categories, the model controls for
total population (Pop), and ε is defined as previously. A PDP depicting a
positive relationship would indicate that within this local domain, predictions
from a national LUR systematically underestimate concentrations in areas
with more residents of a particular racial/ethnic group.
To further investigate the relationship between local emission-related

infrastructure and differential exposure misclassification by race/ethnicity,
we construct Model B,

LD � fðPop; RE share1; ¼ ; RE share5; KLS1 50; KLS1 150; ¼ ; KLS7 300Þ
(5)

which considers LD as a function of KLS variables in addition to grid cell
population and racial/ethnic composition. We examine the change in race/
ethnicity PDPs fromModel A to Model B: a weakening of a positive relationship
would suggest that the systematic overestimation associated with a specific
race/ethnicity can be explained by a higher density of known local sources in
neighborhoods with a higher proportion of residents of that race/ethnicity.

RESULTS
Characterizing localized difference for the San Francisco
Bay Area
Grid-scaled land use regression predictions (LUR) are directly
compared with mobile monitoring observations (MM) in Fig. 1 for
UFP (left) and NO2 (right). The striated pattern results from variation
among grid cells overlapping each census block group, reflecting
localized pollution peaks. From OLS regression we find that LUR
predictions show a statistically significant linear relationship with
MM estimates for both pollutants (p < 0.001), but LUR only captures
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a small proportion of variation among MM values (R2= 0.15 for NO2

and 0.10 for UFP). Comparing numerical distributions of LUR and
MM values (Fig. 1 inset) further shows the limits of LUR to predict
extreme values, as MM features a much wider interquartile range
and many values outside the range of LUR predictions. In central
tendency, LUR predictions substantially underestimate MM esti-
mates of UFP (medians of 11 and 23 #×103/cm3, respectively) but for
NO2, MM and LUR show similar median values (8.5 vs. 10.2 ppb).
An examination of LD reinforces these findings. The distribution

of LD values shows that LUR predictions substantially underestimate
UFP and slightly overestimate NO2 (Fig. S2). The long upper tail of
the LD distribution for both pollutants shows extremes observed via
mobile monitoring are not depicted in LUR estimates. Additionally,
high LD exists across most LUR values, indicating that peaks occur in
areas with both high and low predictions. Geographically, LD
encompasses divergence between LUR and mobile observations on
multiple spatial scales (Figs. S3–4), with substantial within-
neighborhood variation. Neighborhood maps show that the range
of LD within most neighborhoods is comparable to the range across
the domain, and clusters of high LD appear along roadways—most
distinctly for NO2—and in locations that may correspond to
industrial or commercial land use.

Relationship between localized difference and known local
sources
Overall model performance. We find that using urban feature data,
BART-based models successfully reproduce LD patterns, including
extreme values. The model of UFP LD as a function of the suite of
KLS variables (Eq. 2) predicts the majority of variation (pseudo-
R2= 0.60, NRMSE= 0.73) and closely predicts the mean (12.6 versus
12.4 #×103/cm3 observed). Importantly, the distribution of predicted
LD ðcLDÞ (Fig. 2) includes a long upper tail, showing that within this
framework KLS variables can predict concentration extremes. For
NO2, the BART fit had pseudo-R2= 0.48 and NRMSE= 4.2 and the
cLD distribution also includes a long upper tail. Mean NO2

cLD is
−1.2ppb compared with an observed value of -0.9 ppb.

Localized difference predicted by individual features. Partial depen-
dence plots (PDP) for high variable importance KLS-buffer pairs are
shown for UFP (Fig. 3) and NO2 (Fig. 4). Many KLS are spatially
sparse, with a density of zero over > 50% of the spatial domain.

This sparsity produces a presence-absence pattern PDP: a constant
cLD value across the majority of the domain followed by a slope or
stepwise change at the upper end of the distribution. For these
features, the key PDP characteristic is the step-change in cLD
between areas where that feature is absent versus present. KLS with
a broader distribution over the domain show more complex partial
dependence functions, which may take the form of potentially non-
linear positive or negative trends or functions that vary in direction.
For these, PDPs may be interpreted in terms of the approximate
trend or the amplitude of change for highly nonlinear forms.
For UFP (Fig. 3), the scale of mean cLD across plots (varying from

7.5 to 20 #×103/cm3) shows that urban feature variables can explain
a substantial share of LUR underprediction. Among variables with
presence-absence form plots (highways, on-ramps, food service,
and industrial land use), most show greater underprediction by
national LUR (higher mean cLD) where present, indicating that peaks
observed near these sources via mobile monitoring are under-
represented in nationally modeled estimates of UFP. The greatest
magnitude increases in mean cLD are associated with the presence
of highways within 150m and 50m. Lower magnitude increases are
associated with the presence of food service and on-ramps within
300m, and the wider credible interval for locations within 300m of
food service indicates greater model uncertainty predicting cLD
based on that feature type. An exception to the presence-increase
pattern occurs for areas within 300m of industrial land use: mean
cLD is predicted to be lower in those areas, although still non-
negative. High mean cLD in areas with the lowest density of
residential roads within 300m—representing areas with little to no
residential population—may reflect the dependence of national-
scale LUR predictions on population density as a covariate. Larger
buffer sizes tended to have higher VIP (with the exception of
highways), suggesting that feature density at moderate spatial scale
is more informative for predicting LD.
For NO2 (Fig. 4), as with UFP, several spatially sparse feature types

show a significant association with LUR underprediction (higher
mean cLD where present): on-ramps, food service, and gas stations
within 300m and highways within 50m. However, unlike for UFP,
the density of several road types within 300m were associated with
mean cLD moving farther below zero, indicating that the national
LUR overpredicts in areas with a greater density of residential and
arterial roads, and in areas between 50 and 300m from highways.

Fig. 1 Comparison of LUR predictions with MM observations for each grid cell. These scatter plots show national LUR-based predictions
(LUR) versus mobile monitoring observations (MM) for (a) UFP, and (b) NO2, annotated with the linear fit as determined by OLS linear
regression. Numerical distributions (kernel density plot) of both datasets are shown in the margins of each figure and overlaid below.
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LD and KLS in the context of the racial/ethnic composition of
local population
Within this domain, LD does not vary equally across members of
different racial/ethnic groups (Fig. S5). Differences are more
notable for UFP, with higher medians and more compressed
interquartile ranges when weighting by the number of Black or

Hispanic/Latino residents, indicating the national LUR system-
atically underpredicts exposure for these groups. For NO2, median
LD is similar across groups but IQR bounds differ.
Examining LD modeled as a function of population density and

racial/ethnic composition (Model A; Eq. 4), we find that total
population and the share of white non-Hispanic residents both

Fig. 3 UFP partial dependence plots for select known local sources. Partial dependence of predicted UFP LD on eight categories of known
local pollution sources within listed buffer distances.

Fig. 4 NO2 partial dependence plots for select known local sources. Partial dependence of predicted NO2 LD on eight categories of known
local pollution sources within listed buffer distances.

Fig. 2 Performance of BART-based model predictions of LD. Predicted localized difference based on BART known local sources model (Eq. 2)
compared with observed localized difference training data for UFP (a) and NO2 (b). Numerical distributions (kernel density plot) of both
datasets show that predicted LD replicates the observed long upper tail.
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show a significant relationship with cLD (Fig. 5, in blue), and these
models can account for the majority of variation in LD (pseudo-
R2= 0.59 for NO2, 0.71 for UFP). For both pollutants we see the
strongest partial dependence between cLD and population, with
significantly higher mean cLD in low-population areas. Two factors
contribute to this relationship: (1) highly localized emissions-
intensive activity is more common in non-residential or low-
population census blocks, so limitations to LUR representation of
local extremes is more acute in areas with low population density;
and (2) the national LUR focus on census-based areal units (which
are smaller in more densely populated areas) and use of
population-weighted averaging for spatial aggregation is
designed to maximize accuracy in areas with higher population.
Of particular relevance to environmental justice, there is strong

negative partial dependence between cLD and the share of white
non-Hispanic residents: LD is closer to zero in areas with
predominantly white residents, resulting in systematic under-
estimation of neighborhood-to-neighborhood racial/ethnic expo-
sure inequity. For both pollutants the magnitude of change
between the 5th and 95th percentile for share of white residents
surpasses that of the partial dependence plots of every KLS
previously discussed (5 ppb for NO2 and 16 #×103/cm3 for UFP),
indicating that LD is more strongly related to racial/ethnic
composition than the density of any single KLS. Partial dependence
relationships do not show clear increasing or decreasing trends for
other racial/ethnic groups (Fig. S6), suggesting that underestimation
of exposure by national LUR predictions is not specific to one POC
identity. This complements the observation from aggregate
statistics that the LD distribution for POC populations differs from
that of the white non-Hispanic population but are not simply shifted
higher or lower, and instead exhibit higher LD in different parts of
the numerical distribution (medians and upper/lower quartiles).
To determine whether the relationship between cLD and

population characteristics is explained by the density of pollution-
related infrastructure in lower population or more predominantly
POC neighborhoods we look for differences in the slope of
population-related PDPs between Model A, described above, and
Model B (shown in red in Fig. 5), which includes both demographic
and KLS variables as predictors. We find that the addition of
pollution source density covariates attenuates the relationship
between cLD and population across all areas for NO2 and in low-

population areas (population density below the 30th percentile) for
UFP, showing that the greater degree of underestimation by
national LUR predictions in low population areas is explained in part
by the mischaracterization of pollution gradients near pollution-
related infrastructure. The negative trend in cLD associated with the
share of white non-Hispanic residents, however, is essentially
unchanged from Model A to Model B for both pollutants, indicating
that disproportionate underprediction of concentrations in areas
with majority POC residents cannot be accounted for by factors
relating to the considered set of infrastructure covariates.

DISCUSSION
Consistent with previous studies of the SF Bay Area [37, 47], we
find that national LUR models are limited in their ability to
characterize air pollution concentrations observed via mobile
monitoring, both in their prediction of background concentrations
and of localized peaks. We find that mean mobile monitoring
estimates of UFP were > 2× higher than LUR predictions while
mean NO2 was only 10% lower, and intraurban concentration
extremes were not represented for either pollutant.
In many contexts, including epidemiology and environmental

justice studies, it is more important to determine relative differences
in concentration across the urban landscape or among population
groups. For example, a pollution-related health effect may be
investigated as a function of the distributions of exposure across
study members with or without an adverse health outcome, with
the detection of effects dependent on differences in exposure
distributions between outcome groups and not the absolute
magnitude of exposure across the study population. Metrics used
to describe environmental injustice often express relative differ-
ences in population-weighted average exposure among subgroups
or compare exposure distributions among groups (e.g., Atkinson
index or subgroup inequity index) [48–50]. For such purposes it is
particularly relevant that disagreement between LUR predictions
and mobile monitoring estimates is not described by a constant
shift in distribution across the geographic domain, nor distributed
randomly. Instead, patterns of disagreement evidently relate to
features of the urban built environment and population. We find a
negative association between LUR underestimation and population:
LUR predictions are more representative in areas with high
population density. This is not unexpected for the specific LUR
predictions examined here, as their modeling prioritized
population-scale exposure estimates and was not designed to
provide predictions in unpopulated areas [18, 19]. Such optimiza-
tion is advantageous in evaluating total-population exposure on a
large scale. However, this work indicates potential problems when
using LUR predictions to evaluate exposure among subpopulations.
Additionally, the relationship between LD and readily observed
local emission sources suggests that differential distribution of
specific populations of interest around those sources may result in
exposure differences not fully represented by LUR predictions.
Because various types of pollution-related infrastructure predict
different patterns of LUR inaccuracy for UFP versus NO2, under-
estimation of exposure inequality due to differential source
proximity may vary among pollutants.
An important dimension of the geographic distribution of LD is

the misestimation of exposure inequality among racial/ethnic
groups. In fact, we find a dependence between the degree of LD
and the racial/ethnic composition of local populations: under-
prediction by national LUR models is higher in areas with a lower
share of non-Hispanic white residents. Consequently, exposure
misclassification from national LUR predictions is more pronounced
for people of color in this spatial domain. The weak representation
of highly localized pollution patterns in LUR may contribute to this
underprediction: previous work has shown that for PM2.5 and traffic-
related air pollution, coarser spatial resolution results in an
underestimation of average exposures and differences among

Fig. 5 Predicted relationship between LD and population char-
acteristics. Partial dependence of predicted (a) UFP LD and (b) NO2 LD
on population density and the share of residents identifying as white
non-Hispanic. The blue line indicates LD predicted only using
demographic variables (Model A, Eq. 4) and the red line indicates LD
predicted based on demographic variables and known local sources
(Model B, Eq. 5).
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racial and ethnic groups [6, 51]. However, an examination of local
exposure patterns in this domain found that racial/ethnic disparity
was most strongly affected by neighborhood-to-neighborhood
differences and not hyperlocal peaks [37].
Another factor contributing to differential underprediction

may be the lower availability of ground-based measurements to
validate model predictions in urban areas with lower residential
population and a high share of residents of color [52]. There is a
greater overall scarcity of ground-based measurements for UFP
than for NO2 (38 sites nationwide vs. 272), as unlike NO2, UFP is
not included in current US EPA National Ambient Air Quality
Standards and not routinely measured at regulatory monitoring
sites [19]. The lack of representative measurements may
contribute to the greater magnitude of geographic variation in
UFP cLD.
This analysis specifically examines a third contributing factor:

the influence of localized sources that are not well accounted for
in national models [53]. The co-location of local pollution
sources with communities of color is a legacy of the dual forces
of historically restricted access to housing for people of color in
low-pollution neighborhoods and the siting of new pollution
sources in areas where residents have less economic and
political capital, often communities with a higher share of
people of color [32]. We find that the relationship between LD
and racial/ethnic composition remained when accounting for
proximity to certain urban features shown in other work to be
related to higher exposure among people of color, including
highways and restaurants [33]. This does not suggest that urban
features such as highways and restaurants do not contribute to
exposure inequity. It instead suggests that if they do, the
resulting inequity may already be accounted for by LUR
predictions. However, the persistent patterns in LD across
predominantly POC neighborhoods suggest additional unknown
factors leading to higher concentrations among these popula-
tions that are not captured by the LUR models.
We offer several recommendations based on these findings.

First, conclusions drawn about relative exposure differences
within a single city based on national LUR predictions should be
interpreted with caution. Second, more flexible, non-linear
modeling frameworks have the potential to better characterize
intraurban concentration gradients and extremes. Third, the
limited set of KLS examined here provided substantial predictive
power in explaining variation in LD, indicating the usefulness of
these factors for downstream measurement error adjustments.
Nevertheless, a portion of within-urban variation—including
patterns affecting estimates of racial/ethnic exposure disparity—
is not explained by the limited set of urban features examined
here. The use of a more detailed set of predictors, such as in
recent work examining “microscale variables” (e.g., Google Street
View imagery and points of interest), may improve modeling of
intraurban patterns [47], but the accuracy of within-city
exposure disparity estimates would be further improved by
integrating community-level knowledge and/or community
monitoring [54].
An important limitation to these conclusions comes from the

treatment of mobile monitoring observations as the true
representation of local pollution patterns. These high-resolution
estimates of long-term pollution conditions carry a high degree of
uncertainty due to the temporal sparsity of mobile measurements,
and some aspects of the sampling design may introduce bias.
Mobile monitoring is constrained to on-road sampling, so
measurements are made in direct proximity to residential traffic
emissions which could inflate MM-based estimates. However,
comparison with near-road fixed sites showed that measurements
made on residential roads were not systematically higher [36]. In
addition, sampling was limited to daytime, weekday hours. Certain
types of pollution-generating activity, including traffic and
commercial operations, are higher during these hours, so MM is

likely to capture more dramatic near-source peaks than are typical
over more broadly averaged conditions. These conclusions are
thus more accurately interpreted as characterizing the ability of
LUR predictions to capture daytime weekday patterns and may be
more relevant to segments of the population that tend to spend
those hours at home (e.g., young children, older adults, and
resident caregivers) than those who do not (e.g., adults working
outside of the home). While we do not examine time-activity
patterns here, previous work has found exposure estimates for
more vulnerable and less advantaged population groups to be
least sensitive to the inclusion of time spent traveling and in non-
residential locations [55].
Additionally, while these conclusions point to the general

usefulness of KLS data, specific conclusions about LD-KLS
relationships and racial/ethnic exposure inequity within this
relatively restricted geographic domain may not be generalized
across other US cities or geographic subdomains. Partial
dependence plots also do not represent direct relationships
between KLS emissions and pollution: confounding by other
neighborhood features is likely, and in some cases offers a
plausible explanation for observed relationships (e.g., food service
is not a dominant source of urban NO2, so dependence between
the two may be explained by vehicle traffic or other activity
geographically associated with food service).
Publicly available, census block-scale LUR-based air pollution

predictions provide useful insight into national-scale patterns of
air pollution exposure. While these models are not designed to
replicate local patterns within individual cities, predictions might
be used in lieu of local monitoring due to resource and time
constraints. It is important to understand how studies that utilize
these predictions within a restricted geographic area may be
affected by systematic prediction errors, especially for pollutants
with strong near-source peaks and high intraurban variability
like NO2 and UFP. Comparing national predictions with highly
spatially resolved local observations, we have documented
relationships between the divergence of predicted and observed
values with both urban features associated with local emission
peaks and with population characteristics. The first set of
relationships indicate the potential of using known local sources
to resolve exposure misclassification, while the second set
reveals that national population-weighted models pose a risk of
systematically mischaracterizing exposures for some racial/
ethnic subpopulations. These findings can inform future studies
investigating intraurban exposure patterns using national LUR
estimates and motivate further improvements in modeling for
local domains.

DATA AVAILABILITY
Code in R for data processing, graphics generation, and replicating this analysis are
available from https://github.com/SEChambliss-AQ/LD-analysis/ and the full set of
data to run this code is available from https://doi.org/10.5281/zenodo.10120281.
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