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BACKGROUND: Pediatric thyroid diseases have been increasing in recent years. Environmental risk factors such as exposures to
chemical contaminants may play a role but are largely unexplored. Archived neonatal dried blood spots (DBS) offer an innovative
approach to investigate environmental exposures and effects.
OBJECTIVE: In this pilot study, we applied a new method for quantifying per- and polyfluoroalkyl substances (PFAS) to 18 archived
DBS from babies born in California from 1985–2018 and acquired thyroid hormone measurements from newborn screening tests.
Leveraging these novel data, we evaluated (1) changes in the concentrations of eight PFAS over time and (2) the relationship
between PFAS concentrations, thyroid hormone concentrations, and neonatal characteristics to inform future research.
METHODS: PFAS concentrations in DBS were measured using ultra-high-performance liquid chromatography-mass spectrometry.
Summary statistics and non-parametric Wilcoxon rank-sum and Kruskal–Wallis tests were used to evaluate temporal changes in
PFAS concentrations and relationships between PFAS concentrations, thyroid hormone concentrations, and neonatal
characteristics.
RESULTS: The concentration and detection frequencies of several PFAS (PFOA, PFOS, and PFOSA) declined over the assessment
period. We observed that the timing of specimen collection in hours after birth was related to thyroid hormone but not PFAS
concentrations, and that thyroid hormones were related to some PFAS concentrations (PFOA and PFOS).
IMPACT STATEMENT: This pilot study examines the relationship between concentrations of eight per- and polyfluoroalkyl
substances (PFAS), thyroid hormone levels, and neonatal characteristics in newborn dried blood spots (DBS) collected over a period
of 33 years. To our knowledge, 6 of the 22 PFAS we attempted to measure have not been quantified previously in neonatal DBS,
and this is the first study to examine both PFAS and thyroid hormone concentrations using DBS. This research demonstrates the
feasibility of using newborn DBS for quantifying PFAS exposures in population-based studies, highlights methodological
considerations in the use of thyroid hormone data for future studies using newborn DBS, and indicates potential relationships
between PFAS concentrations and thyroid hormones for follow-up in future research.
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INTRODUCTION
Per- and polyfluoroalkyl substances (PFAS) are a family of
synthetic chemicals with thyroid hormone-disrupting properties
[1]. PFAS are heat-resistant, chemically stable, and repel stains,
properties which led to their widespread inclusion in commercial
and industrial products. PFAS have been widely detected in
drinking water [2, 3], measured in raw, processed, and packaged
foods and animal products [4], and are found in cookware, food
packaging materials, household products, textiles, clothing,
lubricants, and firefighting foams [5]. PFAS originating from
indoor sources can accumulate in settled dust [6, 7]. Because

PFAS are highly resistant to degradation and remediation, they
can remain in the human body and the environment for extended
periods of time [8, 9].
Studies in United States (US) populations have detected one or

more PFAS in nearly all blood samples collected from pregnant
women and children [10–12]. PFAS readily cross the placenta and
are detected in umbilical cord blood, with correlations between
maternal serum and cord blood concentrations, underscoring the
importance of the in utero exposure pathway [13–17]. Postnatally,
children can be exposed through drinking water and dietary
sources, incidental ingestion of house dust due to their propensity
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to engage in hand-to-mouth activity, and inhalation of PFAS-laden
dust [5, 6, 18]. Prenatal and postnatal exposures exhibit moderate
correlations that vary in magnitude depending on the chemical
and age of the child [19].
PFAS exposure has been linked to various health endpoints,

including dyslipidemia in adults and adverse immunosuppressive
and developmental effects in children [5]. Evidence that PFAS
exposure impairs thyroid hormone function is growing, with
observed heterogeneity in associations by chemical (e.g., long-
chain versus short-chain PFAS), age at exposure, and sex. Multiple
epidemiologic studies of populations at both high- and low-level
exposure have observed sex-specific associations between per-
fluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid
(PFOS) exposure and hypo- and hyperthyroidism [20–23].
Conversely, other studies have yielded suggestive but inconsistent
evidence of alterations in thyroid hormone concentration or
function [1, 24]. The hypothalamic-pituitary-thyroid axis maintains
normal, circulating levels of thyroid hormones, which are critical
for metabolism, temperature regulation, cognitive development,
and other functions [25]. The release of thyroid stimulating
hormone (TSH) initiates the synthesis and release of thyroxine (T4),
which is converted into a more active form, triiodothyronine (T3).
T3 and T4 bind to proteins for transport into cells, and inversely
regulate TSH through a negative feedback loop. Dysregulation can
reduce thyroid hormone circulation, potentially causing abnormal
proliferation in the thyroid, leading to thyroid hyperstimulation,
hyperplasia, and tumorigenesis [26, 27]. In vivo and in vitro
toxicology studies have found PFAS can competitively bind to
thyroid transport proteins and upregulate clearance enzymes,
leading to both promoting and antagonist effects on thyroid
hormone signaling and transport [28–31]. Perfluorohexane
sulfonic acid (PFHxS) exposure in rats induced hypertrophy or
hyperplasia of thyroid follicular cells [32], and PFOS and PFOA
lowered total and free T4 concentrations [33, 34]. PFAS also have
been hypothesized to increase T4 metabolism in the liver or
thyroid, reduce thyroid peroxidase activity, and decrease T3 and T4
concentrations, which could lead to an increase in TSH and thyroid
proliferation [24, 35].
Given in utero exposures may play an important role in health

outcomes later in life, analysis of biological specimens collected at
birth provides a valuable opportunity to quantify exposures at a
critical window of development [36, 37]. Use of preclinical
biospecimens also ensures the proper temporal relationship
between assessments of exposures and disease, avoiding reverse
causality. Neonatal dried blood spots (DBS) are collected on filter
cards shortly after birth, usually 24–48 h postpartum, to screen for
congenital issues [38]. Biomonitoring using DBS enables assess-
ment of early life exposures and biological changes in the years
preceding clinical manifestation of disease [36, 38–42]. Several
studies have developed and validated high-performance liquid
chromatography-mass spectrometry (HPLC-MS) methods for
quantifying PFAS in DBS [43–48]. These studies have also
addressed methodological concerns related to using DBS for
PFAS biomonitoring, including demonstrating minimal PFAS
background contamination in DBS cards [44, 45, 47, 48], adjusting
for DBS variability, and comparing PFAS concentrations between
DBS samples and fresh adult venous blood samples, reporting
strong correlations between the sample types [45, 46, 48].
Several studies have examined associations between PFAS

quantified in newborn DBS and potential early childhood
neurotoxic, obesogenic, immunotoxic, and epigenetic effects
[49–53]. However, to our knowledge, no studies have examined
associations between PFAS concentrations and thyroid hormone
levels in neonatal DBS. Using a newly developed method for
quantifying 22 PFAS in newborn DBS [48], we conducted a pilot
study to evaluate the relationships between PFAS concentrations,
thyroid hormone levels, and newborn characteristics in neonatal
DBS samples collected over a span of 33 years (1985–2018) for the

purposes of informing future research. Additionally, to our
knowledge 6 of the PFAS we examined using this method—
perfluorobutanoic acid (PFBA), perfluorononane sulfonic acid
(PFNS), perfluoropentane sulfonic acid (PFPeS), 4:2 fluorotelomer
sulfonic acid (4:2 FTS), 6:2 FTS, and 8:2 FTS—have not been
measured previously in neonatal DBS.

METHODS
Sample acquisition
We obtained 18 neonatal DBS from the California Department of Public
Health (CDPH) Newborn Screening Program, the maximum number of
samples available to researchers for methods optimization studies.
Demographic data accompanying samples included sex, birth year, and
race/ethnicity. By request, samples were from 9 male and 9 female infants,
and from different decades of birth from 1985–2018. As part of routine
testing for congenital conditions at the CDPH, 5 14-mm diameter DBS are
collected from newborns on filter paper by heel-stick soon after birth,
typically 24–48 h after birth, and optimally by 4 days of age [54]. Typically,
2–3 DBS remain after routine screening, which have been archived by the
California Newborn Screening Program since 1982. The program includes
nearly all live births in California. Prior to testing, all parents were provided
with a privacy notification which describes the possible research use of
infant specimens, and had the opportunity to request that their newborn’s
specimen not be used for such purposes [55].

Thyroid hormone measurement and parameterization
Because hypothyroidism in neonates can lead to severe cognitive
impairments in children, US newborns have been screened for congenital
hypothyroidism using newborn DBS samples since the 1970s [56, 57]. We
obtained thyroid hormone data from the California Newborn Screening
Program for the same samples used for PFAS measurement. In California, the
neonatal DBS samples were tested for T4 through 1997. Starting in 1998, T4
screening was replaced by TSH measurements because T4 yielded higher
rates of false positives (particularly in low birthweight and preterm infants),
and TSH was determined to be more specific [57, 58]. The two approaches
to screening also detect different etiologies of congenital hypothyroidism: T4
screening better detects central hypothalamic-pituitary hypothyroidism,
while TSH screening better detects subclinical hypothyroidism [59]. Because
of these changes to the screening test, 8 of our pilot study samples have T4
measurements and 10 have TSH measurements.
To maximize use of our samples, we used three approaches to examine

thyroid hormone measurements in relation to PFAS concentrations and
neonatal characteristics. First, we carried out statistical analyses for T4 and
TSH separately using concentrations measured at the time of the newborn
screening test. Second, we dichotomously categorized T4 and TSH
concentrations as normal or abnormal based on newborn screening
guidelines for congenital hypothyroidism. Low T4 concentrations
<129 nmol/l or <10 μg/dl, and high TSH concentrations >10mU/l are
considered abnormal values, triggering further testing to rule out
congenital hypothyroidism [54]. Third, we converted each thyroid
hormone measurement into a z-score so that T4 and TSH concentrations
could be examined together and on a continuous scale. Z-scores were
calculated by taking the difference between the observed thyroid
hormone concentration and the T4 or TSH sample mean, and then
dividing by the T4 or TSH sample standard deviation.

Quantification of PFAS concentrations in dried blood spots
Sample preparation. DBS were sectioned into quarters using methanol-
cleaned stainless-steel scissors. A quarter of each specimen was selected,
measured for area and mass, and placed in a 15ml tube, which was spiked
with 10 μl of a 10mg/ml mixture of internal standards containing 13 13C4-
labeled PFAS analytes (Wellington Laboratories Inc.) and air-dried for
30min at room temperature. Blanks used to monitor for contamination
were cut from adjacent to each DBS, area and mass measured, and
processed using the same method as for DBS samples. Blood and blank
samples were extracted with 1ml methanol containing NaOH (20mM) by
shaking with 4 stainless steel beads for 20min (1600 MiniG™ SPEX
homogenizer, 1500 shakes per minute). Samples were sonicated for 10min
and centrifuged for 20min (4000 RPM), and 500 μl of supernatant pipetted
into a 2 ml polypropylene vial. The sample extraction process was repeated
3 times, with an additional 500 μl methanol with 20mM NaOH added each
time, for a total of 1500 μl supernatant. The supernatant was vortexed and
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dried down under nitrogen flow at 50 °C (Biotage TurboVap LV). Samples
were reconstituted with 50 µl of methanol and 50 µl Mili-Q water and
vortexed. Sorbent and other debris were removed by passing samples
through a microcentrifuge tube cellular acetate membrane filter (Fisher
Scientific) by centrifuging for 10min (14,000 RPM). The filtrate was
transferred to a polypropylene insert in a liquid chromatography mass
spectrometry vial for analysis. One extraction blank and one solvent blank
spiked with standards (1 ng/ml) were also extracted alongside the DBS
samples to account for potential contamination in the extraction process.

Sample analysis. Samples were analyzed on an Ultimate 3000 ultra-high-
performance liquid chromatograph system, coupled to a Q-Exactive high-
resolution orbitrap mass spectrometer (Thermo Scientific) [60–62]. The
mobile phase was composed of A (0.1% formic acid in ultra-pure water)
and B (0.1% formic acid in acetonitrile). A Restek PFAS delay column
(50mm× 2.1mm, 5 um particles) and a Thermo Hypersil Gold C-18 column
(100mm× 2.1mm, 1.9 µm particles) with an Accucore Q guard column
(10mm× 2.1mm, 2.6 μm particles) were used for chromatographic separa-
tion using gradient separations of 20% B (0–2.5min) and then 30–85% B
(2.5–19min). Between runs, there was a gradient column rinse (20% B at
19min, up to 100% B at 20.5min) and re-equilibration with 20% B
(20.5–23min). The injection volume was 10 μl; flow rate 300 μl/min; column
oven maintained at 40 °C; and autosampler maintained at 10 °C. Quality
control and instrument blank samples were run every 8–12 samples. A six-
point calibration curve (0.01, 0.05, 0.1, 0.5, 1, 2 ng/ml) with internal standards
(1 ng/ml) in a 50:50 methanol:water solution was run alongside samples.
Additional methods parameters have been published previously [48].

PFAS quantification. We analyzed each DBS for 22 PFAS, provided in
Supplementary Table S1. Nine PFAS had at least one sample with a
concentration >LOD. Of these, 6:2 fluorotelomer sulfonic acid (6:2 FTS), was
excluded from further analysis because of challenges with recovery. The 8
remaining PFAS measured were PFOA, PFOS, perfluorooctane sulfonamide
(PFOSA), PFBA, PFBS, perfluoroheptanoic acid (PFHpA), perfluoroheptane
sulfonic acid (PFHpS), and PFHxS. Full MS scans with exact mass (Δ m/
z ≤ 10 ppm) were used for PFAS identification and quantification.
Calibration was based on an isotope dilution strategy and curves were
weighted 1/x. Limits of detection for this method have previously been
determined [48] and are as follows: PFOA, 0.083 ng/ml; PFOS, 0.090 ng/ml;
PFOSA, 0.014 ng/ml; PFBA, 0.25 ng/ml; PFBS, 0.027 ng/ml; PFHpA, 0.060 ng/
ml; PFHpS, 0.0080 ng/ml; PFHxS, 0.011 ng/ml.

PFAS concentration normalization. To account for both (1) heterogeneity
in blood spot area and volume and (2) potential contamination of the
collection cards with PFAS [44, 63, 64], we applied a multi-step normal-
ization approach using paired PFAS measurements in DBS samples and
card blank material as previously described [48]. Briefly, PFAS concentra-
tions (ng/ml) were quantified in the extracts from paired DBS and card
blanks. The card blank sample collected was adjacent to and of equal area
to the DBS sample. We assumed uniform density of the card material and
calculated the mass of the paper and blood in each DBS sample based on
the mass of the card blanks. PFAS detected in card blanks were assumed to
be present in the DBS at the same level on a mass per card area basis, and
levels in card blanks were subtracted from DBS measurements. DBS
measurements above the LOD were included in further analyses if the
PFAS was not detected in the paired card blank or if the DBS measurement
was at least 20% higher than the paired card blank (a criterion informed by
previous repeatability testing); all samples satisfied this criterion (Supple-
mentary Table S2). Final PFAS concentrations are reported in units of pg
PFAS/g dried blood. An example calculation is available in the
Supplementary Material. Concentrations were reported on the basis of
dried blood mass to account for variability in the amount of blood
absorbed by different types of collection cards.

PFAS exposure assignment. In addition to continuous PFAS concentra-
tions, we created binary PFAS variables for use in statistical comparisons
with thyroid hormone concentrations and neonatal characteristics. We
used the median number of detected PFAS (n= 3) to create a binary
categorical variable describing samples with either a low number of PFAS
detected (0–2) or a higher number of PFAS detected (≥3).

Statistical analysis
We described the distribution of newborn characteristics, including year of
birth by decade, number of hours after birth when DBS collection occurred

(in three groups of ≤24, 25–48, and 49–72 h), infant sex, and infant race/
ethnicity. We calculated median and interquartile ranges (IQR) of T4
(nmol/l), TSH (mU/l), and PFAS (pg/g) concentrations across all subjects
and stratified by newborn characteristics, with non-parametric two-sided
Wilcoxon rank-sum and Kruskal–Wallis tests used to compare differences
across decade of birth and DBS collection time. Spearman correlation
coefficients were used to assess the relationships between those PFAS with
at least 50% of samples above the LOD (PFOA, PFOS, and PFOSA), and
between thyroid hormone levels and PFOA, PFOS, and PFOSA. We also
examined participant characteristics (decade of birth, sex, race/ethnicity,
thyroid hormone concentrations, and thyroid hormone z-scores) stratified
by the categorical PFAS exposure variables. Because of small group sizes,
we consider stratified analyses by infant sex and race/ethnicity to be
secondary analyses and have not carried out formal statistical comparisons
across the groups. All analyses were carried out in SAS, version 9.4. We
used an alpha value of 0.05 for statistical significance; however, due to the
pilot nature of this study and small sample size, we do not strictly interpret
results using null hypothesis significance testing, but rather attempt to
determine if results are compatible with relationships between various
factors and are biologically plausible [65].

RESULTS
Participant characteristics
The study population included 9 female and 9 male infants
(Table 1). A total of 6 infants were identified as White (33%), 3
were Hispanic (17%), 3 were Asian (17%), 2 were Black (11%), and
4 were of unknown race/ethnicity (22%). The birth years of the 18
infants ranged from 1985 to 2018. Most DBS sampling (13 samples
or 72%) was carried out 24 to 72 h after birth, and within 24 h after
birth for 5 (28%) infants.

Thyroid hormone concentrations
TSH concentrations for the most recent samples were higher
compared to previous decades, but the T4 concentrations were
similar in the decades assessed (Table 1). TSH and T4 concentra-
tions declined as the DBS collection time (hours after birth)
increased; this decreasing trend was clear and statistically
significant when analyzed as z-scores (Table 1 and Fig. 1). While
TSH concentrations were similar for male and female infants, T4
concentrations were higher for females. According to newborn
screening guidelines, there were three abnormal T4 concentra-
tions, all from males, and no abnormal TSH concentrations.
Thyroid hormone concentrations were similar across different
race/ethnicity groups.

PFAS concentrations
PFAS concentrations were above the LOD for more than 50% of
samples for PFOA, PFOS, and PFOSA (Table 2). For PFBA, PFBS,
PFHpA, PFHpS, and PFHxS, less than 50% of samples had
concentrations above the LOD. Correlations between concentra-
tions of PFOA, PFOS, and PFOSA ranged from 0.17 to 0.40, with the
strongest correlation between PFOA and PFOS (Spearman’s
r= 0.40) (Table 3). Concentrations of PFOA, PFOS, and PFOSA were
lower in more recently collected samples, while PFBA was elevated
in the most recent decade (Table 2). However, only PFOSA
concentrations exhibited a statistically significant difference across
the decades evaluated by this study (p= 0.006). Due to low
detection frequencies and small sample size, it was not possible to
assess potential trends in concentration over time for the other
PFAS. The frequency of detection generally declined for PFOA,
PFOS, PFOSA, and PFBS in more recent decades, increased for PFBA,
and fluctuated for PFHpA and PFHxS, approximately mirroring
potential temporal trends in concentration. There was no statisti-
cally significant difference in PFAS concentration with respect to
sample collection time (Fig. 1), and concentrations did not appear to
differ by sex or race/ethnicity (Table S3). Examining participant
characteristics stratified by the PFAS exposure metric, more recent
samples appeared to have a lower number of detectable PFAS
compared to samples from earlier decades (Tables 4 and S4).
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Relationships between PFAS and thyroid hormone
concentrations
Spearman correlations between PFOA, PFOS, and PFOSA and
thyroid hormone concentrations ranged from −0.70 to 0.59
(Table 3). Correlations between PFAS and T4 were positive, while
correlations between PFAS and TSH were negative. PFOA was
most strongly correlated with T4 (r= 0.59), and PFOS was most
strongly correlated with TSH (r=−0.70). Concentrations of PFAS
were stratified by different classifications of thyroid hormone
measurements based on newborn screening guidelines in Table 5,
but low detection frequencies make it difficult to observe clear
trends. No differences were observed in PFAS concentrations
between newborns with normal or abnormal thyroid hormone
levels overall, in relation to normal versus abnormal TSH (all
samples had normal TSH concentrations), or for thyroid hormone
z-scores. However, when T4 was classified as normal or abnormal
based on newborn screening guidelines, median concentrations
of PFOA, PFOS, and PFBS appeared lower in samples with
abnormal/low T4 levels. In addition, samples in which 3–6 different
PFAS were detected had lower TSH (p= 0.01) compared to
samples in which 0–2 PFAS were detected (Table 4). T4

concentrations (p= 0.29) and z-scores (p= 0.12) were not
statistically significantly different for samples with 0–2 PFAS
compared to those with 3–6 PFAS.

DISCUSSION
In this pilot study, we examined the relationship between PFAS
concentrations, thyroid hormone levels, and neonatal character-
istics in newborn DBS collected over three decades. While PFAS
have previously been quantified in DBS, and thyroid hormones are
routinely measured in newborn DBS to screen for congenital
hypothyroidism, to our knowledge, this is the first study to
examine both PFAS and thyroid hormone concentrations using
DBS, and their relationships with neonatal characteristics. To our
knowledge, it is also the first study to attempt to measure PFBA,
PFNS, PFPeS, 4:2 FTS, 6:2 FTS, and 8:2 FTS in newborn DBS. We
observed that the concentration and detection frequency of
PFOA, PFOS, and PFOSA were generally lower in more recently
collected samples compared to the earliest years assessed by this
study. The time of specimen collection after birth was related to
thyroid hormone concentrations. PFAS concentrations were

Table 1. Thyroid hormone concentrations in 18 neonatal dried blood spots stratified by study participant characteristics.

Participant characteristics TSH (mU/l),
median (IQR), n

T4 (nmol/l),
median (IQR), n

Normal NBS,
na

Abnormal NBS,
na

Thyroid hormone z-
score, median (IQR)b

Full cohort 5.5 (2.7, 6.3),
n= 10

138 (104, 147),
n= 8

15 3 0.09 (−0.98, 0.41)

Decade of birth

1985–1994 (n= 5) – 139 (92, 142) 3 2 0.07 (−1.02, 0.14)

1995–2004 (n= 7) 3.9 (1.7, 5.6), n= 4 137 (116, 222),
n= 3

6 1 0.02 (−0.98, 0.41)

2005–2014 (n= 2) 4.1 (2.4, 5.7) – 2 0 −0.39 (−1.07, 0.29)

≥ 2015 (n= 4) 6.8 (5.8, 7.9) – 4 0 0.73 (0.33, 1.21)

p= 0.10c p= 0.79d p= 0.20c

DBS collection time (hours after birth)

≤24 h (n= 5) 6.0 (5.5, 7.5), n= 4 222, n= 1 5 0 0.55 (0.27, 1.50)

>24–48 h (n= 7) 5.6 (3.9, 6.6), n= 4 137 (116, 152),
n= 3

6 1 0.11 (−0.48, 0.41)

>48–72 h (n= 6) 1.7 (0.7, 2.7), n= 2 115.5 (90, 140.5),
n= 4

4 2 −1.01 (−1.14, 0.07)

p= 0.16c p= 0.26c p= 0.02c

Infant sex

Male (n= 9) 5.3 (2.7, 6.0), n= 5 104 (90, 127.5),
n= 4

6 3 −0.48 (−1.05, 0.11)

Female (n= 9) 5.7 (5.2, 6.3), n= 5 147 (139.5, 187),
n= 4

9 0 0.29 (0.08, 0.55)

p= 0.84d p= 0.06d p= 0.14d

Race/ethnicity

White (n= 6) 5.7 (5.2, 6.0); n= 5 152; n= 1 6 0 0.33 (0.08, 0.41)

Hispanic (n= 3), Black
(n= 2), Asian (n= 3)

5.3 (2.4, 7.2); n= 5 137 (116, 222);
n= 3

7 1 0.07 (−0.77, 1.21)

Unknown (n= 4) – 115.5 (90.0, 140.5);
n= 4

2 2 −0.49 (−1.10, 0.11)

p= 1.00d p= 0.40c p= 0.33c

TSH thyroid stimulating hormone, T4 thyroxine, IQR interquartile range, NBS newborn screening test, DBS dried blood spot, Q1–Q4 first through fourth quartiles.
aTSH and T4 concentrations were classified as normal or abnormal based on newborn screening test guidelines for congenital hypothyroidism. Abnormal T4
concentrations are <129 nmol/l or <10 μg/dl, and abnormal TSH concentrations are >10mU/l.
bThyroid hormone z-scores were calculated by taking the difference between the observed thyroid hormone concentration and the T4 or TSH sample mean,
and then dividing by the T4 or TSH sample standard deviation. The T4 sample mean was 136.0 nmol/l and sample standard deviation was 42.0 nmol/l; the TSH
sample mean was 5.0 mU/l and sample standard deviation was 2.4 mU/l.
cp values are from a two-sided Kruskal–Wallis test comparing thyroid hormone concentrations or z-scores across the participant characteristic groups.
dp values are from a two-sided Wilcoxon rank-sum test comparing thyroid hormone concentrations or z-scores across the participant characteristic groups.
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unrelated to time of sample collection, indicating that PFAS are
not sensitive to immediate postpartum physiologic changes or
post-birth exposures to PFAS occurring in the hours before DBS
sampling. Among PFAS with at least 50% of samples >LOD, we
found that thyroid hormone measurements were correlated with
concentrations of PFOA and PFOS. Our results provide valuable
information for biomonitoring studies using neonatal DBS and
suggest directions for future research on potential relationships
between PFAS exposure and thyroid hormones.
The decline in TSH and T4 concentrations as the DBS sample

collection time increased is consistent with normal physiologic
changes occurring soon after birth. At birth, exposure of the
newborn’s skin to a cooler environment and cutting the umbilical
cord stimulate a catecholamine surge, with TSH peaking
15–60min postpartum [59]. TSH levels decline to 50% of the
peak by 2 h postpartum, 20% of the peak by 24 h postpartum, and
continue to decline over the next 2–3 days. The post-birth TSH
surge stimulates an increase in T4, which peaks at 24–36 h
postpartum and declines over the next few weeks [59]. For these
reasons, most screening occurs between 24 and 48 h after birth
and by 4 days of age, timed to ascertain thyroid hormone levels
after post-birth surges have begun to normalize in order to
minimize false negatives and positives in congenital hypothyroid-
ism screening [54]. However, we observed that time of sampling is

still strongly correlated with both TSH and T4 levels, even within
the recommended timeframe (Table 1 and Fig. 1). This finding
underscores the importance of accounting for the time of sample
collection in studies using thyroid hormone concentrations from
newborn DBS.
In contrast to the patterns observed with thyroid hormone

levels, the time of sample collection was unrelated to PFAS
concentrations (Table 2 and Fig. 1), suggesting that PFAS
concentrations are not sensitive to physiological changes during
the immediate postpartum period and providing support for the
use of PFAS concentrations measured in newborn DBS as an
indicator of in utero exposures. This is consistent with reported
serum half-lives in humans of the PFAS measured in this study,
which range from 1.5 to 5 years for PFOA, PFOS, PFOSA, PFHpS,
and PFHxS, and 3 to 70 days for PFBA, PFBS, and PFHpA (Table 2)
[8, 9, 45, 66]. Together with longer half-lives, the stability of PFAS
in relation to DBS sample timing supports the validity of using DBS
to estimate neonatal PFAS exposures occurring during pregnancy.
The median concentrations of PFOS and PFOA reported in this

study are similar to those reported in the limited number of
existing studies that have evaluated newborn DBS, particularly
when considering samples collected during similar years
[43–45, 53]. Serum concentrations of PFAS have changed over
the past decades, with the direction of temporal trends varying by

Fig. 1 Thyroid hormone z-scores and PFAS concentrations (pg/g) by DBS collection time (hours after birth). A Thyroid hormone z-scores
stratified by DBS collection time. B PFOA concentrations (pg/g) stratified by DBS collection time. C PFOS concentrations (pg/g) stratified by
DBS collection time. D PFOSA concentrations (pg/g) stratified by DBS collection time. Boxplots show the median, 25th percentile, and 75th
percentile values, with whiskers extending to the minimum and maximum values. Only those PFAS with at least 50% of sample concentrations
>LOD are included, with concentrations <LOD treated as LOD/2. The limits of detection for the PFAS are: LODPFOA= 0.083 ng/ml,
LODPFOS= 0.090 ng/ml, and LODPFOSA= 0.014 ng/ml. DBS dried blood spot, PFAS per- and polyfluoroalkyl substances, PFOA perfluorooctanoic
acid, PFOS perfluorooctane sulfonic acid, PFOSA perfluorooctane sulfonamide, LOD limit of detection.

A.K. Rosen Vollmar et al.

741

Journal of Exposure Science & Environmental Epidemiology (2023) 33:737 – 747



Ta
bl
e
2.

PF
A
S
co

n
ce
n
tr
at
io
n
s
(p
g
/g
)
in

18
n
eo

n
at
al

d
ri
ed

b
lo
o
d
sp
o
ts

st
ra
ti
fi
ed

b
y
st
u
d
y
p
ar
ti
ci
p
an

t
ch

ar
ac
te
ri
st
ic
s.

Pa
rt
ic
ip
an

t
or

sa
m
p
le

ch
ar
ac
te
ri
st
ic

PF
O
A
,
m
ed

ia
n

(I
Q
R
)

PF
O
S,

m
ed

ia
n

(I
Q
R
)

PF
O
SA

,
m
ed

ia
n

(I
Q
R
)

PF
B
A
,
m
ed

ia
n

(I
Q
R
)

PF
B
S,

m
ed

ia
n

(I
Q
R
)

PF
H
p
A
,
m
ed

ia
n

(I
Q
R
)

PF
H
p
S,

m
ed

ia
n

(I
Q
R
)

PF
H
xS

,
m
ed

ia
n

(I
Q
R
)

Fu
ll
co

h
o
rt

(n
=
18

)
84

8.
2
(<
LO

D
,

15
03

.7
)

73
9.
1
(<
LO

D
,

27
05

.5
)

51
9.
5
(<
LO

D
,

71
5.
3)

<
LO

D
<
LO

D
(<
LO

D
,

94
1.
6)

<
LO

D
<
LO

D
<
LO

D
(<
LO

D
,

18
4.
6)

Sa
m
p
le
s
>
LO

D
,n

(%
)

10
(5
6%

)
9
(5
0%

)
12

(6
7%

)
4
(2
2%

)
8
(4
4%

)
1
(6
%
)

4
(2
2%

)
5
(2
8%

)

LO
D

(n
g
/m

l)
0.
08

3
0.
09

0
0.
01

4
0.
25

0.
02

7
0.
06

0
0.
00

80
0.
01

1

H
al
f-
lif
ea

1.
8–

3.
8
ye
ar
s

2.
9–

4.
8
ye
ar
s

1.
7
ye
ar
s

3
d
ay
s

26
–
44

d
ay
s

62
–
70

d
ay
s

1.
5
ye
ar
s

2.
9–

5.
3
ye
ar
s

D
ec
ad

e
o
f
b
ir
th

19
85

–
19

94
(n

=
5)

87
2.
8
(8
23

.6
,

17
36

.9
)

24
46

.0
(<
LO

D
,

27
05

.5
)

71
5.
3
(6
87

.3
,

97
1.
3)

<
LO

D
10

95
.4

(<
LO

D
,

40
91

.2
)

<
LO

D
<
LO

D
<
LO

D
(<
LO

D
,

24
1.
5)

19
95

–
20

04
(n

=
7)

97
2.
1
(<
LO

D
,

18
39

.8
)

14
78

.2
(<
LO

D
,

48
91

.3
)

69
4.
4
(4
07

.7
,

75
8.
4)

<
LO

D
<
LO

D
(<
LO

D
,

94
1.
6)

<
LO

D
<
LO

D
(<
LO

D
,

12
7.
4)

<
LO

D
(<
LO

D
,

50
9.
0)

20
05

–
20

14
(n

=
2)

75
1.
8
(<
LO

D
,

15
03

.7
)

19
55

.7
(1
74

1.
4,

21
70

.1
)

<
LO

D
<
LO

D
27

4.
5
(<
LO

D
,

54
9.
0)

59
7.
8
(<
LO

D
,

11
95

.7
)

<
LO

D
<
LO

D

≥
20

15
(n

=
4)

<
LO

D
(<
LO

D
,

58
8.
3)

<
LO

D
<
LO

D
13

81
.2

(<
LO

D
,

31
75

.4
)

<
LO

D
(<
LO

D
,

25
3.
1)

<
LO

D
<
LO

D
<
LO

D

p
=
0.
60

b
p
=
0.
24

b
p
=
0.
00

64
b

p
=
0.
46

b
p
=
0.
46

b
p
=
0.
04

6b
,
c

p
=
0.
42

b
p
=
0.
37

b

D
B
S
co

lle
ct
io
n
ti
m
e
(h
o
u
rs

af
te
r
b
ir
th
)

≤
24

h
(n

=
5)

<
LO

D
(<
LO

D
,

10
00

.8
)

17
41

.4
(<
LO

D
,

48
91

.3
)

<
LO

D
(<
LO

D
,

40
7.
7)

<
LO

D
(<
LO

D
,

26
36

.2
)

<
LO

D
<
LO

D
<
LO

D
(<
LO

D
,

12
7.
4)

<
LO

D

>
24

–
48

h
(n

=
7)

11
76

.6
(<
LO

D
,

18
39

.8
)

<
LO

D
(<
LO

D
,

21
70

.1
)

70
4.
6
(<
LO

D
,

10
83

.3
)

<
LO

D
54

9.
0
(<
LO

D
,

15
36

.5
)

<
LO

D
<
LO

D
<
LO

D

>
48

–
72

h
(n

=
6)

84
8.
2
(<
LO

D
,

97
2.
1)

19
62

.1
(<
LO

D
,

27
05

.5
)

69
0.
9
(6
25

.2
,

71
5.
3)

<
LO

D
<
LO

D
(<
LO

D
,

10
95

.4
)

<
LO

D
<
LO

D
92

.3
(<
LO

D
,

24
1.
5)

p
=
0.
80

b
p
=
0.
47

b
p
=
0.
12

b
p
=
0.
71

b
p
=
0.
16

b
p
=
0.
46

b
p
=
0.
55

b
p
=
0.
56

b

PF
A
S
p
er
-
an

d
p
o
ly
fl
u
o
ro
al
ky
ls
u
b
st
an

ce
s,
PF
O
A
p
er
fl
u
o
ro
o
ct
an

o
ic
ac
id
,P
FO

S
p
er
fl
u
o
ro
o
ct
an

e
su
lfo

n
ic
ac
id
,P
FO

SA
p
er
fl
u
o
ro
o
ct
an

e
su
lfo

n
am

id
e,
PF
BA

p
er
fl
u
o
ro
b
u
ta
n
o
ic
ac
id
,P
FB
S
p
er
fl
u
o
ro
b
u
ta
n
e
su
lfo

n
ic
ac
id
,

PF
H
pA

p
er
fl
u
o
ro
h
ep

ta
n
o
ic

ac
id
,
PF
H
pS

p
er
fl
u
o
ro
h
ep

ta
n
e
su
lfo

n
ic

ac
id
,
PF
H
xS

p
er
fl
u
o
ro
h
ex
an

e
su
lfo

n
ic

ac
id
,
IQ
R
in
te
rq
u
ar
ti
le

ra
n
g
e,

LO
D

lim
it
o
f
d
et
ec
ti
o
n
,
D
BS

d
ri
ed

b
lo
o
d
sp
o
t,
Q
1–
Q
4
fi
rs
t
th
ro
u
g
h
fo
u
rt
h

q
u
ar
ti
le
s,
TS
H
th
yr
o
id

st
im

u
la
ti
n
g
h
o
rm

o
n
e,

T 4
th
yr
o
xi
n
e.

a P
FA

S
se
ru
m

h
al
f-
liv
es

in
h
u
m
an

s
as

re
p
o
rt
ed

in
C
h
an

g
et

al
.
[6
6]
,O

ls
en

et
al
.
[8
],
Sp

lie
th
o
ff
et

al
.
[4
5]
,X

u
et

al
.[
9]
.

b
p
va
lu
es

ar
e
fr
o
m

a
tw

o
-s
id
ed

K
ru
sk
al
–
W
al
lis

te
st

co
m
p
ar
in
g
th
yr
o
id

h
o
rm

o
n
e
co

n
ce
n
tr
at
io
n
s
o
r
z-
sc
o
re
s
ac
ro
ss

th
e
p
ar
ti
ci
p
an

t
ch

ar
ac
te
ri
st
ic

g
ro
u
p
s,
w
it
h
co

n
ce
n
tr
at
io
n
s
<
LO

D
tr
ea
te
d
as

LO
D
/2
.

c O
n
ly

o
n
e
sa
m
p
le

o
f
PF

H
p
A
w
as

>
LO

D
,s
o
th
is
p
va
lu
e
sh
o
u
ld

n
o
t
b
e
co

n
si
d
er
ed

in
d
ic
at
iv
e
o
f
a
st
at
is
ti
ca
lly

si
g
n
ifi
ca
n
t
tr
en

d
.

A.K. Rosen Vollmar et al.

742

Journal of Exposure Science & Environmental Epidemiology (2023) 33:737 – 747



chemical. In adult and child populations worldwide, serum
concentrations of PFOS and PFOA increased from the 1970s to
the 1990s, and began decreasing in 2000 due to regulatory
restrictions and voluntary phase-outs [5, 67–69]. Our observation
of lower concentrations of PFOA, PFOS, and PFOSA in more recent
decades is consistent with these global trends. Similar findings
were also reported by a study conducted in New York State using
2640 neonatal DBS from 1997 to 2007 [45]. Maximum concentra-
tions of PFOS, PFOSA, PFOA, and PFHxS occurred between 1998
and 2001, and steadily declined after 2001 [45]. We also found
fewer PFAS (of the 8 compounds assessed) were detected in more
recent samples (Tables 2 and 4). The exception was PFBA, which
was only detectable in the most recent time period, from 2015 to
2018. Exposures to other PFAS, such as PFHxS and perfluorono-
nanoic acid (PFNA), have also increased through the 2000s
[67, 70, 71]. The lack of regulation of PFAS as a chemical class has
resulted in temporal variation that differs compound by com-
pound. Individual legacy PFAS subject to regulation have declined
while alternative and replacement PFAS have increased in use and
exposures over time [5]. Because of our pilot study’s limited
sample size, the temporal trends in PFAS concentrations we
observed—and their concordance with trends in larger studies—
primarily serve to support the potential representativeness of our
samples, rather than to precisely quantify the trends. The
correlations between PFOA and PFOS in DBS that we observed

are similar to those reported in National Health and Nutrition
Examination Survey (NHANES) samples from a similar time period
[72]. Data from NHANES 2003–2004 also found a correlation
between PFOS and PFOA (Pearson’s r= 0.66) [72], which may
indicate similarities in their commercial use.
To our knowledge, this pilot study is the first study to use

newborn DBS to examine PFAS exposure and thyroid hormone
concentrations. Several previous studies have examined associa-
tions between PFAS concentrations in maternal serum collected
during pregnancy or cord blood, and thyroid hormone levels in
neonatal DBS in cohorts from Norway, the Netherlands, Belgium,
and the United States [73–77]. Studies from two cohorts used
newborn DBS for T4 measurement and first trimester maternal
serum and cord blood for PFAS exposure assessment [73, 75, 76].
These studies observed higher PFOA, PFOS, PFNA, and PFHxS
concentrations and lower T4, but this relationship rarely reached
statistical significance [73, 75, 76]. These associations were often
sex-specific, with stronger associations for male infants. Of the two
studies examining TSH from newborn DBS in relation to PFAS, one
found a consistent inverse association that did not reach statistical
significance, with higher cord blood concentrations of PFNA,
PFOA, and PFOS and decreased TSH [77], and the other found no
associations between second trimester maternal serum PFAS
concentrations and TSH concentrations [74].
Research on the directionality of correlations between PFAS

concentrations and thyroid hormone levels has yielded varying
results [1]. In our study, concentrations of PFOA, PFOS, and PFBS
appeared to be lower in samples with abnormal/low T4 levels
(Table 5). Similarly, we found that correlations between PFAS and
T4 concentrations were positive while correlations between PFAS
and TSH were negative (Table 3). The opposing directions of
correlation coefficients between PFAS concentrations and the two
thyroid hormones may reflect the function of the hypothalamic-
pituitary-thyroid axis, in which TSH levels are inversely correlated
with T4 levels. TSH stimulates secretion of thyroid hormones,
including T4, from the thyroid gland, and these thyroid hormones
then reduce TSH secretion via a negative feedback loop [78].
Sex differences in associations between PFAS concentrations

and thyroid hormone levels have been reported in previous
studies. De Cock et al. [76] found that male but not female infants
with elevated cord blood PFOS concentrations had lower T4 levels;
this association attenuated after adjustment, and was not present
with PFOA [76]. Similarly, Preston et al. found prenatal maternal

Table 4. Participant characteristics of 18 infants stratified by the number of different PFAS detected in individual dried blood spot samples.

Participant characteristics Participants with 0–2 PFAS detected, na Participants with 3–6 PFAS detected, na p valueb

Full cohort 8 10 –

Decade of birth

1985–1994 1 4 –

1995–2004 2 5 –

2005–2014 1 1 –

≥2015 4 0 –

Thyroid hormone z-score, median (IQR) 0.35 (−0.18, 0.73) 0.05 (−1.07, 0.14) 0.12

TSH (mU/l), median (IQR) (n= 10) 6.17 (5.70, 7.21) 2.55 (1.56, 3.93) 0.01

T4 (nmol/l), median (IQR) (n= 8) 104 (92, 116) 140.5 (137.0, 152.0) 0.29

Newborn screening test resultsc

Normal thyroid hormone level 6 9 –

Abnormal thyroid hormone level 2 1 –

PFAS per- and polyfluoroalkyl substances, IQR interquartile range, TSH thyroid stimulating hormone, T4 thyroxine.
aThe median number of PFAS detected in cohort samples was 3.
bp values are from a two-sided Wilcoxon rank-sum test comparing thyroid hormone concentrations across the PFAS exposure metric categories.
cTSH and T4 concentrations were classified as normal or abnormal based on newborn screening test guidelines for congenital hypothyroidism. Abnormal T4
concentrations are <129 nmol/l or <10 μg/dl, and abnormal TSH concentrations are >10mU/l.

Table 3. Spearman correlations between PFAS concentrations (pg/g)
and thyroid hormone concentrations in 18 neonatal dried blood spots.

PFOA PFOS PFOSA

PFOA 1 0.40 0.20

PFOS 1 0.17

PFOSA 1

T4 0.59 0.49 0.19

TSH −0.40 −0.70 −0.36

PFAS concentrations <LOD were substituted using LOD/2. Only those PFAS
with at least 50% of samples >LOD are included in this analysis.
PFAS per- and polyfluoroalkyl substances, PFOA perfluorooctanoic acid,
PFOS perfluorooctane sulfonic acid, PFOSA perfluorooctane sulfonamide,
TSH thyroid stimulating hormone, T4 thyroxine, LOD limit of detection.
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concentrations of PFOS, PFOA, and PFHxS were inversely
associated with T4 levels in male but not female infants, including
in a PFAS mixtures analysis [73, 75]. In our cohort, T4 levels were
lower for male infants (p= 0.06), and the 3 abnormal thyroid
screens were all in male infants and based on T4 levels.
The strengths of this pilot study include assessment of a racially

and ethnically diverse cohort sampled from a period spanning 33
years. This is the first study to use newborn DBS to quantify PFAS
that also leverages available thyroid hormone measurements from
the same DBS, and the first study to consider an expanded panel
of PFAS, including 6 not previously quantified in newborn DBS.
Results from this study address several critical methodological
issues for application in future larger studies. The limitations of
this study include its small sample size. This study was conducted
as a pilot study, which precluded more complex modeling of
PFAS-thyroid hormone relationships. While the relationships
observed have been contextualized, these findings may be
subject to confounding or due to chance. Samples may not be
representative of the larger population. Descriptions of temporal
trends for PFAS were limited by our sample size and many
samples being below the LOD; as such, these patterns should be
examined in larger cohorts. Additionally, it is unknown whether
the abnormal newborn screening test results in this cohort were
later diagnosed as cases of congenital hypothyroidism, as we do
not have access to follow-up testing results. Future studies could
seek to link newborn screening test results with follow-up testing
and subsequent diagnosis.
Findings of this pilot study suggest that several PFAS warrant

further investigation in relation to thyroid hormone levels, notably
PFOA and PFOS in relation to T4, and PFOS in relation to TSH.
Future studies with larger sample sizes could explore the
opposing directions of the associations between T4 and TSH and
various PFAS, and mechanistic studies could investigate the
implications of this for the potential mechanisms of PFAS-induced
thyroid hormone disruption. Additionally, this pilot study offers
several methodological lessons for future research using newborn
DBS to examine PFAS and thyroid hormone concentrations.
Although the filter paper used in DBS stabilizes many analytes,
and PFAS are persistent compounds with longer half-lives, future
studies designed to investigate the stability of PFAS and other
environmental chemicals in DBS after long-term storage would be
informative as researchers increasingly leverage archived DBS for
environmental health research. In relation to epidemiologic
analyses, future studies should account for the time of DBS
sample collection, which influences thyroid hormone levels even
when samples are collected during the specified timeframe for
newborn screening tests. Studies using archived newborn DBS
across multiple decades may also encounter the challenge of
harmonizing TSH and T4 measurements. When using the z-score
approach to combine both T4 and TSH measurements, abnormal
thyroid hormone concentrations will have both low and high z-
scores; as a result, associations with PFAS concentrations or other
exposures of interest could have a U-shaped distribution, and so
statistical models should be able to accommodate nonlinear
associations. Despite some challenges in using archived newborn
DBS in environmental health studies, these samples offer unique
and powerful opportunities to interrogate preclinical, population-
based samples for a range of environmental chemicals, offering
great potential for children’s health research [42].

CONCLUSION
This pilot study uses newborn DBS to measure a panel of 8 PFAS,
demonstrating the feasibility of quantifying PFAS in archived
newborn DBS. This study also leverages thyroid hormone
concentrations previously measured as part of routine newborn
screening to highlight several methodological considerations for
future studies using thyroid hormone screening data and

measurements from newborn DBS. Although exploratory, poten-
tial relationships between thyroid hormones and PFAS exposure
were observed. These findings should be examined in a larger
cohort with a broader range of thyroid hormone measurements to
more thoroughly describe potential patterns of association.
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