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Per- and polyfluoroalkyl substances (PFAS) are water-soluble chemicals of concern due to their persistence, ubiquity, and toxicity.
We explored correlations between drinking water and blood PFAS levels in a subset of the mother-child Barcelona Life Study
Cohort (BiSC), Barcelona, Spain (2021). For 105 study participants, we analyzed 35 PFAS in tap water (unfiltered and filtered) and 23
PFAS in 98 paired plasma samples during the 3rd trimester, using LC-MS/MS. Water consumption habits were ascertained at the
third trimester through questionnaires. The majority of participants consumed bottled water (56.2%), 5/35 PFAS were detected in
unfiltered tap water, 4/35 PFAS in activated carbon filtered tap water samples, and 14/23 PFAS in plasma samples. Our results
showed that PFHpA at the observed concentrations in drinking water was significantly correlated with paired plasma levels (R= 0.2;
p= 0.04).

IMPACT STATEMENT:

● Exposure to PFAS is an emerging public health concern. Our manuscript contributes meaningful information from a subset of
the mother-child Barcelona Life Study Cohort (BiSC), reporting levels of a wide range of PFAS in paired tap water and plasma
samples from a sensitive subpopulation residing away from point source contamination. Our findings draw attention to low-
exposure ranges of PFAS in drinking water, and a weak but significant water-plasma correlation for PFHpA (a PFOA homologue),
suggesting that drinking water can be a contributor to human exposure to PFHpA.
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INTRODUCTION
Per- and polyfluoroalkyl substances (PFAS) make up a diverse
group of persistent synthetic chemicals with extensive produc-
tion since the 1950 s given their water-, heat-, grease-, and oil-
resistant properties [1]. Exposure to PFAS is an emerging public
health concern due to their ubiquitous presence, persistence in
different environmental media and human biological systems
[1–3]. Some legacy PFAS such as perfluorooctanoic acid (PFOA)
and perfluorooctanesulfonic acid (PFOS) and other long-chain
perfluoroalkyl acids (PFAAs) have already been regulated or
restricted, while shorter-chain PFAS have been introduced by
the industry as replacement compounds [4]. Although PFOA and
PFOS have longer half-lives and more bioaccumulative potential
in humans than their alternatives, human exposure levels and
potential risks are yet to be characterized for replacement and
emerging PFAS [5].
Epidemiological studies have shown that exposure to PFAS, in

particular PFAAs, has been associated with a range of adverse
health effects such as developmental [6], immune [7], reproductive

[8], hepatic [9], and metabolic disorders [10]. Specifically, exposure
to PFAS have been associated with adverse pregnancy outcomes
and in-utero exposure has been associated with developmental
outcomes such as fetal and childhood growth restriction,
spontaneous abortion and impacts on gestational duration [6]. In
this context, prenatal exposure to PFAS may be an important driver
of early-life health outcomes and predisposition to illness later in
life according to the Developmental Origins of Health and Disease
hypothesis. PFAS have been commonly detected in blood samples
of pregnant women worldwide [11–16]. Importantly, PFAS have
been shown to accumulate in the placenta and to be transferred
through the placental barrier resulting in fetal exposure and
potential adverse health outcomes [17].
Humans can be exposed to PFAS through multiple pathways

directly or indirectly. The relative contribution of each pathway
depends on the frequency of exposure, the concentration in the
exposure media, and the uptake fraction [18, 19]. Dominant
sources of exposure to PFAS are through drinking water, food and
air or dust, while the highest environmental concentrations are
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observed near contaminated sites [20–22]. PFAS are found to be
difficult to remove during water treatment, thus drinking water is
considered the main source of human exposure to legacy and
emerging PFAS near contaminated areas that is verified by
biomonitoring studies [23–26]. Relative source contribution of tap
water to matching serum legacy PFAS concentrations has been
reported to be 20% in the U.S. [27], and 23% for PFOA in China
[28], for the general population, respectively. However, informa-
tion on residential exposure estimates in tap water matching
blood levels is limited to a few PFAS [27]. Moreover, there is a lack
of information regarding European populations residing away
from point sources and their measured PFAS levels concurrent in
drinking water and blood.
The aim of the present study was to explore the correlations

between drinking water and blood PFAS levels in a subset of the
mother-child Barcelona Life Study Cohort (BiSC) from Spain.

MATERIALS AND METHODS
Study population and sample collection
This study was nested in the BiSC, a longitudinal population-
based birth cohort study in the Barcelona metropolitan area
where 1080 pregnant women were enrolled between 2018 and
2021 from three main university hospitals in Barcelona
(www.projectebisc.org). Information about lifestyle, home char-
acteristics, water use and water consumption were collected
through questionnaires in the first and third trimester. Questions
on water consumption habits were self-administered by the
participants and included the type of drinking water and amount
of water consumed at home (glasses/day), the type of filter used,
the type of bottled water consumed, and the type of water used
for cooking.
We selected a subset of 105 BiSC participants for residential tap

water sampling. Specifically, eligibility criteria for inclusion in this
study were: (a) the participant to be in the 3rd trimester of
pregnancy; (b) availability to collect tap water from participant’s
residence in the 3rd trimester; (c) availability of plasma samples in
the 3rd trimester of pregnancy. The BiSC study has been approved
by the PS Mar Ethics Committee (CEIm 2018/8050/I.). All
participants completed a written consent before participating in
the study.

Tap water and blood sample collection and preparation
Tap water from the participant’s home and plasma samples were
collected concurrently between February and April of 2021
through home and hospital visits, respectively, at the third
trimester of pregnancy.
The following methodology was considered for the drinking

water sampling at residential locations of study participants: tap
(unfiltered) water was collected when either unfiltered tap or
bottled water were the main source of drinking water
(N= 81 samples); filtered water was collected when it was the
main type of drinking water consumed at home (N= 14 activated
carbon (AC) filtered, N= 10 reverse osmosis (RO) filtered). Bottled
water samples were not collected, because a previous study from
the same area showed that PFAS were below detection limits in
bottled water [29]. Water samples were collected by BiSC
fieldworkers using sterile polypropylene bottles (250 mL) that
were transported to the research center in a portable cooler with
ice packs and stored at 4 °C until shipment to the laboratory for
the PFAS analysis.
Blood samples (n= 98) corresponding to participants involved

in the water sampling were collected by trained personnel using
15mL BD Vacutainer® collection tubes (4 mL silica plastic
vacutainer for serum, 5 mL silica glass vacutainer for serum,
6 mL EDTA tube for whole blood, plasma, buffy coat, and red cells).
The blood samples were kept at 4 °C until processing. The EDTA
tube was centrifuged at 2000 g for 10min and plasma was

transferred to a 15 mL tube which was centrifuged again at 2000 g
for 10 min. Finally, plasma was aliquoted (4 × 0.5 aliquots) and
stored at −80 °C until delivery for PFAS analysis.

Laboratory analysis of PFAS in tap water and blood
Tap water samples were pre-concentrated by on-line solid phase
extraction (SPE) followed by tandem mass spectrometry coupled
to liquid chromatography for the analysis of 35 PFAS (10
perfluoroalkyl carboxylates [C4-C13], 10 perfluoroalkyl sulfonates
[C4-C13], 3 perfluorooctane sulfonamides [PFOSA, N-MeFOSA, N-
EtFOSA], 4 fluorotelomer sulfonates [FTS n:2, n= 4, 6, 8 and 10]
and 8 ether-PFAS, including HFPO-DA (GenX), ADONA and
chlorinated PFAS) at the Institute of Environmental Assessment
and Water Research (IDAEA-CSIC; Barcelona, Spain). Labeled
internal standards were added prior to analysis. For all LC–MS/
MS analyses, a TSQ quantum triple quadrupole mass spectrometer
equipped with an electrospray ionisation (ESI) source (Thermo
Fisher Scientific, San Jose, CA, USA) was used. The limit of
quantification (LOQ) was considered the first level of the
calibration curve [29].
Blood plasma samples were analyzed for 23 PFAS (11

perfluoroalkyl carboxylates [C4-C14], 5 perfluoroalkyl sulfonates
[C4-C10], 3 perfluorooctane sulfonamides [PFOSA, N-MeFOSA,

Table 1. Characteristics of the study population in a subset of the
Barcelona Life Study Cohort (BiSC) (n total= 105).

Maternal characteristics N= 105

Mean (SD)

Age at enrollment (years) 33.8 (4.9)

Body mass index (kg/m2)a (1st trimester) 24.3 (4.5)

N (%)

Parity

Nulliparous 54 (51.4%)

Multiparous 51 (48.6%)

Ethnicity

Caucasian 76 (72.4%)

Latin American 26 (24.8%)

Asian 2 (1.9%)

Other 1 (1.0%)

Education

≤Primary school 5 (4.8%)

Secondary or professional formation 37 (35.2%)

≥University 63 (60.0%)

Smokingb (3rd trimester)

Yes 7 (6.7%)

No 82 (78.1%)

Water consumed at home (3rd trimester)

Tap (unfiltered) 13 (12.4%)

Filtered tap 23 (21.9%)

Tap (unfiltered) and bottled 10 (9.5%)

Bottled 59 (56.2%)

Water used for cookingc (3rd trimester)

Tap (unfiltered) 67 (63.8%)

Filtered tap 14 (13.3%)

Bottled 6 (5.7%)

Tap (unfiltered) and bottled 9 (8.6%)

Tap (unfiltered and filtered) 6 (5.7%)
a6 missing values in body mass index.
b16 missing values in smoking.
c3 missing values in water used for cooking.
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N-EtFOSA], and 4 ether-PFAS [HFPO-DA (GenX), ADONA, 6:2 Cl-
PFESA, 8:2 Cl-PFESA] using online solid phase extraction with ultra-
high-performance LC coupled with tandem mass spectrometry at
the Department of Food Safety at the Norwegian Institute of
Public Health (NIPH; Oslo, Norway) [30]. The LOQ was determined
as the response corresponding to a signal-to-noise ratio of 10:1 in
spiked calf serum. The limit of detection (LOD) was LOQ/3 [30].
Two separate laboratories conducted PFAS instrumental

analysis in plasma and tap water, where each lab is specialized
in the respective matrix analyzed ensuring the highest quality
data. A detailed description of the analytical methods, the quality
assurance and quality control of PFAS analysis in tap water [29]
and in plasma [30] has been published elsewhere.

Statistical analysis
Descriptive statistics of PFAS in tap water and plasma were based
on the samples with concentrations >LOD/LOQ.
Spearman’s rank correlation coefficients were calculated to

examine correlations between PFAS concentrations in paired
drinking water and plasma samples. Concentrations <LOD/LOQ
were assigned LOD/2 or LOQ/2, respectively. Water concentration
was assigned LOQ/2 for consumers of RO filtered or bottled water,
and we assigned PFAS concentrations measured in unfiltered tap
water divided by 2 for participants who consumed unfiltered and
bottled water (50–50%).
Mann–Whitney U test was used to assess differences in plasma

concentrations of PFAS in relation to tap and bottled water
consumption. Analyses were carried out using R software (version
4.1.1) and statistical significance was regarded p < 0.05 [31].

RESULTS
Study population
Characteristics of the study population are presented in Table 1. A
total of 105 women participated in this study, with mean age at
enrollment of 33.8 years (standard deviation (SD)= 4.9 years). The
majority of participants were nulliparous (51.4%), non-smokers
(78.1%), and had at least a university degree (60%). Results
showed that the self-reported type of drinking water at home was
bottled (56.2%), filtered tap (21.9%), unfiltered tap (12.4%), and
both tap and bottled (9.5%) water; and the majority of participants
reported cooking with unfiltered tap water (63.8%).

Occurrence of PFAS in paired tap water and plasma samples
Detection rates and descriptive statistics of PFAS concentrations
measured in tap water and plasma samples are presented in Table 2.
Among 35 target PFAS measured in tap water, five were detected in
unfiltered tap water samples above the quantification limits,

namely perfluoropentanoate (PFPeA; in 76.5% of samples, median=
5.8 ng/L), perfluoroheptanoate (PFHpA; 65.4%, median= 3.4 ng/L),
perfluorobutane sulfonate (PFBS; 58%, median= 8.3 ng/L), PFOS
(25.9%, median= 13.0 ng/L), perfluorohexanoate (PFHxA; 7.4%,
median= 12.0 ng/L). Additionally, 4 PFAS were detected in AC
filtered samples with lower detection frequencies and concentra-
tions: PFPeA (71.4%, median= 4.7 ng/L), PFHpA (57.1%, median=
3.0 ng/L), PFOS (21.4%, median= 12.0 ng/L), except for PFBS which
was detected in 28.6% of the samples with a median concentration
of 10.5 ng/L, which was higher than that for unfiltered tap water
samples. Spatial distribution of unfiltered tap water concentrations
for PFHpA, PFBS, and PFOS (occurring both in water and plasma
samples) revealed relatively higher concentrations in the South of
the study area (Fig. 1). We did not detect PFAS in RO filtered tap
water samples (Table 2). PFBA, PFCAs (C8-C13), PFSAs (C5, 6, 9–13),
FTSs, PFOSAs and emerging ether-PFAS such as HFPO-DA (Gen X)
and ADONA were not detected in water samples.
We detected 14 out of 23 target PFAS in plasma samples, of

which the most frequently detected compounds (>98%, >LOD)
with highest concentrations were PFOA (100%, median= 0.6 ng/
mL), perfluorononanoate (PFNA; 99%, median= 0.2 ng/mL), per-
fluorodecanoate (PFDA; 99%, median= 0.1 ng/mL), perfluorohex-
anesulfonate (PFHxS; 100%, median= 0.2 ng/mL) and PFOS
(100%; median= 1.7 ng/mL) (Table 2).
PFHpA, PFBS and PFOS were detected in both matrices (tap

water and plasma, n= 98). We observed a weak positive correlation
between plasma and water concentrations for PFHpA (Spearman
correlation coefficients (R)= 0.21; p= 0.04) (Fig. 2), however,
correlations were not significant for PFBS and PFOS (Spearman
correlation coefficients (R)=−0.0004; 0.05; p > 0.05) (Fig. 2).
It was not feasible to estimate the ingested PFAS levels from

drinking water due to the proportion of missing data (21%) on
self-reported water volume intake. We did not find significant
differences in PFHpA, PFBS, and PFOS plasma concentrations
between participants who consumed unfiltered tap water versus
bottled water.

DISCUSSION
To the best of our knowledge, this is the first study in Europe to
report PFAS in paired blood and tap water samples in a sensitive
subpopulation not residing near contaminated sites.
Results show a significant positive weak correlation between

concentrations of PFHpA in paired drinking water and plasma
samples among pregnant women suggesting that drinking water
can contribute to PFHpA exposure even at the low-exposure range
(Fig. 2). PFHpA (C7) has an intermediate carbon chain length
between the long-chain perfluorinated carboxylic acids (i.e.,

Fig. 1 Spatial distribution of PFAS concentrations in unfiltered tap water in a subset of the Barcelona Life Study Cohort (BiSC) (n= 81).
Plots represent mapped concentrations (ng/L) of PFHpA (a), PFBS (b), and PFOS (c) in residential unfiltered tap water samples (only for
PFAS that were detected in paired blood samples).
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containing ≥C7, seven perfluorinated carbons) and the short-chain
perfluorinated carboxylic acids (i.e., ≤C7) [32, 33]. As such, PFHpA is
structurally similar to PFOA and having the ability to readily dissolve
in water as well as potentially self-aggregate in aqueous solutions
while being highly resistant to degradation [33]. PFHpA detection
frequencies of 24–52% in tap water has been previously reported in
Barcelona [29], which is lower than in this study (65.4%). As PFHpA is
a PFOA homologue, bioaccumulation potential is assumed through
binding to proteins in plasma and liver, as well as having a longer
serum elimination half-life in humans ranging between 1.2–2.5
years [34]. PFBS and PFOS were also present in both matrices but
did not exhibit significant correlations. To note, we identified a high
proportion of bottled water consumers that was taken into account
for the correlation analysis. Other than PFHpA, a plausible
explanation for the lack of water-blood correlations for PFBS and
PFOS could be that plasma concentrations are driven by other
exposure routes such as dust and food intake (fish, eggs, fruits) [3].
Previous studies reported significant associations between tap
water and blood concentrations of PFOA and PFNA in U.S. women
(Nurses’ Health Study (NHS) nationwide prospective cohort) who
consumed >8 cups of tap water per day based on samples collected
in 1989–1990 [27], and for PFOA levels in a more recent study from
China (2015–2017) on the general population level [28].
With respect to PFAS in drinking water, a decline in detection

frequency of PFOS with steady concentrations in tap water
(unfiltered) was observed in Barcelona over time, while the
detection frequency and concentrations of short-chain replace-
ment PFAS such as PFPeA and PFBS have increased [29, 35, 36].
The presence of legacy PFAS in tap water samples remains a
concern due to their persistence in the environment and resulting
human exposure. The study area (the Barcelona metropolitan
area) is supplied by drinking water coming from two rivers
(Llobregat, Ter), and desalinated sea water [37]. The drinking water
supplied is a varying a mixture of these 3 sources [37]. Observed
spatial distribution of PFHpA, PFBS, and PFOS showed relatively
higher concentrations in unfiltered tap water for samples collected
in the Southern area (Fig. 1), which received a higher proportion
of Llobregat river [37]. This may be explained by the
background contamination due to the industrial activity along
the Llobregat watercourse as well as the proximity to the airport
[38]. However, total PFAS concentrations detected in unfiltered
tap water (median= 21.0 ng/L [minimum= 1.40 ng/L, maxi-
mum= 53.0 ng/L]) in this study were below the maximum
PFAS contaminant levels (sum of 20 carboxylates and sulfonates=
100 ng/L; total PFAS concentrations= 500 ng/L) set by the by EU
Drinking Water Directive (EU DWD 2020/2184) [39].
In our population of pregnant women, the median concentra-

tions of PFOS, PFOA, PFHxS, PFNA, PFUnDA in blood (1.7 ng/mL,
0.6 ng/mL, 0.3 ng/mL, 0.2 ng/mL, 0.2 ng/mL, respectively) were
much lower compared to pregnant women of other European
cohorts (BIB, EDEN, INMA, KANC, MoBa, RHEA) of the Early-Life
Exposome project (HELIX) (6.4 ng/mL, 2.3 ng/mL, 0.6 ng/mL,
0.7 ng/mL, 0.2 ng/mL, respectively) conducted between
1999–2010 [13], while concentrations were similar to findings of
a more recent US study (2014–2018) (median: PFOS= 1.9 ng/mL;
PFOA= 0.8 ng/mL; PFHxS=0.3 ng/mL; PFNA= 0.3 ng/mL) [40].
Comparison of PFAS levels among cohort studies is complex as
the plasma samples in this study were collected in the late
pregnancy period (3rd trimester). Therefore, it is possible that
PFAS levels could be lower than in the 1st trimester or compared
to non-pregnant women due to pregnancy hemodynamics (e.g.,
increased blood plasma volume) resulting in dilution of plasma
PFAS concentrations [41]. Nevertheless, detected blood PFAS
concentrations have been reported to be decreasing over time as
some PFAS were restricted or phased out of industrial applications
due to the environmental and human health concerns [42].
A major strength of this study is the wide range of PFAS

analyzed in tap water and plasma samples collected at the same

Fig. 2 Spearman correlations of PFAS between paired drinking water
and plasma samples in a subset of the Barcelona Life Study Cohort
(BiSC) (n=98). Spearman correlations are specific to compounds
detected in paired drinking water (ng/L) and plasma samples (ng/mL):
PFHpA (a), PFBS (b) and PFOS (c). Concentrations <LOD/LOQ were
assigned LOD/2 or LOQ/2, respectively. Water concentration was
assigned LOQ/2 for consumers of RO filtered or bottled water, and the
measured concentration in unfiltered tap water was divided by 2 for
participants who consumed both unfiltered and bottled water.
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period of pregnancy (3rd trimester) in line with the information
regarding the type of water consumed, in a sensitive subpopula-
tion. It is noteworthy that PFBS (C4), a short-chain PFAS has been
dominant in this study in unfiltered-, AC filtered tap water, and in
plasma samples, while it is already known that replacement PFAS,
such as PFBS, can cross the placental barrier more efficiently than
long-chain PFAAs [43] and thus future research is needed to
determine their impact on developmental and early life outcomes.
In this respect, the scope of the current study was limited,
however, future research for the overall BiSC will examine and
elucidate potential health effects of PFAS. There are some
limitations to the present study in relation to the small sample
size and missing data on self-reported drinking water consump-
tion volume.

CONCLUSIONS
We report levels of a wide range of PFAS in paired tap water and
plasma samples for pregnant women in the third trimester of
pregnancy living in Barcelona (Spain). Findings show that PFHpA
at the observed concentrations in drinking water was significantly
correlated with paired plasma levels, while the correlations for
PFBS and PFOS were not significant. This is the first study to
suggest that drinking water can be a contributor to human
exposure to PFHpA even at the low-exposure range.

DATA AVAILABILITY
All the data supporting the findings of this study is available in the article.
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