Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association between urinary glyphosate levels and serum neurofilament light chain in a representative sample of US adults: NHANES 2013–2014

Abstract

Background

Glyphosate, the herbicide with the highest global usage, has been found to have links to neurological impairment in some occupational studies. Neurofilament light chain (NfL) is a protein that is released into the bloodstream following neuroaxonal damage and has emerged as a reliable biomarker for various neurological disorders. However, no research has investigated the potential link between glyphosate exposure and neurological damage or serum NfL levels in the general population.

Objective

The objective of this study was to assess the possible correlation between glyphosate exposure and serum NfL levels in a population that is representative of the United States.

Methods

We analyzed data from 597 adults (aged ≥20 years) from the 2013–2014 National Health and Nutrition Examination Survey (NHANES) to explore the potential correlation between urinary glyphosate levels and serum NfL levels.

Results

We found a significant positive association between urinary glyphosate levels and serum NfL levels (ß-coefficient = 0.110; S.E. = 0.040; P = 0.015), indicating that higher levels of glyphosate exposure may be linked to higher levels of neuroaxonal damage. Furthermore, when glyphosate levels were divided into quintiles, we observed a significant trend of increasing mean NfL concentrations with increasing quintiles of glyphosate exposure (P for trend = 0.036). Notably, the association was more pronounced in certain subgroups, including those aged ≥40 years, non-Hispanic whites, and those with a BMI between 25 and 30.

Impact statement

This is the first research to suggest an association between glyphosate exposure and biomarkers indicative of neurological damage in general U.S. adults. If the correlation observed is causal, it raises concerns about the potential effects of glyphosate exposure on neurological health among U.S. adults. The study is noteworthy due to its representation of American adults aged 20 and above, as well as the use of reliable and comprehensive data from the NHANES database.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart algorithm.
Fig. 2: Geometric mean (geometric SE) of serum neurofilament light chain across quintiles of urine glyphosate in multiple linear regression models (adjusted for model 2), with results weighted for sampling strategy.

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available at the NHANES website (https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 5 February 2023)

References

  1. Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur. 2016;28:3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ospina M, Schütze A, Morales-Agudelo P, Vidal M, Wong L-Y, Calafat AM. Exposure to glyphosate in the United States: data from the 2013–2014 National Health and Nutrition Examination Survey. Environ Int. 2022;170:107620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mills PJ, Kania-Korwel I, Fagan J, McEvoy LK, Laughlin GA, Barrett-Connor E. Excretion of the herbicide glyphosate in older adults between 1993 and 2016. JAMA. 2017;318:1610–1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kudsk P, Mathiassen SK. Pesticide regulation in the European Union and the glyphosate controversy. Weed Sci. 2020;68:214–22.

    Article  Google Scholar 

  5. Costas-Ferreira C, Durán R, Faro LRF. Toxic effects of glyphosate on the nervous system: a systematic review. Int J Mol Sci. 2022;23:4605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinez A, Al-Ahmad AJ. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol Lett. 2019;304:39–49.

    Article  CAS  PubMed  Google Scholar 

  7. Hao Y, Zhang Y, Ni H, Gao J, Yang Y, Xu W, et al. Evaluation of the cytotoxic effects of glyphosate herbicides in human liver, lung, and nerve. J Environ Sci Health B. 2019;54:737–44.

    Article  CAS  PubMed  Google Scholar 

  8. Martínez M-A, Rodríguez J-L, Lopez-Torres B, Martínez M, Martínez-Larrañaga M-R, Maximiliano J-E, et al. Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ Int. 2020;135:105414.

    Article  PubMed  Google Scholar 

  9. Ait Bali Y, Ba-Mhamed S, Bennis M. Behavioral and immunohistochemical study of the effects of subchronic and chronic exposure to glyphosate in mice. Front Behav Neurosci. 2017;11:146.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ait-Bali Y, Ba-M’hamed S, Gambarotta G, Sassoè-Pognetto M, Giustetto M, Bennis M. Pre- and postnatal exposure to glyphosate-based herbicide causes behavioral and cognitive impairments in adult mice: evidence of cortical ad hippocampal dysfunction. Arch Toxicol. 2020;94:1703–23.

    Article  CAS  PubMed  Google Scholar 

  11. Fuhrimann S, Farnham A, Staudacher P, Atuhaire A, Manfioletti T, Niwagaba CB, et al. Exposure to multiple pesticides and neurobehavioral outcomes among smallholder farmers in Uganda. Environ Int. 2021;152:106477.

    Article  CAS  PubMed  Google Scholar 

  12. von Ehrenstein OS, Ling C, Cui X, Cockburn M, Park AS, Yu F, et al. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: population based case-control study. BMJ. 2019;364:1962.

    Google Scholar 

  13. Zhang C, Hu R, Huang J, Huang X, Shi G, Li Y, et al. Health effect of agricultural pesticide use in China: implications for the development of GM crops. Sci Rep. 2016;6:34918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang C, Sun Y, Hu R, Huang J, Huang X, Li Y, et al. A comparison of the effects of agricultural pesticide uses on peripheral nerve conduction in China. Sci Rep. 2018;8:9621.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thebault S, Booth RA, Freedman MS. Blood neurofilament light chain: the neurologist’s troponin? Biomedicines. 2020;8:523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weydt P, Oeckl P, Huss A, Müller K, Volk AE, Kuhle J, et al. Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann Neurol. 2016;79:152–8.

    Article  CAS  PubMed  Google Scholar 

  17. Byrne LM, Rodrigues FB, Blennow K, Durr A, Leavitt BR, Roos RAC, et al. Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol. 2017;16:601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Marchis GM, Katan M, Barro C, Fladt J, Traenka C, Seiffge DJ, et al. Serum neurofilament light chain in patients with acute cerebrovascular events. Eur J Neurol. 2018;25:562–8.

    Article  PubMed  Google Scholar 

  19. Olsson B, Portelius E, Cullen NC, Sandelius Å, Zetterberg H, Andreasson U, et al. Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol. 2019;76:318–25.

    Article  PubMed  Google Scholar 

  20. Thebault S, Booth RA, Rush CA, MacLean H, Freedman MS. Serum neurofilament light chain measurement in MS: hurdles to clinical translation. Front Neurosci. 2021;15:654942.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A, et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81:857–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Preische O, Schultz SA, Apel A, Kuhle J, Kaeser SA, Barro C, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med. 2019;25:277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. CDC. National Health and Nutrition Examination Surveys (NAHNES). 2013-2014. (http://wwwn.cdc.gov/nchs/nhanes/search/nhanes13_14.aspx). (Accessed October 3 2022).

  24. Schütze A, Morales-Agudelo P, Vidal M, Calafat AM, Ospina M. Quantification of glyphosate and other organophosphorus compounds in human urine via ion chromatography isotope dilution tandem mass spectrometry. Chemosphere. 2021;274:129427.

    Article  PubMed  PubMed Central  Google Scholar 

  25. CDC. 2013 - 2014 Data Documentation, Codebook, and Frequencies: Glyphosate (GLYP) Centers for Disease Control and Prevention, National Center for Health Statistics. 2022. (https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/SSGLYP_H.htm). (Accessed Feburary 11 2023)

  26. CDC. 2013-2014 Data Documentation, Codebook, and Frequencies Serum Neurofilament Light Chain - Serum Centers of Disease Control and Prevention; 2022. (https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/SSSNFL_H.htm). (Accessed October 3 2022).

  27. Ndrepepa G, Holdenrieder S, Neumann F-J, Lahu S, Cassese S, Joner M, et al. Prognostic value of glomerular function estimated by Cockcroft-Gault creatinine clearance, MDRD-4, CKD-EPI and European Kidney Function Consortium equations in patients with acute coronary syndromes. Clin Chim Acta. 2021;523:106–13.

    Article  CAS  PubMed  Google Scholar 

  28. O’Brien KM, Upson K, Cook NR, Weinberg CR. Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect. 2016;124:220–7.

    Article  PubMed  Google Scholar 

  29. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113:192–200.

    Article  CAS  PubMed  Google Scholar 

  30. Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300:1303–10.

    Article  CAS  PubMed  Google Scholar 

  31. Lin CY, Chen PC, Lin YC, Lin LY. Association among serum perfluoroalkyl chemicals, glucose homeostasis, and metabolic syndrome in adolescents and adults. Diabetes Care. 2009;32:702–7.

    Article  CAS  PubMed  Google Scholar 

  32. CDC. ANALYTIC AND REPORTING GUIDELINES: The National Health and Nutrition Examination Survey (NHANES). National Center for Health Statistics; 2005. (http://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/nhanes_analytic_guidelines_dec_2005.pdf). (Accessed March 3 2023).

  33. Grau D, Grau N, Gascuel Q, Paroissin C, Stratonovitch C, Lairon D, et al. Quantifiable urine glyphosate levels detected in 99% of the French population, with higher values in men, in younger people, and in farmers. Environ Sci Pollut Res. 2022;29:32882–93.

    Article  CAS  Google Scholar 

  34. Nova P, Calheiros CSC, Silva M. Glyphosate in Portuguese adults – a pilot study. Environ Toxicol Pharmacol. 2020;80:103462.

    Article  CAS  PubMed  Google Scholar 

  35. Gillezeau C, van Gerwen M, Shaffer RM, Rana I, Zhang L, Sheppard L, et al. The evidence of human exposure to glyphosate: a review. Environ Health. 2019;18:2.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zoller O, Rhyn P, Zarn JA, Dudler V. Urine glyphosate level as a quantitative biomarker of oral exposure. Int J Hyg Environ Health. 2020;228:113526.

    Article  CAS  PubMed  Google Scholar 

  37. Ashley-Martin J, Huang R, MacPherson S, Brion O, Owen J, Gaudreau E, et al. Urinary concentrations and determinants of glyphosate and glufosinate in pregnant Canadian participants in the MIREC study. Environ Res. 2023;217:114842.

    Article  CAS  PubMed  Google Scholar 

  38. Shea KM. Pediatric exposure and potential toxicity of phthalate plasticizers. Pediatrics. 2003;111:1467–74.

    Article  PubMed  Google Scholar 

  39. Bali YA, Kaikai NE, Ba-M’hamed S, Bennis M. Learning and memory impairments associated to acetylcholinesterase inhibition and oxidative stress following glyphosate based-herbicide exposure in mice. Toxicology. 2019;415:18–25.

    Article  CAS  PubMed  Google Scholar 

  40. Baier CJ, Gallegos CE, Raisman-Vozari R, Minetti A. Behavioral impairments following repeated intranasal glyphosate-based herbicide administration in mice. Neurotoxicol Teratol. 2017;64:63–72.

    Article  CAS  PubMed  Google Scholar 

  41. Barbosa ER, Leiros da Costa MD, Bacheschi LA, Scaff M, Leite CC. Parkinsonism after glycine-derivate exposure. Mov Disord. 2001;16:565–8.

    Article  CAS  PubMed  Google Scholar 

  42. Malhotra RC, Ghia DK, Cordato DJ, Beran RG. Glyphosate-surfactant herbicide-induced reversible encephalopathy. J Clin Neurosci. 2010;17:1472–3.

    Article  CAS  PubMed  Google Scholar 

  43. Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019;90:870–81.

    Article  PubMed  Google Scholar 

  44. Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233:183–98.

    Article  CAS  PubMed  Google Scholar 

  45. Fitzgerald KC, Sotirchos ES, Smith MD, Lord HN, DuVal A, Mowry EM, et al. Contributors to serum NfL levels in people without neurologic disease. Ann Neurol. 2022;92:688–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ciardullo S, Muraca E, Bianconi E, Cannistraci R, Perra S, Zerbini F, et al. Diabetes mellitus is associated with higher serum neurofilament light chain levels in the general US population. J Clin Endocrinol Metab. 2023;108:361–7.

    Article  PubMed  Google Scholar 

  47. Khalil M, Pirpamer L, Hofer E, Voortman MM, Barro C, Leppert D, et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat Commun. 2020;11:812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kern JK, Geier DA, Homme KG, King PG, Bjørklund G, Chirumbolo S, et al. Developmental neurotoxicants and the vulnerable male brain: a systematic review of suspected neurotoxicants that disproportionally affect males. Acta Neurobiol Exp. 2017;77:269–96.

    Article  Google Scholar 

  49. Joaquim A, Macrini DJ, Ricci EL, Rodrigues PA, Spinosa HdS, Suffredini IB, Bernardi MM. Effects of exposure to glyphosate in male and female mice behavior in pubertal period. Braz J Vet Res Anim Sci. 2014;51:194–203.

  50. Kubsad D, Nilsson EE, King SE, Sadler-Riggleman I, Beck D, Skinner MK. Assessment of Glyphosate induced epigenetic transgenerational inheritance of pathologies and sperm epimutations: generational toxicology. Sci Rep. 2019;9:6372.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Puigbò P, Leino LI, Rainio MJ, Saikkonen K, Saloniemi I, Helander M. Does glyphosate affect the human microbiota? Life. 2022;12:707.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Soukup ST, Merz B, Bub A, Hoffmann I, Watzl B, Steinberg P, et al. Glyphosate and AMPA levels in human urine samples and their correlation with food consumption: results of the cross-sectional KarMeN study in Germany. Arch Toxicol. 2020;94:1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tresnakova N, Stara A, Velisek J. Effects of glyphosate and its metabolite AMPA on aquatic organisms. Appl Sci. 2021;11:9004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank everyone who has contributed to the NHANES, including all anonymous participants.

Funding

This study was funded by grants from the Ministry of Science and Technology of Taiwan NSC 110-2314-B-385-001-MY3.

Author information

Authors and Affiliations

Authors

Contributions

A-MY and P-LC participated in the literature search and paper writing. C-KW helped with proposed hypotheses and statistical analysis. C-YL developed the hypothesis setting and approved the final revision of the paper.

Corresponding author

Correspondence to Chien-Yu Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study was approved by the Ethics Committee of the En Chu Kong hospital (ECKIRB1120605).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

All enrolled subjects signed informed consent regarding publishing their data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, AM., Chu, PL., Wang, C. et al. Association between urinary glyphosate levels and serum neurofilament light chain in a representative sample of US adults: NHANES 2013–2014. J Expo Sci Environ Epidemiol 34, 287–293 (2024). https://doi.org/10.1038/s41370-023-00594-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-023-00594-2

Keywords

Search

Quick links