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Evaluating non-targeted analysis methods for chemical
characterization of organic contaminants in different matrices
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BACKGROUND: Children are vulnerable to environmental exposure of contaminants due to their small size, lack of judgement
skills, as well as their proximity to dust, soil, and other environmental sources. A better understanding about the types of
contaminants that children are exposed to or how their bodies retain or process these compounds is needed.
OBJECTIVE: In this study, we have implemented and optimized a methodology based on non-targeted analysis (NTA) to
characterize chemicals in dust, soil, urine, and in the diet (food and drinking water) of infant populations.
METHODS: To evaluate potential toxicological concerns associated with chemical exposure, families with children between 6
months and 6 years of age from underrepresented groups were recruited in the greater Miami area. Samples of soil, indoor dust,
food, water, and urine were provided by the caregivers, prepared by different techniques (involving online SPE, ASE, USE,
QuEChERs), and analyzed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Data post-processing was
performed using the small molecule structure identification software, Compound Discoverer (CD) 3.3, and identified features were
plotted using Kendrick mass defect plot and Van Krevelen diagrams to show unique patterns in different samples and regions of
anthropogenic compound classifications.
RESULTS: The performance of the NTA workflow was evaluated using quality control standards in terms of accuracy, precision,
selectivity, and sensitivity, with an average of 98.2%, 20.3%, 98.4% and 71.1%, respectively. Sample preparation was successfully
optimized for soil, dust, water, food, and urine. A total of 30, 78, 103, 20 and 265 annotated features were frequently identified
(detection frequency >80%) in the food, dust, soil, water, and urine samples, respectively. Common features detected in each matrix
were prioritized and classified, providing insight on children’s exposure to organic contaminants of concern and their potential
toxicities.
IMPACT STATEMENT: Current methods to assess the ingestion of chemicals by children have limitations and are generally
restricted by specific classes of targeted organic contaminants of interest. This study offers an innovative approach using non-
targeted analysis for the comprehensive screening of organic contaminants that children are exposed to through dust, soil, and diet
(drinking water and food).
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INTRODUCTION
Children are daily exposed to a variety of chemicals not only
through outdoor activities but also indoors in their homes and
schools. Several routes of exposure to environmental contami-
nants are noted, such as through inhalation, ingestion, or direct
contact (dermal absorption) [1–3]. Nevertheless, available data
suggest that diet is the major human exposure pathway for
organic contaminants of concern [4, 5]. Because children are still
developing, their frequent hand-to- mouth behavior renders them
more vulnerable and susceptible to toxic contaminants exposure
through the ingestion of food, water, soil and dust from

surrounding environments [1, 2, 6–9]. Therefore, a better under-
standing of the total chemical exposure and associated risks is
needed to assess health risks.
The most commonly used approach for the screening of

environmental organic contaminants involves the analysis of
target chemical compounds or specific classes of chemical
compounds using quantitative and trace analytical methods.
However, while targeted analysis can only include a limited
quantity of compounds at the same time, tens of thousands of
chemicals are registered in the U.S. which are used in our daily life
in different products and applications and to which we are
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exposed [10–12]. Advances in sample preparation processes, high-
resolution mass spectrometry (HRMS), data processing, and
chemometrics, have led to the development of non-targeted or
suspect screening methods as a holistic approach to characterize
organic contaminants in a variety of environmental and biological
matrices [13–15]. These methodologies can provide a more
comprehensive picture of the chemical composition, being
capable of detecting hundreds or even thousands of contami-
nants in dust, soil, water, food, and others, without prior
knowledge of potential pollution sources [16–19].
Although the field of suspect screening and non-targeted

analysis has been rapidly expanding and their use for the
identification of emerging contaminants of concern in water
[18, 20–22] has been well established in literature, its application
to indoor dust, soils, and food is still rather limited with most
reports published recently [14, 16, 17, 19, 23]. Collaborative studies
to date have identified ongoing needs for improvement,
especially regarding the reproducibility of the methodologies
currently in use [19, 24]. To address this issue, the use of in-house
quality control (QC) mixture and labeled internal standards are
usually employed to evaluate analytical performance, such as
accuracy, precision, and selectivity for non-targeted analysis (NTA)
[15].
In this study, we have developed and evaluated NTA methods

for chemical characterization of organic contaminants in different
types of matrices (food, water, soil, indoor dust, urine) using liquid
chromatography (LC) coupled to an Orbitrap HRMS system (Q-
Exactive). Herein, the tentative identification of chemicals of
potential health and environmental concern enabled the creation
of a database and the estimation of chemical exposure for
children (6 months to 6 years) in the Miami area, South Florida,
United States, including those from underrepresented races and
ethnicities (mainly Hispanic, and Latinx). The collection of urinary
outputs provides non-invasive information on organic contami-
nants being excreted in the urine and allowed the understanding
of chemicals body burden in young children.

MATERIAL AND METHODS
Chemicals
The internal standards used in the study were a mixture of isotopically
labeled pharmaceuticals at 10 µg/mL in methanol as listed in Supplementary
Table S1. A concentration of 5 µg/mL internal standard mixture in methanol
was prepared to spike indoor dust, soil and food samples, while a 0.5 µg/mL
was also prepared for urine andwater samples. The chemicals used as quality
control (QC) and information on their purity, source, octanol/water partition
coefficient (log Kow), monoisotopic mass, detection mode and the
monitored ions in ESI are listed in Supplementary Table S1. QC working
solutions were prepared at 2 µg/mL (for direct LC-HRMS injection) and
0.2 µg/mL in methanol (for online SPE LC-HRMS injection). All stock and
working solutions in methanol were stored in the freezer at −20 °C. Florisil
(500 g), methanol (Optima LC-MS grade), water (Optima LC-MS grade), and
acetonitrile (Optima LC-MS grade) were purchased from Fisher Scientific
(Hampton, NH). Sodium chloride (Certified ACS, 10 kg) was purchased from
Fisher Chemical. Primary secondary amine (PSA) (100 g) was purchased from
Agilent Technologies (Santa Clara, CA). Magnesium sulfate (anhydrous,
99.5%, 500 g) was purchased from Alfa Aesar (Haverhill, MA) and supelclean
ENVI-Carb SPE bulk (50 g) was purchased from Supelco (Bellefonte, PA). Beta-
glucuronidase/arylsulfatase (10ml, from Helix pomatia, REF 10127698001)
was purchased from Sigma Aldrich.

Sample collection procedures
Families with children aged 6 months to 6 years have been recruited under
the Institutional review board (IRB Protocol Approval #: IRB-21-0385). Five
groups of samples (children’s urine, food, water, soil, and indoor dust) were
collected from 5 participants from this study during the period of May
2022 to June 2022. Children’s age ranged from 2 to 4 years old and
consisted of 4 girls and one boy, whereas 3 out of 5 children were
Hispanic/Latino, and included one Caucasian, one eastern Asian/Asian
American and one described as bi-racial. Soil, dust, water, and food

samples were collected once a week for two weeks and labeled as Q1 and
Q2 (N= 40). Urine was also collected once a week for two weeks (N= 10),
but 24–28 h after the collection of the other samples to consider the lag
time between ingestion of food, soil and dust and the resulting urinary
output. Indoor dust samples were collected using common commercial
vacuum cleaner from homeowners (including house areas such as living
room, bedroom, and kitchen floor, where the child normally goes, plays
and sleep), wrapped with aluminum foil, and placed in zip-lock bags in
room temperature until analysis. Soil samples were collected from the
participants’ houses’ backyards and plant vases, when available, using a
plastic scoop provided to each family and stored in amber glass jars. Solid
food samples (small amounts of foods items consumed by the child such
as rice, vegetables, meat, fruits, among others) were collected in glass
containers, and liquid food samples (milk and juices) were collected in
50mL polypropylene centrifuge tubes. Water samples (either tap water,
filtered or bottled water) were collected using new or pre-cleaned (using
hexane, acetone, acetonitrile, methanol, and ultrapure water) 500 mL high
density polyethylene (HDPE) or polypropylene (PP) bottles, using nitrile
gloves, and bottles were rinsed with small amount of the water three times
before collection. Urine samples (first morning void because is the most
concentrated specimen of the day) were collected by the parents/
caregivers in clean, sterile, polypropylene specimen cups (provided to the
families). Samples containers were picked up, placed inside Ziplock bags,
and transported to the lab in cooler with ice pads (a trip water blank was
transported together with the samples to check the temperature, which
was measured around 2 ± 2 °C). Food samples and urine samples were
stored in a −20 °C freezer, whereas water and soil samples were stored at
4 °C in a refrigerator. Water samples and soil were processed within
14 days, food samples within 30 days and urine and dust within maximum
90 days after collection. A more detailed description of sample collection
protocols is described in the Supplementary Information.

Sample preparation and method optimization
Soil and dust. All soil samples were dried in an oven at 37 °C, and then
sieved using a 100-mesh sieve (150 µm) and stored in 50ml polypropylene
centrifuge tubes in the refrigerator. Before sieving the dust samples using
also a 100-mesh sieve, a tweezer was used to remove small debris and
visible hair. We have evaluated accelerated solvent extraction (ASE) and
ultrasonic solvent extraction (USE) as extraction methods for NTA of dust
and soil and their performance was assessed by the analysis of QC spiked
samples and unspiked soil samples. A detailed description of both ASE and
USE methods can be found in the Supplementary Information.

Urine. All urine samples were pre-filtered with a 0.2 µm filter after thawed
thoroughly. The analysis of urine samples was optimized in two ways. First,
the appropriate dilution of the samples was evaluated. The urine sample
preparation followed an online solid phase extraction (SPE) coupled to LC-
HRMS, which has a similar process as described in previous study and
summarized in Supplementary Fig. S1. To achieve the tested dilution factor
of 2, 5, 10, 20, and 50, the filtered urine samples were prepared in an 11mL
glass sample vial to make a final volume of 10.5 mL (10 mL were injected
through the online SPE-LC-HRMS system). Urine samples were prepared
unspiked and spiked with the QC mixture at a final concentration of
380 ng/L (Supplementary Table S2).
A preliminary test with a urine sample showed small number of chemical

features initially identified by Compound Discovered (321 features) using
existing databases, thus as part of method development it was evaluated if
chemicals of interest could be present as phase 2 metabolites (glucuronide
and sulfate conjugates) and therefore not identified with the available
databases. For this, experiments were conducted with the same urine after
enzymatic hydrolysis, in which an aliquot of 500 μL of urine together with
500 μL of ammonium acetate buffer 0.1mol/L (pH= 5.3) and 15 μL of β-
glucuronidase/arylsulfatase enzyme was added to a glass LC vial, vortexed
and left overnight in a drying oven at 37 °C to release conjugated
(glucuronidated and sulfonated) compounds.

Food. Food samples were kept frozen and were first thawed before
homogenization and extraction. Food samples were homogenized using a
food immersion blender (KitchenAid Variable Speed Corded Hand Blender -
KHBV53). Liquid samples (formula, milk, coconut water) provided were
blended to help homogenize the solid samples. We implemented a
QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, which
is further described in the Supplementary Information. Acetonitrile (ACN)
and methanol (MEOH) were tested in spiked (with QCmixture) and unspiked

D. Cui et al.

590

Journal of Exposure Science & Environmental Epidemiology (2023) 33:589 – 601



food items to optimize food extraction performance. The extraction
parameters were kept the same for both techniques with the exception of
one method used ACN for the extraction solvent and the other used MEOH,
as detailed in the text in the Supplementary Information.

Water. A method based on online SPE-LC-HRMS previously developed
[15] was applied for the pre-concentration and extraction of the drinking
water samples, with some slight modifications in the gradient based on in-
house chromatographic performance (e.g., slight shifts in retention times).
The chromatographic conditions are shown in Supplementary Table S3.
Water samples (10.5 mL) were amended with 10.5 µL of a 0.5 µg/mL
internal standard mixture and were ready for analysis.

Instrumentation method and detection limits. The data acquisition was
conducted using the high-resolution mass spectrometer Q-Exactive
Orbitrap MS (Thermo Scientific, USA) equipped with a heated electrospray
ionization source. Chromatographic separation was performed on a
Hypersil GOLD aQ C18 column (100 × 2.1 mm, 1.9 µm, Thermo Scientific,
USA). For the online- solid phase extraction (SPE), a Hypersil Gold aQ
(20 × 2.1 mm, 12 µm, Thermo Scientific, USA) column was used for pre-
concentration and extraction. The mobile phase gradient was optimized
for both the online SPE method as well as the direct LC-HRMS method and
can be found in Supplementary Tables S3 and S4, respectively.
The instrument detection limits (IDL) for the direct injection (samples in

methanol) and the online-SPE (sample in water) were calculated in
triplicate for both positive and negative modes. To determine the IDL for
the direct injection method, concentrations of 0.1, 1, 2, 4, 10, 20, and 40 µg/
L of the QC standards mixtures in methanol were prepared by dilution
from a 2 µg/mL stock. For the online-SPE, concentrations of 1.905, 3.81,
9.525, 19.05, and 38.1 ng/L of the QC standard mixtures (20 µg/L stock
solution) were prepared in LC-MS grade water to assess the IDL.
IDL was defined as the extracted response (peak area) for each analyte

compared to the blank to provide a signal to noise (S/N) greater than 3.
Most of the analytes could be detected at low ppt levels by online SPE- LC-
HRMS and at low ppb levels by direct injection (without SPE preconcen-
tration), demonstrating a potential good sensitivity of the method.

Quality control and retention time prediction model. To ensure the data
quality of the NTA results being generated, QC compounds were selected
to cover a wide range of polarity and log Kow that can be detected either
by ESI in positive or negative mode (Supplementary Table S1), thus, to
guarantee reproducibility and performance of the method. QC samples
were made from a 2 µg/mL working solution in methanol (0.2 µg/mL for
online SPE) containing a mixture of the single reference standards listed in
Table S1 and run in the beginning and end of each batch of samples as
well as every 8–12 samples. All quality controls samples for online SPE
methods were prepared in LC-MS grade water at a final concentration of
380 ng/L (20 µL of the 0.2 µg/mL solution), whereas for direct LC-HRMS it
was prepared in methanol at a final concentration of 200 µg/L (100 µL of
the 2 µg/mL solution). A mixture of internal labeled standards containing
compounds ionized in positive and negative mode respectively and
prepared at a final concentration of 500 µg/L in methanol for direct LC-
HRMS injection and at a final concentration of 500 ng/L for online SPE-LC-
HRMS method were added to all samples, including the QC samples. Blank
samples, consisting of LC-MS water and labeled standards were analyzed
daily together with QC standard mixtures to check for background
contamination and mass accuracy.
Before every analysis, instrument calibration was performed using the

Pierce LTQ ESI positive ion calibration solution (Thermo Scientific, USA) for
positive mode and the Pierce LTQ ESI negative ion calibration solution
(Thermo Scientific, USA) for negative mode. Instrument mass accuracy was
checked to be <5 ppm but was routinely below 2 ppm. Mass tolerance for
compound detection and identification was set to 5 ppm. Calibration
evaluations were conducted weekly to assure the proper operation of all
isolation, trapping and detection systems of the mass spectrometer.
To add a further level of confidence to the identification of features, a

retention time prediction model was used as previously described [5],
provided a better understanding of how compounds are being retained
and eluted according to their log Kow. The linear regression obtained
between retention time (RT) and log Kow of the 17 compounds present in
the QC solutions was used to calculate the theoretical RT of the tentatively
identified features. This RT model has been previously applied to the EPA’s
Non-Targeted Analysis Collaborative Trial (ENTACT) samples, resulting in a
false positive reduction of 49.1%, and improving reliability and accuracy of
the data being generated [15].

To evaluate the NTA method, sensitivity, specificity or selectivity,
accuracy, and precision were calculated to compare the ability of the
method after post-processing to correctly identify the compounds present
in the QC standard mixtures or correctly exclude compounds not found in
the QC mixture after identification was performed by the search using
available databases. Sensitivity in our NTA approach was calculated in
terms of the true positive rate (TPR), i.e., using the following formula:
TPR= TP/(TP+ FN), whereas TP are the true positive compounds
(compound identified in the sample that is present in the sample) and
FN are the false negative compounds (compound not identified in a
sample but is present in the sample) [25–27]. In the NTA context, specificity
or selectivity was assessed through the ability of the proposed RT model
(with less polar compounds retaining more and eluting later in reverse
phase chromatography), as shown in Supplementary Fig. S2, to reduce
false positives. Selectivity was assessed by the true negative rate (TNR),
which is calculated based on the following equation: TNR= TN/(FP+ TN),
in which FP are false positive compounds (compounds falsely identified as
being present when they are not) and TN are the compounds that are not
present and are correctly rejected [25]. Accuracy in our NTA approach was
calculated using the formula (TP+ TN)/(TP+ FP+ FN+ TN) which calcu-
lates the methods ability to correctly identify both TP and TN [25].
Precision of the NTA method was evaluated using the formula TP/(TP+ FP)
which is the method’s ability to identify compounds correctly in relation to
false identifications [25].
Chemicals present in the QC samples were checked to ensure the data

quality for reporting, where the accuracy in terms of the correct
identification of spiked QC compounds were >70% (at least 12 out of 17
compounds were detected by the NTA workflow), precision in terms of
peak area variance showed relative standard deviation (RSD) < 50% (for at
least 12 out of 17 compounds), and in terms of retention time variance
showed RSD < 5%. For laboratory blanks, the defined QC criteria is that the
peak area of the sample must be at least three times higher than that of
the blank. To improve the confidence level in the NTA identification, only
compounds identified in most of the samples (>50%) of each matrix were
prioritized.

Data processing. Data post-processing was performed using the small
molecule structure identification software in Compound Discoverer (CD)
3.3 which includes peak deconvolution, background subtraction, merging
and grouping of features, elemental composition prediction, evaluation of
isotopic pattern, adducts, fragment matching, and the searching of
databases. Database and library searched, and criteria adopted for peak
picking, intensity threshold, S/N, elemental composition, pattern matching,
mass error, among others are described in the Supplementary information.
At the end of the data postprocessing step performed by the software, a
list of features was automatically generated and additional manual data
processing were performed; where only data with confidence level 2
proposed by Schymanski having a library spectrum match, peak area of the
sample at least three times higher than that of the blank, peak rating >4,
isotopic patterns (such as M and M+ 2 for Cl and Br), and the retention
time of the tentative candidate was within 2min based on the RT
prediction model were considered. Annotated features not meeting these
criteria were eliminated [15]. Supplementary Fig. S2 shows a summary of
the procedure used to reduce the number of false positives and to increase
the confidence of identification to Level 2a (Schymanski scale, [28])

RESULTS
Method performance evaluation
For the instrument detection limits (IDLs), 3 replicates of spiked
solutions in LC-MS grade water or 5 replicates in methanol were
analyzed and IDLs were estimated as the lowest concentration
value with S/N > 3, in targeted ion extraction mode using
Xcalibur software, thus providing instrumental sensitivity when
using either the online SPE or direct LC-HRMS method. The IDL
results for each compound in the QC mix are shown in
Supplementary Table S5. Overall, for 13 of the 17 QC
compounds, the IDL for the direct injection method was
0.1 µg/L, except for sucralose and gemfibrozil which were
1 µg/L and hydrochlorothiazide at 4 µg/L. The IDL for the
online-SPE ranged from 1.9 to 38 ng/L with 14 of the 17 analytes
having an IDL of 1.9 ng/L, except for caffeine (9.5 ng/L),
hydrochlorothiazide (19 ng/L), and sucralose (38 ng/L).
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The internal standard mixture (IS) used in this study contained a
total of 22 isotopically labeled chemicals amenable for positive
and/or negative detection modes. To verify which labeled
standards would be adequate and should be monitored for all
types of samples (ones that were constantly detected by the
different procedures), it was assessed their presence in the
analyzed samples at the concentration of 500 ng/L for online SPE
(10.5 µL of 0.5 µg/mL IS mix) and 500 µg/L for direct LC-HRMS
(100 µL of 5 µg/mL IS mix). The internal standard mixture was
added to a total of 22 samples, including laboratory blanks, quality
control solutions, indoor dust, food, and urine samples. The IS
detection frequency ranged from 23% (for paroxetine-d4) to
100%, in which trimethoprim-d9, albuterol-d9, atenolol-d7, and
valsartan-d3 were detected in positive mode in all 22 analyzed
samples with an intensity between 106 and 109 (as seen in
Supplementary Table S6). Due to the limited commercial
availability of valsartan-d3 and albuterol-d9, trimethoprim-d9
and atenolol-d7 were selected as internal labeled standards for
the positive mode. Among the 5 internal standards (IS) that were
amenable in negative mode, glipizide-d11 and warfarin-d5 were
selected since they showed the highest detection frequency of
86.4% and 95.5% (Supplementary Table S6), respectively, with an
intensity of 106.
For the evaluation of the NTA method for sensitivity, selectivity,

accuracy, and precision, native chemicals in the QC samples (at a
concentration of 380 ng/L for the SPE method and 200 µg/L for
the direct LC-HRMS method) were evaluated over 11 different
days. The average TPR (sensitivity) for the developed NTA method
was 0.711, the average TNR (selectivity) was 0.984, the average
precision was 0.203, and the average accuracy was 0.982. The
selectivity and accuracy showed the best performance with values
greater than 0.98, indicating that the method was accurate and
specific, at the tested concentration. The sensitivity was above 0.7,
which is deemed acceptable and above the 70% threshold
established for the analysis. The precision was the lowest metric
observed at 0.203. Overall, the developed and optimized NTA
method has shown adequate performance.

Method optimization for urine
The purpose of determining the urine dilution factor was to find
an optimal condition where matrix effects are not too pronounced
to interfere with compound identification and that the dilution is
not too much to significantly impair compound detection. Dilution
factors of 2, 5, 10, 20, and 50 were tested for the optimization. The
diluted urine samples were spiked with 20 µL of the 0.2 µg/mL QC

working solutions and analyzed by online SPE-LC-HRMS. The
averages of retention times and peak areas were calculated for QC
samples prepared in LC-MS grade water. For each urine sample, a
comparison of the individual retention time and peak area with
the average was conducted. If the retention time shift was more
than 0.5 min or the peak area varied more than 50% of the
average [8], it would be considered as retention time fail or peak
area fail, as seen in Supplementary Table S7. Among the 17
compounds present in the QC mixture, a maximum of 15 QC
compounds were observed in the urine samples when the dilution
factor was 20, whereas 86.7% of the QC compounds passed the
retention time check and 80% passed the peak area check.
Compared to others, the 20- and 50- times dilution factors showed
the best results with less pronounced matrix effects. Considering
that the 50 times dilution also led to a reduced number of
compounds detected, possibly due to sensitivity issues, a dilution
factor of 20 was selected for the NTA of urine samples. Initially,
very few features were detected in non-hydrolyzed urine (321)
and the KMD plot showed that features were mostly in the lower
mass ranges (100–400). When comparing the effect of adding the
enzymatic hydrolysis step to the urine NTA method, it was clear
that the use of the β-glucuronidase/arylsulfatase enzyme enables
the identification of more annotated features (hydrolyzed urine
had 823 features, Fig. 1), which were before (non-hydrolyzed urine
sample) likely either glucuronidated or sulfonated and therefore
not identified in the databases used.

Comparison of ASE and USE for soil extractions
To evaluate the efficiency and performance of ASE and USE for the
comprehensive extraction of chemicals of interest from soil
samples in the NTA context, we have tested spiked and unspiked
soil samples. For unspiked soil samples, a total of 251 features (155
in positive and 96 in negative mode) were identified only by USE
and 91 (56 positive and 35 negative mode) were identified only by
ASE, with some overlap; a total of 40 tentatively identified features
(24 positive and 16 negative) were found by both methods as
shown in Supplementary Fig. S3, suggesting a potential higher
extraction efficiency for USE. In the soil samples spiked with the
QC analytes, we observed that both extractions were able to
successfully recover all 17 QC analytes with half of the analytes
having similar responses (Table 1), except for sucralose, hydro-
chlorothiazide, caffeine, norcocaine, diltiazem, diclofenac, and
mefenamic acid that showed higher response (represented as
peak area) by ASE, and gemfibrozil that was improved by USE.
Overall, the methods were deemed comparable in terms of QC

Fig. 1 KMD plot and Venn diagram comparing unhydrolyzed and hydrolyzed urine samples. Blue dots represent features detected in the
hydrolyzed urine and Orange circles represent features detected in the non-hydrolyzed urine. The Venn Diagram shows the number of
features detected in each urine treatment, highlighting the number of features found in common (98 features).
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performance, nevertheless, taking into consideration the practi-
cality in terms of the reduced time of analysis and semi-
automated sample preparation steps (extraction and cleanup are
performed simultaneously inside the cell) associated with the high
temperature and pressure that enable a faster diffusion rate of
compounds into solvent solution, ASE was selected as the method
of choice for the soil and dust samples.

Method optimization for food samples
To optimize food extraction performance, ACN and MEOH were
tested in spiked (with QC mixture) and unspiked food (consisting
of a homogenized mixture of lettuce, rice, milk, and bread). For the
unspiked samples, a total of 334 (202 in positive and 132 in
negative mode) features were identified only in the ACN
extraction compared to 147 (94 positive and 53 negative) features
in MEOH, while having 87 (68 positive and 19 negative) features
identified in both extraction solvents (Venn diagram in

Supplementary Fig. S4). Overall, extraction performance was
comparable, but acetonitrile as extraction solvent showed not
only higher number of compounds detected (level 2a) as well as a
higher response for 16 out of the 17 QC analytes spiked in the
samples; only lincomycin had a higher response in methanol
(Table 2). In addition, the use of acetonitrile led to clearer final
extracts (methanol extracts were cloudy even after cleanup step),
therefore ACN was selected as the extraction solvent for further
QuEChERS food assessments.

Prioritization and identification of chemicals in soil samples
To visualize the tentative identified chemicals obtained in this
study, which encompassed a total of 10 soil samples to which
small children have access and contact to, the data was plotted in
a Kendrick mass defect (KMD) plot [29, 30]. A KMD plot is a
visualization tool in mass spectrometry used to compare
molecular weight distribution in complex mixtures offering a

Table 1. ASE versus USE comparisons for the soil extractions.

Compounds Log kow Monitored ions (m/z) Detection mode USE ASE ASE/USE

Sucralose −1 395.007 − 10384 526984 50.7

Hydrochlorothiazide −0.1 295.957 − 1203866 14859506 12.3

Caffeine 0.16 195.088 + 6783448 34914652 5.1

Lincomycin 0.29 407.221 + 44299853 52728722 1.1

Sulfamethoxazole 0.48 254.059 + 47537279 68819583 1.4

Trimethoprim 0.73 291.145 + 106036728 106687512 1.0

Norcocaine 1.96 290.139 + 17971940 281767662 15.6

Carbamazepine 2.25 237.102 + 149163592 213054956 1.4

Diltiazem 2.79 415.169 + 442866 107161515 241.9

Atrazine 2.82 216.101 + 218078938 637646920 2.9

Diphenhydramine 3.11 256.17 + 73903594 56458058 0.76

Diclofenac 4.02 294.009 − 21763 20481873 941.1

Fluoxetine 4.65 310.141 + 52192443 44356941 0.84

Gemfibrozil 4.77 249.15 − 20600183 3146426 0.15

Mefenamic acid 5.28 240.103 − 31454 34239014 1088.5

Sertraline 5.29 306.081 + 16515867 38614739 2.3

Clotrimazole 6.26 345.115 + 5526113 5904298 1.0

Table 2. Comparison of acetonitrile (ACN) and methanol (MEOH) solvents in the extraction of QC analytes by a QuEChERS in food sample matrices.

Compounds Log Kow Monitored ions (m/z) Detection mode ACN MEOH ACN/MEOH

Sucralose −1 395.007 − 514975 138609 3.7

Hydrochlorothiazide −0.1 295.957 − 30492507 6973708 4.3

Caffeine 0.16 195.088 + 173896997 40041329 4.3

Lincomycin 0.29 407.221 + 69941827 226729204 0.30

Sulfamethoxazole 0.48 254.059 + 510609753 302274447 1.6

Trimethoprim 0.73 291.145 + 798986842 293952394 2.7

Norcocaine 1.96 290.139 + 2508331676 651262182 3.8

Carbamazepine 2.25 237.102 + 1220011570 746093554 1.6

Diltiazem 2.79 415.169 + 2009629433 150171042 13.3

Atrazine 2.82 216.101 + 4379749352 2080194051 2.1

Diphenhydramine 3.11 256.17 + 2955706292 1517110694 1.9

Diclofenac 4.02 294.009 − 122921945 34465135 3.5

Fluoxetine 4.65 310.141 + 3852011163 1149551446 3.3

Gemfibrozil 4.77 249.15 − 37854518 2360833 16.0

Mefenamic acid 5.28 240.103 − 105742980 32179184 3.2

Sertraline 5.29 306.081 + 732006025 98904061 7.4

Clotrimazole 6.26 345.115 + 266510368 82800462 3.2
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simplified way to visualize data and identify difference between
samples and is graphically represented by the difference between
the nominal mass and exact Kendrick mass against the Kendrick
nominal mass (KNM). This difference reduces the massive spectral
data obtained by restricting compounds within the same
homologous series to a fixed mass unit intervals (the most used
is 14 for CH2), allowing in some cases the observation of distinct
patterns [29–31]. As seen in Fig. 2, features are distributed in the
KMD plot between the masses of 100 and 800 [32], but most
features showed higher overlap among different samples at lower
mass region (KNM 100–400), forasmuch as unique features are
more frequently observed at higher mass ranges (400–800).
Features with negative KMD (−0.6 to −0.1) were observed in soil
samples, indicative of polyhalogenated compounds which tend to
exhibit a negative mass defect [18]. There is no specific pattern
identified in the KMD plot displayed in Fig. 2, in fact it can be
difficult to identify homologous series in complex mixtures and
samples with many detected features [31, 33]. Therefore, often
employed alongside KMD plots is the Van Krevelen diagram (VKD),

in which the atomic ratio of hydrogen to carbon (H/C) is plotted in
the x-axis against the atomic ratio of oxygen to carbon (O/C) in the
y-axis of a specific compound [31]. VKD is a valuable tool in
understanding the chemical composition of organic compounds,
separating them based on their degree of saturation (aromaticity)
and by oxygen‐containing classes. Using VKD, for example,
aromatic compounds will be distinctively found along the y‐axis
of H:C, whereas per- or polyfluorinated compounds (PFAS), in
which most H atoms are replaced with fluorine, will shift to the
lower region of the VKD [19]. We have previously identified
regions in the VKD associated with anthropogenic chemicals such
as legacy and emerging organic contaminants of concern using
the EPA DSSTox library [33] and applied the concept to our
samples, as seen in Fig. 3. According to the VKD, the regions/boxes
heavily populated are of aromatic hydrocarbons (region 1),
polyethylene glycol/polypropylene glycol (PEG/PPG) (region 3),
surfactants (region 4), and pesticides, bisphenol, and phthalates
(region 5), however considering that aromatic hydrocarbons are
not amenable to ESI and that this tool is for broader application,

Fig. 2 Kendrick mass defect plot of soil samples from different participants (N= 10). The dots of different colors represents the features
detected in the soil samples analyzed; gray dot = S001, red dot = S002, green dot = S003, yellow dot = S004 and blue dot = S005. KMD:
Kendrick mass defect, KNM: Kendrick Nominal Mass.

Fig. 3 Van Krevelen plot of soil samples from the different participants. Numbered boxes comprise (1) aromatic hydrocarbons; (2)
polychlorinated biphenyls; (3) polyethylene glycol/polypropylene glycol; (4) surfactants; (5) pesticides, bisphenols, and phthalates; (6)
polybrominated diphenyl ethers; and (7) per-and polyfluoroalkyl substances. The dots of different colors represents the features detected in
the soil samples analyzed; gray dot = S001, red dot = S002, green dot = S003, yellow dot = S004 and blue dot = S005.
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including GC-HRMS, it’s not expected that this class of compounds
will be detected in the samples by the methodology used.
A total of 2239 features were detected in soil samples, in which

107 annotated features were commonly detected in more than 50
% of the samples (Supplementary Table S8). Information on
feature classifications was further searched at PubChem, Chem-
Spider, EPA ECOTOX database, and literature references. Among
the 107 tentatively identified chemicals, 35% were classified as
natural product, followed by 16% of pharmaceuticals, 14% of
industrial products and less than 5% each of pesticides and
personal care products (Supplementary Fig. S5). Interestingly, 2 %
of the features were identified as per- or polyfluorinated
compounds (PFAS), corroborating with the few detections in the
VKD PFAS region. The top 10 most abundant features detected in
the soil are included in Table 3.

Prioritization and identification of chemicals in indoor dust
samples
The KMD and VKD plot of the features of dust samples are
plotted in Supplementary Figs. S6 and S7. A total of 3218
features were detected in dust samples, having 85 commonly
detected features in more than 50% samples (Supplementary
Table S8). Distribution of the features in the KMD plot ranged
from masses of 150 and 800, with the majority overlapping in
the 150–500 mass range, similarly to the pattern observed in the
soil samples. Only two features had negative KMD, suggesting
the presence of few polyhalogenated compounds identified in
the samples. In the VKD, features of dust samples were mostly
aggregated in region 4 and 5, indicating a high proportion of
surfactants, and pesticides, bisphenols, and phthalates within
the analyzed samples. Tentatively identified features were
composed predominantly by 29 % of natural products and
25% of surfactants, which confirms the high number of features
in this region of the VKD (Supplementary Fig. S8). Also,
chemicals used in industrial products (13%), phthalates (8%),
multiple use chemicals (8%), and personal care products (8%)
were detected in the dust samples. The top 10 most abundant
features detected in indoor dust are shown in Table 3.

Prioritization and identification of chemicals in urine samples
It was observed the largest number of features in the urine,
which lead to a total of 5121 features, in which 265 were
commonly detected in more than 60% of the urine samples
(seen in Supplementary Table S8). The KMD and VKD plot of the
features observed in the urine samples are shown in Supple-
mentary Figs. S9 and S10, respectively. The urine samples
showed detected features distributed between the masses of
100–800, with high overlapping in a wider range of KNM
(100–600) than previously seen in other matrices, suggesting
that compounds with higher molecular weight have been
commonly found in urine. Similar to what was previously
observed, the majority of the features are highly populated in
regions 4 and 5, representing the presence of surfactants,
pesticides and products containing plastic (bisphenol) and
plasticizers (phthalates), and with very few features in the PFAS
region (region 7). The presence of some features in the region 6
corresponding to polybrominated diphenyl ethers (PBDE) it’s
unexpected as this class of compounds is not amenable to LC-
ESI-HRMS, therefore these features likely correspond to another
class of anthropogenic organic contaminants not included in
this VKD (for example, brominated flame retardants or hydro-
xylated derivatives of polybrominated diphenyl ethers). Tenta-
tively identified features in urine were composed predominantly
by natural products (35%) and 17% of pharmaceuticals/drugs
(Supplementary Fig. S11). Also, chemicals observed in the urine
samples in minor proportion were pesticides (7%), personal care
products (7%), multiple use chemicals (4%), and industrial

products (3%). The most abundant and frequently detected
features in urine (Top 10) can be found in Table 3.

Prioritization and identification of chemicals in food samples
A total of 2552 features were detected in the food samples, in
which 39 annotated features were frequently observed in the
samples (50–90%) and listed in Supplementary Table S8. The KMD
was plotted in Supplementary Fig. S12, showing features
commonly detected in the mass range of 100–500, with sample
S002 having more features in the high KNM region (500–800), and
S004 and S005 having few features in negative KMD. As observed
in the VKD displayed in Supplementary Fig. S13, regions 4
(surfactants) and 5 (pesticides, bisphenol and phthalates) were
heavily overlapped among all samples, with fewer features
detected in the PFAS and PEG/PPG boxes. The majority of the
features identified in the food were natural products (52%),
followed by 19% of food additives, 13% of industrial products, 7%
of personal care products and a small proportion of chemicals
with multiple uses (3%) (Supplementary Fig. S14). The list of the
top 10 detected features in food samples are presented in Table 3.

Prioritization and identification of chemicals in water samples
A total of 788 features were detected in the water samples
provided by the participants, in which 20 annotated features were
commonly detected in at least 50% of the samples (Supplemen-
tary Table S8). The KMD plot illustrated in Supplementary Fig. S15
shows that features detected in sample S005 comprised mostly
KNM between 150 and 250, while others were spread out
between the masses of 150 and 600, showing the detection of
compounds with a wider range of molecular weight, as also
observed for the urine samples. However, few features were
identified at masses higher than 500. A few features from samples
S002, S003 and S005 showed potential halogenated compounds
with negative mass defects (between −0.4 and −0.6). The VKD
displayed in Supplementary Fig. S16 showed the majority of the
features overlapping in regions 3 (PEG/PPG), 4 (surfactants), and 5
(pesticides and plasticizers), and fewer and more spread detected
features in region 7 (PFAS). The predominant composition of the
tentatively identified chemicals was natural product (28%),
followed by pharmaceuticals/drugs (22%), food additives (17%),
pesticides (11%), and industrial products (11%) (Supplementary
Fig. S17). A list of the top 9 compounds detected in the drinking
water samples are listed in Table 3.

Identification of common features with children’s urine
To better understand children exposure to organic contaminants
and potential associated toxicological concerns, features fre-
quently identified in all different ingestion sources were combined
and illustrated in a Venn diagram shown in Fig. 4, to identify
correlations between the chemicals found in the possible
ingestion sources and in children’s urine. The data was found to
be not normally distributed when applying Shapiro Wilk’s test, and
therefore, Spearman correlations were performed as shown in
Fig. 5. It was observed a strong positive correlation between the
compounds found in common in food and water with urine,
whereas a very weak correlation was found for dust and soil,
which reinforces that diet, including water consumption, is the
major exposure pathway of organic chemicals in children. The
tentative identity of the common features in each sample are
shown in Supplementary Table S9. Compounds identified in food
and urine samples were mostly natural products (Abscisic acid, 3-
hydroxy-N-(1-hydroxy-3-methylpentan-2-yl)-5-oxohexanamide,
F-36316 C, Hexanoylcarnitine, Naringenin, Piperanine, Streptazone
F, 4-Indolecarbaldehyde), but also included pharmaceuticals
(Dobutamine, Pactamycin, Phenacetin). Common features in water
and urine samples were the natural product cuminaldehyde, the
pesticide naphthaleneacetamide, and the industrial product
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Table 3. Most abundant features in each type of samples.

Sample type Compounds DF Peak Area

Soil Caprolactam 90 4.84E+ 10

2,2-Methylenebis(4-ethyl-6-tert-butylphenol) 90 3.49E+ 09

(9Z)-9-Sulfo-9-octadecenoic acid 100 3E+ 09

BOC-GLU-OTBU 100 2.03E+ 09

1,7-Hydroxy-3-methylxanthone 90 1.3E+ 09

Pentamethylmelamine 90 9.09E+ 08

[6]-Gingerol 90 8.68E+ 08

N,N’-Diphenylguanidine 60 8.64E+ 08

3-O-Butyryl-1,2-O-isopropylidene-alpha-D-glucofuranose 80 7.71E+ 08

1-Cyclohexyl-2-azetidinecarboxylic acid 80 6.83E+ 08

Dust Dodecyl sulfate 50 3.68E+ 10

Myristyl sulfate 70 2.39E+ 10

Bis(2-ethylhexyl) phthalate 70 9.83E+ 09

Pentadecyl hydrogen sulfate 60 5.36E+ 09

Cetyl sulfate 70 4.1E+ 09

Linoleic acid 50 2.85E+ 09

Haplofungin D 80 2.2E+ 09

Tripropyl citrate 90 1.88E+ 09

Haplofungin F 80 2.19E+ 09

Azelaic acid 40 1.09E+ 09

Urine Tetradecanedioic acid 75 5.65E+ 10

Hippuric acid 88 3.64E+ 10

Piperanine 75 3.49E+ 10

S-NONYL-CYSTEINE 63 2.83E+ 10

7-Methylguanine 63 2.01E+ 10

Cyclo(Ala-Ile) 63 1.86E+ 10

N-Phenylacetylglutamine 75 1.23E+ 10

Capryloylglycine 75 1.03E+ 10

N2,N2-Dimethyl-guanosine 75 1E+ 10

Triticonazole 100 2.6E+ 09

Food Piperine 60 7.28E+ 10

Linoleoyl Ethanolamide 70 3.44E+ 09

Choline 90 3.12E+ 09

α-Eleostearic acid 50 1.71E+ 09

1-(P-TOLYL)-1-CYCLOHEXANECARBONITRILE 50 1.21E+ 09

3-hydroxy-N-(1-hydroxy-3-methylpentan-2-yl)-5-oxohexanamide 60 1.1E+ 09

UNII:TYL476W27Y 50 7.71E+ 08

Makomotine C 50 7.34E+ 08

2-(Dipentylamino)-1-(1,2,3,4-tetrahydro-9-phenanthrenyl)ethanol 50 7.24E+ 08

4-Indolecarbaldehyde 70 1.56E+ 08

Water Jasmone 100 2.63E+ 09

6-Phenyl-1-hexanol 80 1.18E+ 09

4-Ethoxy ethylbenzoate 100 8.64E+ 08

Isophorone 80 8.27E+ 08

Valerophenone 80 5.5E+ 08

Meleagrin 70 3.76E+ 08

Cuminaldehyde 60 1.38E+ 08

vanillyl nonanoate 50 9.32E+ 08

3721 50 1.5E+ 09

DF Detection frequency= # of sample detected the target compounds/# of total samples.
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isophorone. Compounds identified in soil and urine samples
contained industrial product (Caprolactam), natural product
(Dibutyl ethylmalonate), and pharmaceutical (Oseltamivir). Com-
mon features in dust and urine samples were natural products (3-
[(3-Hydroxydecanoyl)oxy]decanoic acid, Piperanine, and Uric acid),
the personal care product Tetraacetylethylenediamine and the
industrial product 3,6,9,12,15,18-Hexaoxaicosane-1,20-diol. Further
confirmation of the identified chemicals by acquisition of
authentic standards and quantification are still necessary and
would bring a better understanding for environmental and human
risk assessments, including estimation of children’s health risks.

DISCUSSION
Mouthing and touching objects is a normal behavior in small
children to explore, play and learn about their environment [34].
Nevertheless, this can also constitute an important exposure
pathway, leading to an increased chemical body burden [35, 36].
Considering that children in general are spendingmore than 90% of
their time indoors [37], it becomes critical to assess the chemical
composition of indoor dust to have a complete picture of the total
contaminant exposure and this way, complement the under-
standing of non-dietary exposure pathways (through dust and soil
ingestion) to hazardous organic contaminants. The identification
and prioritization of chemicals of concern is of utmost interest to
better assess the impact and risks to children’s health. To address
the need for improvement of reproducibility of NTA methodologies,
the use of an in-house quality control (QC) mixture and labeled
internal standards were employed to evaluate the performance of
the developed and optimized sample preparation and data
processing for the NTA methods with the goal to ensure data
quality. This was done by evaluating accuracy, precision, sensitivity,
and selectivity [25]. The developed method had high selectivity and
accuracy, with both being greater than 95%, and had acceptable
sensitivity that is greater than the minimum accepted threshold of
70%. The observed results were comparable to those of previous
studies, which showed accuracy, selectivity, and sensitivity in
feature identification >80% [26, 27, 38].
In this study, the most abundant feature detected in the soil was

caprolactam, an industrial product mainly used in the manufacture
of synthetic fibers, having the highest peak area and detected in 90
% of the samples. Caprolactam is used especially in the production
of nylon, which is commonly used in textiles and plastics, and their
presence in soil is generally related to industrial and agricultural
activities, where it might have been released because of
manufacturing or application [39]. Among the most abundant
features and frequently detected in indoor dust (Top 10 list in

Fig. 5 Spearman correlations between chemicals found in possible ingestion sources and in children’s urine. NA means not enough data
was found in common to perform correlations.

Fig. 4 Venn diagram of combined features and intersections
found between the different matrices and urine. The Venn
diagram shows the number of features detected in each matrix
and the intersections between the circles shows the number of
features detected in common with urine. Circles size are propor-
tional to the number of features detected.
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Table 3) were dodecyl sulfate, myristyl sulfate, pentadecyl hydrogen
sulfate, and cetyl sulfate, which are all alkyl sulfates commonly
found in household and personal care products (used as surfactants,
cleansing agent in cosmetics, and cleaning and hygiene products),
such as shampoos, soaps and laundry detergents. Studies have
shown that these alkyl sulfate surfactants can be present in
significant amounts in indoor dust (through direct deposition from
the air or transfer from surfaces) depending on the types of
products used at home and the frequency of cleaning [40–42]. In
addition, some chemicals identified included azelaic acid, used in
lacquers, alkyd resins and adhesives, and the plasticizer bis(2-
ethylhexyl) phthalate, which is present in many household items,
including tablecloths, floor tiles, furniture upholstery and children’s
toys, among others. Phthalates are semi-volatile compounds that
have been widely detected in high concentrations in indoor dust
and constitute major contributors to human exposure, including
children [43]. Based on the frequent detection and high peak area
(indicative of possible higher concentration) of the chemicals
identified in soil and dust (Table 3), further confirmation with
reference standards and later inclusion or prioritization in monitor-
ing programs could be advised.
In this research, the application of non-target analysis of

children’s urine samples revealed details about the chemical
profiles from food, water, and surrounding environment (including
soil and indoor dust) to which children are exposed. Among the
most abundant and frequently detected features in urine (Top 10
list in Table 3) were human metabolites (tetradecanedioic acid,
N2,N2-dimethyl-guanosine), lipid (glycoursodeoxycholic acid),
amino acid (7-Methylguanine) and steroid acids (glycocholic acid),
as well as capryloylglycine, used in cosmetics, piperanine, used in
herbs and spices and pepper (spice), and triticonazole, which is a
fungicide commonly used in agriculture to controls fungal
diseases on crops, especially grains [44]. In addition, other normal
components of the urine such as hippuric acid, a metabolite of
aromatic compounds from food and used as hair conditioning was
observed in 88% of the samples.
Children’s diet may differentiate significantly from ages, families,

and cultures. Food matrices can be very complex, which makes it
challenging to conduct their analysis due to pronounced matrix
effects [45]. While most previous studies have focused on
assessment of chemicals in individual food items, in this study, we
have optimized a NTAmethod to identify and prioritize chemicals of
emerging concern in a homogenized mixture containing different
type of foods, i.e., rice, vegetables, fruits, meat, milk, among many
others consumed by the participants (children aged in average 2
years old). Therefore, our main goal using composite food was to
have an overview of children’s dietary exposure to organic
contaminants. The most abundant features in food samples were
piperine, which is used as a flavoring agent, and choline found
normally in eggs, meats, peanuts, and wheat germ, and used as a
nutrient, dietary supplement, and ionic liquid solvent. Other
chemicals identified at high peak areas were linoleoyl ethanola-
mide, which is a naturally occurring fatty polyunsaturated acid
compound in several food sources, including soybeans, corn,
sunflower and sesame seeds [46], as well as it is present in product
used in cosmetics, foam boosting, hair conditioning, and viscosity
controlling [47]; 4-indolecarbaldehyde, which is a synthetic inter-
mediate used for pharmaceutical synthesis; and UNII:TYL476W27Y
(also known as 4-sec-Butyl-2,6-di-tert-butylphenol) used in the
adhesive and resin manufacturing, and in plastics materials. The
presence of the latter in food could potentially be related to
leaching from food packing materials. Although the majority of the
commonly identified features in food samples are natural
compounds, the noted synthetic industrial compounds (4-indole-
carbaldehyde and 4-sec-Butyl-2,6-di-tert-butylphenol) are not
typically found in food sources and their recurrent presence in
food analyzed in this work could constitute a significant exposure
risk to children’s health and should be further investigated.

The chemical composition of water samples will vary depending
on their sources and type of treatments. Jasmone, a food additive
and flavoring agent used in perfumery, was the most abundant
feature detected in all water samples analyzed. Interesting,
Jasmone, a natural compound found in essential oils of jasmine
flowers and other plants, is not typically found in water, and its
occurrence in high abundance might be associated to their use in
cosmetic products, such as facial mist, toners and perfumes. Other
relevant chemicals tentatively identified to be considered in further
studies were isophorone, used as chemical intermediate and a
solvent for coatings, especially vinyl resins (for the production of
paints, adhesives and plastics); valerophenone, an aromatic ketone
that is often used in photochemical processes; and vanillyl
nonanoate, which is a synthetic capsinoid used to protect plants
against a root pathogen. These are synthetic chemicals that are not
typically found in drinking water sources (or found in very low
levels); however especially isophorone are regularly monitored by
public water systems and are regulated by the U.S. EPA [48].

Environmental pathway and toxicological considerations
A variety of organic contaminants of concern have been detected
in the environment, and these can come from various sources,
such as industrial activities, agriculture, and household products.
Some contaminants, such as pharmaceuticals, pesticides, indus-
trial and personal care products, can enter the environment
through agricultural runoff, landfills leachate, domestic and
industrial discharges (treatment plants are not always designed
or capable to remove these compounds), and the improper
disposal of unused or expired medications, which can lead to their
accumulation in soils, sediments, water, dust and food [49, 50].
Even at low concentrations, exposure to pharmaceuticals or drugs,
can constitute a threat to human’s health, leading to allergies,
bacterial resistant development, and could potentially act as
endocrine disruptors [51]. In our study, a number of pharmaceu-
ticals were commonly identified in food and urine samples, which
includes Dobutamine, Phenacetin and Pactamycin. Dobutamine is
used in the treatment of heart failure or cardiac surgeries prone to
decompensation. Although dobutamine have a short half-life of
2 min and rare toxicity effects, including palpitations, chest pain,
headaches, shortness of breath, and nausea, their undesired
exposure in children is not accounted for [52]. Phenacetin was
used as an analgesic and fever-reducing drug in both human and
veterinary medicine but withdrawn in 1983 by U.S. Food and Drug
Administration due to severe side effects, including kidney disease
and carcinogenicity [53]. Nevertheless, there has been reports of
their continue use in physico- chemical research due to their
crystallization properties [54]. Pactamycin is an antibiotic isolated
from the bacteria Streptomycespactum as a potent antitumor
drug with broad cytotoxicity [55]. Therefore, it’s evident that
children are unintentionally exposed to pharmaceuticals through
food ingestion, which as noted have various intended biological
activities, but that have not been assessed to date in context of
aggregate children’s exposures, highlighting the need of more
research to fully understand the potential risks.
Among the features detected in water and urine, the pesticide

naphthaleneacetamide is a synthetic auxin used to stimulate plant
growth and is considered of low toxicity [56] while isophorone,
used in the printing, adhesives, and coatings industries, has been
previously reported at low concentrations in the drinking water of
several cities in the U.S. [57]. There is evidence of acute and
chronic effects to isophorone exposure, which includes skin, eyes,
nose, and throat irritation, fatigue, headache, and dizziness,
although limited studies on the developmental, reproductive,
and carcinogenic effects in humans is noted, particularly in
children. Nevertheless, EPA has classified isophorone as a possible
human carcinogen EPA (Group C) [57].
Interestingly, it was observed in soil and urine samples, the

pharmaceutical oseltamivir, which is an antiviral medication
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recommended by the Centers for Disease Control and Preven-
tion (CDC) to prevent and treat viral influenza, being one of the
therapeutic options used for Covid-19 patients [58]. Sold under
the brand name of Tamiflu, oseltamivir can be end up in the
environment through domestic or industrial waste streams and
are expected to have moderate mobility in soil based on their
soil adsorption coefficient (Koc= 340) [59]. The presence of
Tamiflu in children’s urine likely suggest that the child has
recently taken the medication to treat influenza. As mentioned
before, Caprolactam primarily used in the manufacture of
synthetic fiber, was one of the most prevalent chemicals in soil
and found also in urine. Caprolactam can directly or indirectly
(by leaching from nylon products and surfaces) contribute to
water and soil contamination [60, 61], whereas short-term
exposure could result in upper respiratory, eye and nerve
system irritation in both animals and humans [62]. There is a lack
of research on the effects of caprolactam exposure in children,
particularly in terms of their presence in urine, with most
toxicological endpoints available from in vivo studies in rats and
occupational workers [63].
Tetraacetylethylenediamine (TAD), found in indoor dust and

children’s urine, is commonly used as bleaching agent and
surfactant in laundry detergents and for paper pulp, as well as in
cosmetics, and in fungicide and bactericide formulations, having
low acute oral, dermal and inhalation toxicity [64]. The detection
of tetraacetylethylenediamine in indoor dust is likely related to
their presence in common household products used for floor and
carpet cleaning [65]. Also, 3,6,9,12,15,18-Hexaoxaicosane-1,20-diol
(generic name Heptaethylene glycol), detected in dust and urine,
is a polyethylene glycol used in processing aids and additives and
detergent; it is classified as a safer chemical class of low health
concern based on experimental and modeled data [66]. Even
though effects of TAD and heptaethylene glycol are not known in
children, the accidental ingestion of large amounts of similar
surfactants, such as diethylene glycol and ethylene glycol, have
been shown to be fatal in small children [66].
In conclusion, the proposed NTA method for the screening of

organic contaminants in urine, food, water, soil, and indoor dust
proved to generate acceptable metrics for sensitivity, specificity or
selectivity, accuracy, and precision. The extraction procedures
were optimized and applied to participant’s specimens to create a
list of chemicals present in five different matrix types with the
potential to identify tracers for organic contaminant exposure in
young children. This study demonstrated the importance of
NTA for the comprehensive analysis of a variety of samples
without a prior knowledge on chemical composition and/or
pollution sources, allowing the detection of a wide range of
previously “unknown” chemicals, which might not be usually
monitored by traditional targeted analysis methods. Overall, NTA
enabled the identification of specific organic contaminants with
known toxicological endpoints in soil, dust, food, water, and urine,
contributing to a better understanding of children’s health
exposures and related risks, which could be of concern especially
in long-term exposure situations. However annotated compounds
still need confirmation by reference standards for quantitative
assessments of children’s health risks. Further research is under-
way with the goal to identify tracers of soil and dust ingestion by
young children (from 6 months to 6 years) to improve calculations
on the ingestion rates needed to estimate health risks.

DATA AVAILABILITY
Additional data for this specific study are provided as Supplementary Material
(Supplementary Tables S1–10 and Supplementary Figs. S1–17) and as text for sample
preparation and processing. All data supported in the analyses are assessable
publicly, including PubChem.com, ChemSpider.com, and EPA’s CompTox Chemicals
Dashboard.
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