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BACKGROUND: Many studies have explored the heat-mortality relationship; however, comparability of results is hindered by the
studies’ use of different exposure methods.
OBJECTIVE: This study evaluated different methods for estimating exposure to temperature using individual-level data and
examined the impacts on the heat-mortality relationship.
METHODS: We calculated different temperature exposures for each individual death by using a modeled, gridded temperature
dataset and a monitoring station dataset in North Carolina for 2000–2016. We considered individual-level vs. county-level averages
and measured vs. modeled temperature data. A case-crossover analysis was conducted to examine the heat-mortality risk under
different exposure methods.
RESULTS: The minimum mortality temperature (MMT) (i.e., the temperature with the lowest mortality rate) for the monitoring
station dataset was 23.87 °C and 22.67 °C (individual monitor and county average, respectively), whereas for the modeled
temperature dataset the MMT was 19.46 °C and 19.61 °C (individual and county, respectively). We found higher heat-mortality risk
while using temperature exposure estimated from monitoring stations compared to risk based on exposure using the modeled
temperature dataset. Individual-aggregated monitoring station temperature exposure resulted in higher heat mortality risk (odds
ratio (95% CI): 2.24 (95% CI: 2.21, 2.27)) for a relative temperature change comparing the 99th and 90th temperature percentiles,
while modeled temperature exposure resulted in lower odds ratio of 1.27 (95% CI: 1.25, 1.29).
SIGNIFICANCE: Our findings indicate that using different temperature exposure methods can result in different temperature-
mortality risk. The impact of using various exposure methods should be considered in planning health policies related to high
temperatures, including under climate change.

IMPACT STATEMENT:

(1) We estimated the heat-mortality association using different methods to estimate exposure to temperature.
(2) The mean temperature value among different exposure methods were similar although lower for the modeled data, however,

use of the monitoring station temperature dataset resulted in higher heat-mortality risk than the modeled temperature
dataset.

(3) Differences in mortality risk from heat by urbanicity varies depending on the method used to estimate temperature exposure.
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INTRODUCTION
A substantial number of studies on the impact of temperature on
mortality provide evidence for an increased risk of death from
extreme temperature (e.g., low and high ambient temperature)
[1–3]. Previous studies often investigated heat-related mortality
using daily values of temperature observed at a single weather
station and aggregating the exposure into county- or city-level
averages. While the use of monitoring stations to estimate
exposure has the strength of actual measurements, this approach
could pose limitations in terms of study area and population.
Monitoring stations are often located in or near cities, which are
often hotter than surrounding rural areas due to the urban heat

island effect. This could result in the inability to study other, more
rural populations or in biased or inaccurate estimated effects for
rural populations or others living far away from the monitoring
stations [4].
Many recently, modeled weather datasets at a global and local

levels are used widely to estimate exposure to temperature and to
explore the climate change impacts [5]. These gridded modeled
exposure datasets incorporated mixed methods and spatial
interpolation to accurately derive temperature estimates at a
higher resolution [6, 7]. For instance, global satellite imagery is
publicly available, and are now commonly used in scientific
research. Even though the modeled weather dataset can be highly
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useful for research, especially for estimating exposure for locations
without monitors, there are limitations. Such datasets cannot be
fully validated at locations without monitors, meaning the models
have more certainty in some types of areas than others. Also,
modeled temperature datasets could have measurement error in
places with different elevation level or certain conditions, such as
clouds [8].
Some studies have applied temperature datasets from gridded

model or monitoring stations to individual-level health data
[9, 10]. However, most studies use one form of exposure data and
do not compare the exposure values among different exposure
methods or the resulting health effect estimates. Few studies have
estimated the effect of different temperature exposure methods
on estimated risk of mortality [4, 11, 12]. The limited research has
inconsistent results. One study compared temperature-related
mortality using temperature measurements from a single weather
station and modeled meteorological dataset for 113 cities in US
[11]. The results showed no significant difference in temperature-
related mortality between these two methods. Another study
showed higher temperature-mortality associations using exposure
data with more spatial variability compared to temperatures
based on monitors [4]. Earlier research lacks fine-scale spatial
temperature data [13, 14] or neglects county or region-specific
mortality [15]. Research is needed on how different approaches to
estimate exposure to temperature impact the resulting health
estimates. This is particularly important given the anticipated
increase in temperature-related health risk under a changing
climate [16, 17]. Therefore, we compared temperature exposure
based on multiple exposure methods and explored the effect of
various exposure methods on estimated temperature-mortality
associations.
In this study, we evaluated how temperature-mortality relation-

ships vary by use of method to estimate exposure. We consider
exposure based on measurements (i.e., weather station monitors)
and estimates (gridded modeled temperature data), and two
types of health data (individual-level data compared aggregated
spatial data). Specifically, we estimated the association between
mean temperature and mortality using: 1) individual-level
temperature estimates constructed from modeled data, 2)
county-aggregated temperature from modeled data, 3)
individual-level temperature estimates from monitoring stations,
and 4) county-aggregated temperature estimated from monitor-
ing stations.

MATERIAL AND METHODS
Study site
North Carolina (NC), a state in the southeastern region of the United Sates,
was examined for this study. NC’s 100 counties are mostly in the humid
subtropical climate zone, experiencing hot and humid summers. However,
western NC lies in the subtropical highland climate, with mountainous
areas that experience cool summers. Three different eco-regions (Moun-
tains, Piedmont, and Coastal Plain) exist within NC, as do both urban and
rural areas [18]. The diversity of NC in terms of regional characteristics
facilitates study of the possible difference in environmental exposure that
might relate to heat related mortality risks.

Data
Mortality dataset. We obtained individual-level mortality data for NC for
May to September for the years 2000 to 2016 from the NC State Center for
Health Statistics, Vital Statistics Department. For each participant, mortality
data included date of death, residential county, coordinate of residence,
and demographic variables (e.g., sex, age, and race/ethnicity). We classified
mortality data as total mortality as all causes of death except external
causes (International Classification of Diseases, ICD-10, A00-R99). We
excluded participants with incomplete data for any variable.

Meteorological datasets. We used two types of temperature datasets, a
modeled dataset and measurements from monitoring stations, and

considered two different methods of spatial scale: individual-level
exposure based on the participant’s geolocated residence and county
aggregated exposure based on the county of residence. These approaches
are commonly used in epidemiological research on temperature. The
modeled temperature data are from Parameter-elevation Regressions on
Independent Slopes Model (PRISM), a publicly available gridded dataset,
which spatially interpolated weather observations from various observa-
tion networks using multivariate regression models that adjust for
elevation, topography, and other geophysical characteristics [19]. The
PRISM data are reported on a daily basis and at high spatial resolution
(4 × 4 km grid), and we used the PRISM dataset for 2000 to 2016 [7]. The
algorithms and further details are described elsewhere [20, 21]. A previous
study showed good agreement between measured and gridded weather
data [22]. Monitoring data were obtained from the NC State Climate Office
for 2000 to 2016 during May to September.

Exposure methods. We considered four exposure methods based on
combinations of modeled versus measured temperature and individual-
versus county-level exposure.
A) Modeled temperature data matched to the individual residence: We

used estimated gridded weather data to estimate exposure for each
individual within a 5 km buffer of their residence. Area-weighted averaging
was used to convert the gridded dataset into estimates within buffers. The
area-weighted average was computed based on the different area of grid
cells within a 5 km buffer. For instance, if the 5 km buffer is 60% in PRISM
grid cell A and 40% in grid cell B, we would compute the temperature of
that 5 km buffer as an area-weighted average of the temperatures of grid
cells A and B (i.e., 0.6 × TemperatureCellA+ 0.4 × TemperatureCellB).
B) Modeled temperature data matched to the residential county: County-

level values were calculated based on the average of gridded values with
locations in a given county using the area-weighted average.
C) Monitoring station temperature data matched to the individual

residence: We derived daily temperature exposure estimates based on
individual residences and monitoring stations by applying a 5 km buffer
around each residence and assigning the average temperature of the
monitors within that buffer. If one individual was within a 5 km buffer of
multiple monitors, we averaged the monitor values, and one individual
was excluded from the analysis if one had no monitor station within 5 km
of residence.
D) Monitoring station temperature datamatched to the residential county:

County-level temperature values were calculated as the area-weighted
average values from monitors in the county or within 5 km of the county
edge. If no monitor was present within a county or within 5 km of its
boundary, the county was not included in this analysis.
For both methods based on monitors, only individuals within 5 km of at

least one monitor were included in analysis of this exposure method. We
excluded monitoring stations that were newly added and/or removed
during the study period with a time span of less than 13 years, which
excluded 25 stations.
We calculated the correlation between pairs of monitoring stations and

the correlation between the different exposure methods.

Urbanization and regional dataset. Data on the designations of urbancity
were obtained from the Census Bureau, which classified urbanization into
three types: urbanized areas, urban cluster, and rural at the county level.
Urbanized areas are areas with 50,000 or more people, urban cluster are
areas with at least 2500 but fewer than 50,000 people, and rural areas have
less than 2500 people [23]. The three principal regions of North Carolina
are the Mountain, Piedmont, and Coastal Plain (from west to east) [24].

Statistical Analysis
A conditional logistic regression model was used in a case-crossover study
design to estimate the effect of heat exposure on mortality among
different exposure methods. For each individual, we identified the date of
death as a ‘case’ and proximate days as ‘controls’ within a 28-day window.
Case days were matched on day-of-week (DOW) within a 28-day window
of the case day to identify controls for each case. For each record, a
distributed temperature lag of up to one day after the day of death (Lag
0–1) was compared to corresponding temperatures on the control days in
order to calculate an odds ratio (OR) (95%CI) (a comparison of risk between
days with case and control temperatures). Lag 0–1 was selected based on
previous heat-mortality studies on the different lag periods affecting
mortality risks, finding that heat-related mortality occurred in a short-term
(Lag 0–1) lag period [25, 26]. Odds ratio comparing the heat-mortality risk
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of relative temperature changes (99th temperature percentile and 90th
temperature percentile was calculated separately for the four exposure
methods) and absolute temperature changes (30.0 °C and 27.6 °C) were
analyzed. The absolute temperature values were calculated based on
the 99th temperature percentile and 90th temperature percentile based on
the average NC temperature. The summary statistics for each temperature
exposure method are shown in Table S1. Also, the heat-mortality odds
ratio for different categories of urbanicity (Urban Area, Urban Cluster, and
Rural) were examined through separate subgroup analysis.
R software (version 4.0.3) and SAS were used to conduct the analysis.

Results were considered as statistical significance if it fulfilled two tailed
p < 0.05.

RESULTS
Descriptive results
The general characteristics of the subpopulations included in
mortality analysis under different methods to estimate exposure
to temperature are presented in Table 1 and summary statistics for
temperature values for mortalities (Lag 0) by subpopulation are
shown in Table 2. There were 351,907 deaths registered in North
Carolina during the study period. Most were located in the
Piedmont counties (177,250, 50.4%), from urban cluster counties
(200,363, 56.9%), non-Hispanic White (265,866, 75.6%), and over
65 years (231,388, 65.8%). The number of persons included in
exposure estimates based on monitoring data within specified
buffers (i.e., people living with 5 km of a monitor) was 109,569,
and the number of persons included in exposure estimates based
on county-aggregated data from monitor stations (i.e., people
living in a county with a monitor) was 118,848. These individuals’
characteristics were similar to the total dataset based on all
mortalities, with non-Hispanic White (Individual; County: 78,642,
71.8%; 87,776, 73.9%), and mostly over 65 years (Individual;
County: 67,388, 61.5%; 74,501, 62.7%).
The mean temperature among different exposure methods

were fairly consistent, ranging from 23.4 °C to 23.6 °C. The Coastal
region, urban areas, Non-Hispanic Black persons, females, and
people under 65 years had higher temperature values for all four

exposure methods. This was similar when comparing the exposure
estimates within the subset of individuals with estimates under all
the different exposure methods (Table S2). Figure S1 shows the
locations of the 25 monitoring stations used in this study and the
three regions (Mountain, Piedmont, Coastal Plain). The correlation
between each pair of monitoring stations compared to the
distance between pairs of monitor stations is shown in Fig. S2.
The mean temperature distribution for each exposure method

is shown in Fig. 1. Exposures based on modeled temperature
dataset (PRISM) is very similar between individual- and county-
aggregated temperature (Fig. 1A, B). For exposures based on
monitoring data (Fig. 1C, D), there are some counties that are not
assigned a mean temperature value using this method due to the
location of the monitoring stations. The overall temperature
distribution was generally similar between exposure methods,
although levels were slightly higher for monitoring stations
compared to the modeled temperature dataset. The temperatures
were lower in the West (Mountain region) and higher in the East-
Southern areas (Coastal and Piedmont region). Overall, the
correlation among different exposure methods were high. The
correlation between exposures based on modeled temperature
matched to the residential county (B) and exposures based on
monitoring data matched to the residential county (D) was 0.9, as
was the correlation between (B) and exposures based on
monitoring data matched to individual residence (C). The
correlation between exposures based on modeled data matched
to individual residence (A) and (D) was 0.85 and the correlation for
and (A) and (C) was 0.86.
Figure 2 shows the pooled cumulative exposure-response

relationship between temperature and mortality for different
exposure methods. We observed a U-shaped curve for all four
methods. We found higher risks using exposure based on
monitoring stations compared to the modeled PRISM dataset.
Also, the minimum mortality temperature (MMT), or optimal
temperature, was higher using exposure methods based on
monitoring station data compared to the modeled temperature
data. The MMT for the monitoring station dataset was 23.87 °C and

Table 1. Descriptive statistics for populations for mortality data included under different exposure methods (May–September, 2000–2016).

PRISM Monitoring station

Individual residence Residential county

N (%) N (%) N (%)

Total 351,907 109,569 118,848

Region Piedmont 177,250 (50.4%) 42,625 (38.9%) 53,311 (44.9%)

Mountain 61,228 (17.4%) 22,142 (20.2%) 22,978 (19.3%)

Coastal 113,429 (32.2%) 44,802 (40.9%) 42,559 (35.8%)

Urbanicity Urban Area 18,201 (5.2%) 5,236 (4.8%) 5,405 (4.6%)

Urban Cluster 200,363 (56.9%) 70,121 (64.0%) 79,261 (66.7%)

Rural 133,343 (37.9%) 34,212 (31.2%) 34,182 (28.8%)

Race Non-Hispanic White 265,866 (75.6%) 78,642 (71.8%) 87,776 (73.9%)

Non-Hispanic Black 76,261 (21.7%) 28,619 (26.1%) 28,577 (24.0%)

Hispanic 4,474 (1.3%) 1,216 (1.1%) 1,379 (1.2%)

Non-Hispanic Asian/Hawaiian Pacific Islander 1,910 (0.5%) 632 (0.6%) 665 (0.6%)

Non-Hispanic Other 3,396 (1.0%) 460 (0.4%) 451 (0.4%)

Sex Female 171,141 (48.6%) 55,549 (50.7%) 59,848 (50.4%)

Male 180,754 (51.4%) 54,019 (49.3%) 58.999 (49.7%)

Age Mean (sd) 67.7 (21.2) 63.9 (26.0) 64.9 (25.2)

< 65 120,519 (34.3%) 42,181 (38.5%) 44,347 (37.3%)

≥ 65 231,388 (65.8%) 67,388 (61.5%) 74,501 (62.7%)

sd standard deviation
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22.67 °C (individual and county, respectively), whereas for the
modeled temperature dataset the MMT was 19.46 °C and 19.61 °C
(individual and county, respectively).
Overall, the heat mortality risk was higher when using the

monitoring station dataset compared to the modeled temperature
dataset, although results were not statistically different (Table 3).
When assessing exposure based on monitoring data, the heat
mortality risk was higher using estimates linked to individual
residence (OR 2.24, 95% CI: 2.21, 2.27, comparing the relative
temperature changes (99th temperature percentile and 90th

temperature percentile) than estimates linked to residential
county (OR 1.27, 95% CI: 1.25, 1.29). Estimates based on individual
residence were also higher than those based on residential county
using the modeled PRISM exposure dataset (OR 1.16, 95% CI: 1.14,
1.17 vs. OR 1.08, 95% CI: 1.06, 1.10).
The results shown in Fig. 2 and Table 3 are based on the subset

of individuals that have exposure estimates under all four
methods (n= 109,569). This includes participants who lived far
from monitors. We also conducted analysis using all the
individuals with data available for each exposure method,
resulting in different numbers of participants by exposure method
(109,569 to 351,907) (Table S3 and Fig. S3). For each of the four
exposure methods, the odds ratios were similar for analysis using
the subset of individuals with exposure estimates for all exposure
methods and the analysis using all participants. Subsequent
analysis is based on all participants with exposure data available
(Table S3 and Fig. S3).
The subgroup analysis estimating the heat-mortality odds ratio

by different levels of urbanicity is shown in Table 4. When using
the modeled temperature dataset to estimate exposure, urban
areas had higher heat-mortality odds ratio than urban cluster or
rural regions (OR for urban areas at 1.31, 95% CI: 1.25, 1.38, and
1.23, 95% CI: 1.16, 1.29 based on exposure matched to individual
residence and residential county, respectively). Similarly, the rural
regions showed the highest heat-mortality odds ratio compared
to the urban area and urban cluster when using the monitoring
stations to assess exposure (OR 1.36, 95% CI: 1.26, 1.41, and OR
1.37, 95% CI: 1.29, 1.41; individual and county, respectively).

The heat-mortality risk changed when using all individuals (i.e.,
under all exposure methods) compared to using the subset of
individuals with data for all exposure methods (Table S4).
Compared to the main findings based on subset of individuals
(Table 4), results based on modeled temperature data were lowest
when using individual residence for exposure for urban cluster
compared to other region (urban area and rural) and highest for
rural area, whereas when using residential county results were low
for urban cluster and rural areas compared to the urban area.
Using data for all individuals with exposure data under all
approaches, the urban area was estimated to have the highest
heat-mortality risk compared to other urban cluster or rural region
(OR (95% CI): 1.31 (1.25, 1.38) and 1.23 (1.16, 1.29) for urban areas
using modeled temperature data for individual residence and
residential county, respectively).

DISCUSSION
In this study, we found significant estimated effects of heat on
mortality when using different exposure methods. The heat related
mortality odds ratio was highest when using the monitoring station
dataset among the four exposure methods linked to individual
residence, and highest when using the modeled PRISM dataset
among the four exposure methods linked to residential county.
Also, the heat-mortality risk was different by level of urbancity. Rural
region had the higher heat-mortality risk than urban areas or urban
cluster when using either the modeled, gridded exposure or the
monitoring station dataset. When using the modeled temperature
dataset, the heat-mortality risk was lower using county-aggregated
exposure compared to individual level for urban cluster and rural
region. However, the heat-related mortality risk was higher in urban
cluster region using the individual-level exposure data compared to
the county-aggregated monitoring station exposure dataset. These
study results indicate that using a different method to estimate
exposure, such as a different dataset and different level of
aggregation, while producing similar overall results, could result in
different estimates of the relative health burden related to
temperature.

Table 2. Descriptive statistics for temperature exposures for mortalities (Lag 0) for different exposure methods (May–September 2000–2016).

PRISM (°C) Monitoring station (°C)

Individual County Individual County

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Total 23.4 (3.8) 23.4 (3.9) 23.6 (4.2) 23.6 (4.1)

Region Piedmont 23.5 (3.6) 23.5 (3.7) 23.4 (3.6) 23.4 (3.6)

Mountain 20.7 (3.5) 20.5 (3.7) 20.0 (3.3) 20.2 (3.2)

Coastal 24.7 (3.5) 24.7 (3.7) 25.4 (3.9) 25.6 (3.8)

Urbanicity Urban Area 24.3 (3.5) 24.4 (3.6) 24.5 (3.4) 24.4 (3.4)

Urban Cluster 23.6 (3.9) 23.6 (3.8) 24.1 (4.2) 23.9 (4.1)

Rural 22.9 (3.9) 22.9 (4.0) 22.3 (4.0) 22.5 (3.9)

Race Non-Hispanic White 23.1 (3.8) 23.1 (3.9) 22.8 (3.9) 23.0 (3.8)

Non-Hispanic Black 24.4 (3.7) 24.4 (3.9) 25.5 (4.3) 25.4 (4.4)

Hispanic 23.7 (3.5) 23.7 (3.6) 23.6 (3.3) 23.2 (3.3)

Non-Hispanic Asian/Hawaiian
Pacific Islander

23.7 (3.7) 23.7 (3.8) 23.8 (3.6) 23.6 (3.6)

Non-Hispanic Other 24.3 (3.6) 24.3 (3.7) 24.2 (3.7) 24.0 (3.6)

Sex Female 23.5 (4.0) 23.5 (4.0) 23.9 (4.4) 23.8 (4.3)

Male 23.3 (3.9) 23.3 (3.9) 23.2 (4.0) 23.3 (3.8)

Age < 65 23.8 (3.9) 23.7 (4.1) 24.5 (4.6) 24.5 (4.7)

≥ 65 23.2 (3.8) 23.2 (3.9) 23.0 (3.8) 23.0 (3.7)

SD Standard deviation; The number of participants varied by exposure method (See Table 1).
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Even though the mean temperature value among the four
exposure methods were similar, the heat-related mortality risk was
different. Exposure based at the individual residence resulted in a
higher heat-mortality risk compared to use of exposure based on
residential county using either the monitoring station temperature
datasets or modeled exposure dataset. Overall, the high-resolution
modeled, gridded temperature dataset resulted in lower heat-
mortality risk compared to estimates based on the monitoring
station temperature dataset. To date, most studies used weather
station datasets when assessing temperature-related health
effects. Since the monitoring stations are usually placed near
populated areas, they may be close to the true average
temperature exposure of the study population in ecological
studies [4], however, they may not provide as good representation
of temperatures in rural regions. In studies using modeled
exposure, populations far from monitors are either excluded or
have more uncertain exposure estimates. These populations can
have different population characteristics as well (e.g., race/
ethnicity, urbanicity). Our study results found different health
effects when using different exposure methods, indicating that
the choice of exposure method matters. Although all methods
indicate increased risk of mortality under heat, the level of that risk
differed by exposure method. This can have important implica-
tions for decision-makers, such as the development of heat action
plans, and estimates of the health impacts of temperature.
Further, estimates of the health consequences of climate change
would be affected by the different risk estimates.
In our study, we found different heat-mortality risk by level of

urbanicity. Importantly, whether rural or urban areas have the
highest heat-mortality risk depended on the type of exposure
method. This suggests that use of exposure method can also

influence results in studies of environmental justice and other
research on vulnerability or susceptibility. When examining the
heat-mortality risk using all individuals, rural areas had the highest
heat-mortality risk under most exposure approaches, but urban
areas had higher heat-mortality risks than rural areas when using
modeled temperature data based on residential county. This could
be explained by the different individual characteristics included in
the populations under different subgroup analysis. The people
included in the monitoring station exposure analysis had a higher
percentage of urban cluster regions and lower percentage of
urban area and rural regions compared to the gridded modeled
exposure analysis. This is due to the location of the monitoring
stations [4], which are mostly located in more urban settings.
Therefore, it is important for future studies to consider where the
study site is located and what type of temperature exposure
methods is being used. Often the type of exposure method
selected is based on the availability of the underlying health data
(e.g., aggregated health data vs. geocoded location of study
participants). If the study area is urbanized, there may be sufficient
monitoring stations to estimate temperature-related exposures
from measurements, however, studies in rural regions may have a
sparser monitoring network that might lead to exposure
misclassification. In this case, modeled gridded temperature
datasets may be considered, although this brings different
limitations as the exposure data would be modeled and exposure
uncertainty may differ by participant. The population included in
the analysis based on monitoring data was more urban and had a
higher percentage of non-Hispanic Black participants than the
population based on the modeled temperature data. Also, when
using the subset of individuals with exposure estimates under all
four methods, results were different regarding risk across levels of

Fig. 1 The mean temperature map for each individual death based on different exposure methods. Exposures based on. A Modeled
temperature data matched to the individual residence, (B) modeled temperature data matched to the residential county, (C) monitoring
temperature data matched to the individual residence, and (D) monitoring temperature data matched to the residential county. Each dot
represents an individual in the mortality dataset. The colors reflect temperature exposure estimates for those individuals one of four exposure
methods. White areas reflect locations where either no estimate could be made for that exposure method or no participant resided.
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urbancity. This could indicate that when estimating the
temperature-related health burden in rural regions, using the
monitoring station dataset can yield different health results. Most
temperature-mortality studies have focused on cities, and most
studies including rural regions relied on weather monitoring
stations, which are often sparse in rural areas. Thus, the
populations studied, and the estimated variation in risks across
populations, could differ.
Some studies showed different results from our study. Guo et al.

[12] estimated the association between temperature and mortality
in Brisbane, Australia using three exposure methods: a time series
temperature exposure from a single weather station, a time series
averaging across three weather stations, and spatially interpolated
(via kriging) temperature estimates for each administrative areas
within Brisbane. These three exposures yielded similar effect
sizes for both hot and cold temperatures. A study conducted in
Paris found little difference in temperature-mortality relationships
among different exposure definitions (single monitoring station
and population-weighted daily estimates from multiple monitor-
ing stations) [27]. However, while these studies compared results
across different exposure methods, they considered only methods

based on monitoring data. They also focused on a single city,
whereas we considered both rural and urban areas.
Several strengths of this study are that, to the best of our

knowledge, it is the first study to compare heat-mortality effect
estimates based on different exposure approaches consider both
the individual and county aggregated temperature based on both
a modeled, gridded dataset and monitoring station dataset. We
used the case-crossover study design, which inherently adjusts for
all time-invariant confounders. This study included rural popula-
tions that are often excluded from epidemiological research based
on monitoring networks and assessed effect modification by
urbanicity. However, further studies are needed, such as exploring
various potential effect modification on heat-mortality relationship
when using different exposure methods, such as by access to
greenspace. Also, our study results may not be generalizable to
different study areas, as the populations, monitoring networks,
and accuracy of modeled data may differ.
There are some limitations to this study. We did not account for

how the relationship between heat and mortality could differ by
air conditioning, including central air conditioning and window
units. Nearly 90% of the US household have access to any air

Fig. 2 The exposure-response curve for each exposure method using a subset of individuals in all exposure methods (n= 109,569). Solid
lines indicate results based on the gridded, modeled temperature dataset (PRISM) and dashed lines reflect results based on monitoring station
temperature. Blue lines indicate results based on exposure matched to the individual residence, and red lines indicate results based on
exposure matched to the residential county aggregated. The odds ratio was centered (OR= 1) for the overall temperature mean value of
23.2 °C.

Table 3. Heat related mortality (OR, 95% CI) estimated from conditional logistic regression models used within a case-crossover framework for
different exposure methods using the subset of individuals included in all exposure methods (n= 109,569).

Odds Ratio (95% CI)

Temperature based on individual residence Temperature based on residential county

PRISM Monitoring stations PRISM Monitoring stations

Relative 1.16 (1.14, 1.17) 2.24 (2.21, 2.27) 1.08 (1.06, 1.10) 1.27 (1.25, 1.29)

Absolute 1.25 (1.22, 1.28) 2.23 (2.20, 2.27) 1.12 (1.08, 1.14) 1.39 (1.36, 1.42)

Odds ratio comparing the heat-mortality risk of relative temperature changes (99th temperature percentile and 90th temperature percentile) and absolute
temperature changes (30.0 °C and 27.6 °C).
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conditioning equipment (i.e., central air conditioning or window
units) [28], and this rate is similar in North Carolina, where 84% of
households have a central air conditioning system [28]. Data are
limited on air conditioning, especially for the use of air
conditioning, as opposed to its prevalence, as well as window
units versus central air conditioning, and other forms of cooling
such as electric or hand fans. Having access to air conditioning
system does not mean each individual is actually using the air
conditioning system. According to the 2015 US Census, 35% or
more of households in North Carolina experience energy poverty.
Individuals experiencing energy poverty may not be able to pay
for the energy needed to use an air conditioning system, even if
such a system is installed [29]. Studies investigating the role of air
conditioning on heat-mortality relationship are largely based on
air conditioning data on average across a country or at the city
level [25, 30, 31]. These studies also generally used data on
prevalence rather than use of air conditioning. Existing
temperature-mortality studies have noted limitations in accurately
reflecting the individuals’ exposed indoor temperature, even
when considering air conditioning [32–34]. More research and
data are needed on how air conditioning influences the heat-
mortality relationship including types of units (e.g., central,
window units), the use of air conditioning versus its prevalence,
and a multi-city scale including urban and rural areas.
Another limitation of this study is in the use of ambient

temperature for exposure. This does not account for differences
across populations due to indoor/outdoor activity patterns and
the corresponding temperatures, which would affect the human
health. Some studies reported the relationship between indoor
temperature and health, with findings consistent with our study
results. High indoor temperature was associated with poor self-
rated health in England [35]. Also, a study in Texas found indoor
heat was associated with adverse health effects, especially
mortality [36]. Many studies have investigated the correlation
between indoor and outdoor temperature, and the results vary
depending on the region and households. A study in Germany
showed poor correlation between outdoor and indoor tempera-
ture [37], whereas, a study in Boston found a strong correlation of
0.91 at warm outdoor temperatures [38]. Also, a study conducted
for Seoul, Korea showed that outdoor temperature and apparent
temperature are sufficient indicators for indoor conditions [35].
Indoor conditions vary between households, but correspond to
outdoor conditions [39, 40]. Although the ambient temperature is
particularly relevant for policy, as decision-makers often develop
policies for ambient levels (e.g., heat warning systems), further
work is needed to assess how the heat-mortality relationship
differs by subpopulation in relation to indoor temperatures and
indoor/outdoor activity patterns, which can relate to different
personal exposures.
There are several topics that warrant future research. In this

study we analyzed the outdoor temperature as the exposure,
although other studies explored a range of metrics including the
heat index, which considers the temperature and humidity. Many

studies found association between heat index and mortality
[41–43]. However, the heat index used in previous studies were
generated from different methods and algorithms, which could
result in inconsistent results [44]. Future studies could consider
more complex aspects of exposure to high temperatures such as
the heat index, indoor temperatures, and indoor/outdoor
activity patterns, including how different methods of assessing
exposure impact estimated health risks. Furthermore, measure-
ment error is a limitation in environmental health studies [45].
Future studies could investigate the impact of measurement
error on temperature-mortality relationship, including how this
differs by exposure method. Existing studies showed different
results where one study found Berkson-type error that reduced
the logistic regression results less than 1% [46], whereas other
studies stated that measurement error could result in biased
estimates and contribute to uncertainty in the results [47, 48].
Also, future studies could evaluate different types of exposure
methods according to the study region’s characteristics and data
availability. A multi-city multi-country study suggested that the
climate reanalysis dataset well represents the monitoring station
temperature dataset, expect for the tropical regions where it
showed a low performance [49], however that study did not
include rural areas. A spatially refined exposure dataset was
found to be more appropriate for locations far from the weather
stations [11].
This study showed that using different temperature exposure

methods can result in different heat-mortality risk. The heat-
related mortality was higher when basing exposure on monitoring
station data. These findings offer useful information to research-
ers, communities, and policy makers, on efforts to reduce the
health burden from heat by highlighting the importance of
exposure assessment methods in estimating risk and in compar-
ing risks across populations (e.g., rural versus urban), which is
important for the present day and estimates of risks under climate
change.
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