Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergic effects of PM1 and thermal inversion on the incidence of small for gestational age infants: a weekly-based assessment

Abstract

Background

The synergic effects of thermal inversion (TI) and particulate matter with an aerodynamic diameter ≤1 μm (PM1) exposure and incidence of small for gestational age (SGA) was not clear.

Objective

We aimed to explore the independent effects of prenatal TI and PM1 exposure on incidence of SGA and their potential interactive effects.

Methods

A total of 27,990 pregnant women who delivered in Wuhan Children’s Hospital from 2017 to 2020 were included. The daily mean concentration of PM1 was obtained from ChinaHighAirPollutants (CHAP) and matched with the residential address of each woman. Data on TI was derived from National Aeronautics and Space Administration (NASA). The independent effects of PM1 and TI exposures on SGA in each gestational week were estimated by the distributed lag model (DLM) nested in Cox regression model, and the potential interactive effects of PM1 and TI on SGA were investigated by adapting the relative excess risk due to interaction (RERI) index.

Results

Per 10 μg/m3 increase in PM1 was associated with an increase in the risk of SGA at 1–3 and 17–23 gestational weeks, with the strongest effect at the first gestational week (HR = 1.043, 95%CI: 1.008, 1.078). Significant links between one day increase of TI and SGA were found at the 1–4 and 13–23 gestational weeks and the largest effects were observed at the 17th gestational week (HR = 1.018, 95%CI: 1.009, 1.027). Synergistic effects of PM1 and TI on SGA were detected in the 20th gestational week, with RERI of 0.208 (95%CI: 0.033,0.383).

Impact statement

Both prebirth PM1 and TI exposure were significantly associated with SGA. Simultaneous exposure to PM1 and TI might have synergistic effect on SGA. The second trimester seems to be a sensitive window of environmental and air pollution exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart of the cohort study population selection.
Fig. 2: The locations of residences of SGA gravidas and AGA gravidas.
Fig. 3: Hazard ratios (95% CI) for SGA with per 1 μg/m3 increase of PM1 during 1–26 gestational weeks in Wuhan, 2017–2020.
Fig. 4: Hazard ratios (95% CI) for SGA with per one day increased in thermal inversion (TI) during 1–26 gestational weeks in Wuhan, 2017–2020.
Fig. 5: Hazard ratios (95% CI) of one-week effects for SGA with per 10 μg/m3 increase of PM1 concentration or per 1day increase of TI in different newborn gender.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Ding G, Tian Y, Zhang Y, Pang Y, Zhang JS, Zhang J. Application of a global reference for fetal-weight and birthweight percentiles in predicting infant mortality. BJOG. 2013;120:1613–21. https://doi.org/10.1111/1471-0528.12381.

    Article  CAS  PubMed  Google Scholar 

  2. Bonamy AK, Parikh NI, Cnattingius S, Ludvigsson JF, Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: effects of gestational age and fetal growth. Circulation. 2011;124:2839–46. https://doi.org/10.1161/CIRCULATIONAHA.111.034884.

    Article  PubMed  Google Scholar 

  3. Pariente G, Shoham Vardi I, Kessous R, Sheiner E. 800: Delivery of an SGA neonate as an independent risk factor for long-term maternal chronic kidney disease. Am J Obstet Gynecol. 2015;212:S387 https://doi.org/10.1016/j.ajog.2014.10.1006.

    Article  Google Scholar 

  4. McIntire DD, Bloom SL, Casey BM, Leveno KJ. Birth weight in relation to morbidity and mortality among newborn infants. N. Engl J Med. 1999;340:1234–8. https://doi.org/10.1056/nejm199904223401603.

    Article  CAS  PubMed  Google Scholar 

  5. Meas T, Deghmoun S, Armoogum P, Alberti C, Levy-Marchal C. Consequences of being born small for gestational age on body composition: an 8-year follow-up study. J Clin Endocrinol Metab. 2008;93:3804–9. https://doi.org/10.1210/jc.2008-0488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sacchi C, Marino C, Nosarti C, Vieno A, Visentin S, Simonelli A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status With Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020;174:772–81. https://doi.org/10.1001/jamapediatrics.2020.1097.

    Article  PubMed  Google Scholar 

  7. Hollo O, Rautava P, Korhonen T, Helenius H, Kero P, Sillanpää M. Academic achievement of small-for-gestational-age children at age 10 years. Arch pediatrics Adolesc Med. 2002;156:179–87. https://doi.org/10.1001/archpedi.156.2.179.

    Article  Google Scholar 

  8. Mericq V, Martinez-Aguayo A, Uauy R, Iñiguez G, Van der Steen M, Hokken-Koelega A. Long-term metabolic risk among children born premature or small for gestational age. Nat Rev Endocrinol. 2017;13:50–62. https://doi.org/10.1038/nrendo.2016.127.

    Article  CAS  PubMed  Google Scholar 

  9. Strauss RS. Adult functional outcome of those born small for gestational age: twenty-six-year follow-up of the 1970 British Birth Cohort. Jama. 2000;283:625–32. https://doi.org/10.1001/jama.283.5.625.

    Article  CAS  PubMed  Google Scholar 

  10. Francis A, Hugh O, Gardosi J. Customized vs INTERGROWTH-21(st) standards for the assessment of birthweight and stillbirth risk at term. Am J Obstet Gynecol. 2018;218:S692–s699. https://doi.org/10.1016/j.ajog.2017.12.013.

    Article  PubMed  Google Scholar 

  11. Behboudi-Gandevani S, Bidhendi-Yarandi R, Panahi MH, Mardani A, Paal P, Prinds C, et al. Adverse Pregnancy Outcomes and International Immigration Status: A Systematic Review and Meta-analysis. Ann Glob Health. 2022;88:44. https://doi.org/10.5334/aogh.3591.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pedersen GS, Mortensen LH, Gerster M, Rich-Edwards J, Andersen AM. Preterm birth and birthweight-for-gestational age among immigrant women in Denmark 1978-2007: a nationwide registry study. Paediatr Perinat Epidemiol. 2012;26:534–42. https://doi.org/10.1111/ppe.12010.

    Article  PubMed  Google Scholar 

  13. Urquia ML, Berger H, Ray JG. Risk of adverse outcomes among infants of immigrant women according to birth-weight curves tailored to maternal world region of origin. CMAJ. 2015;187:E32–e40. https://doi.org/10.1503/cmaj.140748.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee AC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Health. 2013;1:e26–36. https://doi.org/10.1016/S2214-109X(13)70006-8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marzouk A, Filipovic-Pierucci A, Baud O, Tsatsaris V, Ego A, Charles MA, et al. Prenatal and post-natal cost of small for gestational age infants: a national study. BMC Health Serv Res. 2017;17:221. https://doi.org/10.1186/s12913-017-2155-x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Diabelková J, Rimárová K, Urdzík P, Dorko E, Houžvičková A, Andraščíková Š, et al. Risk factors associated with low birth weight. Cent Eur J Public Health. 2022;30:S43–s49. https://doi.org/10.21101/cejph.a6883.

    Article  PubMed  Google Scholar 

  17. Parra-Saavedra M, Simeone S, Triunfo S, Crovetto F, Botet F, Nadal A, et al. Correlation between histological signs of placental underperfusion and perinatal morbidity in late-onset small-for-gestational-age fetuses. Ultrasound Obstet Gynecol. 2015;45:149–55. https://doi.org/10.1002/uog.13415.

    Article  CAS  PubMed  Google Scholar 

  18. Guo P, Chen Y, Wu H, Zeng J, Zeng Z, Li W, et al. Ambient air pollution and markers of fetal growth: A retrospective population-based cohort study of 2.57 million term singleton births in China. Environ Int. 2020;135:105410. https://doi.org/10.1016/j.envint.2019.105410.

    Article  CAS  PubMed  Google Scholar 

  19. Hannam K, McNamee R, Baker P, Sibley C, Agius R. Air pollution exposure and adverse pregnancy outcomes in a large UK birth cohort: use of a novel spatio-temporal modelling technique. Scand J Work, Environ Health. 2014;40:518–30. https://doi.org/10.5271/sjweh.3423.

    Article  CAS  PubMed  Google Scholar 

  20. Liao J, Li Y, Wang X, Zhang B, Xia W, Peng Y, et al. Prenatal exposure to fine particulate matter, maternal hemoglobin concentration, and fetal growth during early pregnancy: associations and mediation effects analysis. Environ Res. 2019;173:366–72. https://doi.org/10.1016/j.envres.2019.03.056.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Q, Li B, Benmarhnia T, Hajat S, Ren M, Liu T, et al. Independent and Combined Effects of Heatwaves and PM2.5 on Preterm Birth in Guangzhou, China: A Survival Analysis. Environ Health Perspect. 2020;128:17006 https://doi.org/10.1289/EHP5117.

    Article  PubMed  Google Scholar 

  22. Yang BY, Guo Y, Markevych I, Qian ZM, Bloom MS, Heinrich J, et al. Association of Long-term Exposure to Ambient Air Pollutants With Risk Factors for Cardiovascular Disease in China. JAMA Netw Open. 2019;2:e190318 https://doi.org/10.1001/jamanetworkopen.2019.0318.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chuang KJ, Chan CC, Chen NT, Su TC, Lin LY. Effects of particle size fractions on reducing heart rate variability in cardiac and hypertensive patients. Environ Health Perspect. 2005;113:1693–7. https://doi.org/10.1289/ehp.8145

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu K, Guo Y, Hu D, Du R, Yang X, Zhong J, et al. Mortality burden attributable to PM(1) in Zhejiang province, China. Environ Int. 2018;121:515–22. https://doi.org/10.1016/j.envint.2018.09.033.

    Article  PubMed  Google Scholar 

  25. Zhou S, Lin L, Bao Z, Meng T, Wang S, Chen G, et al. The association of prenatal exposure to particulate matter with infant growth: A birth cohort study in Beijing, China. Environ Pollut. 2021;277:116792. https://doi.org/10.1016/j.envpol.2021.116792.

    Article  CAS  PubMed  Google Scholar 

  26. Lin L, Guo Y, Han N, Su T, Jin C, Chen G, et al. Prenatal exposure to airborne particulate matter of 1 μm or less and fetal growth: A birth cohort study in Beijing, China. Environ Res. 2021;194:110729. https://doi.org/10.1016/j.envres.2021.110729.

    Article  CAS  PubMed  Google Scholar 

  27. Su X, Zhang S, Lin Q, Wu Y, Yang Y, Yu H, et al. Prenatal exposure to air pollution and neurodevelopmental delay in children: A birth cohort study in Foshan, China. Sci Total Environ. 2022;816:151658. https://doi.org/10.1016/j.scitotenv.2021.151658.

    Article  CAS  PubMed  Google Scholar 

  28. Liu YM, Ao CK. Effect of air pollution on health care expenditure: Evidence from respiratory diseases. Health Econ. 2021;30:858–75. https://doi.org/10.1002/hec.4221.

    Article  PubMed  Google Scholar 

  29. Dejchanchaiwong R, Tekasakul P, Tekasakul S, Phairuang W, Nim N, Sresawasd C, et al. Impact of transport of fine and ultrafine particles from open biomass burning on air quality during 2019 Bangkok haze episode. J Environ Sci. 2020;97:149–61. https://doi.org/10.1016/j.jes.2020.04.009.

    Article  CAS  Google Scholar 

  30. Rohrer M, Flahault A, Stoffel M. Peaks of Fine Particulate Matter May Modulate the Spreading and Virulence of COVID-19. Earth Syst Environ. 2020;4:789–96. https://doi.org/10.1007/s41748-020-00184-4.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Trinh TT, Trinh TT, Le TT, Nguyen TDH, Tu BM. Temperature inversion and air pollution relationship, and its effects on human health in Hanoi City, Vietnam. Environ Geochem Health. 2019;41:929–37. https://doi.org/10.1007/s10653-018-0190-0.

    Article  CAS  PubMed  Google Scholar 

  32. Rangel MA, Tome R. Health and the Megacity: Urban Congestion, Air Pollution, and Birth Outcomes in Brazil. Int J Environ Res Public Health. 2022;19. https://doi.org/10.3390/ijerph19031151.

  33. Knol MJ, VanderWeele TJ. Recommendations for presenting analyses of effect modification and interaction. Int J Epidemiol. 2012;41:514–20. https://doi.org/10.1093/ije/dyr218.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee W, Choi HM, Kim D, Honda Y, Leon Guo YL, Kim H. Synergic effect between high temperature and air pollution on mortality in Northeast Asia. Environ Res. 2019;178:108735. https://doi.org/10.1016/j.envres.2019.108735.

    Article  CAS  PubMed  Google Scholar 

  35. Richards M, Huang M, Strickland MJ, Newman AJ, Warren JL, D’Souza R, et al. Acute association between heatwaves and stillbirth in six US states. Environ Health. 2022;21:59. https://doi.org/10.1186/s12940-022-00870-y.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sun Y, Ilango SD, Schwarz L, Wang Q, Chen JC, Lawrence JM, et al. Examining the joint effects of heatwaves, air pollution, and green space on the risk of preterm birth in California. Environ Res Lett 2020;15. https://doi.org/10.1088/1748-9326/abb8a3.

  37. Hao J, Zhang F, Chen D, Liu Y, Liao L, Shen C, et al. Association between ambient air pollution exposure and infants small for gestational age in Huangshi, China: a cross-sectional study. Environ Sci Pollut Res Int. 2019;26:32029–39. https://doi.org/10.1007/s11356-019-06268-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. [Growth standard curves of birth weight, length and head circumference of Chinese newborns of different gestation]. Zhonghua er ke za zhi = Chin J pediatrics. 2020;58:738–46. 10.3760/cma.j.cn112140-20200316-00242.

  39. Wei J, Li Z, Guo J, Sun L, Huang W, Xue W, et al. Satellite-Derived 1-km-Resolution PM1 Concentrations from 2014 to 2018 across China. Environ Sci Technol. 2019;53:13265–74. https://doi.org/10.1021/acs.est.9b03258.

    Article  CAS  PubMed  Google Scholar 

  40. Wei J, Li Z, Lyapustin A, Sun L, Peng Y, Xue W, et al. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sens Environ. 2021;252:112136. https://doi.org/10.1016/j.rse.2020.112136.

    Article  Google Scholar 

  41. Wei J, Li Z, Xue W, Sun L, Fan T, Liu L, et al. The ChinaHighPM10 dataset: generation, validation, and spatiotemporal variations from 2015 to 2019 across China. Environ Int. 2021;146:106290. https://doi.org/10.1016/j.envint.2020.106290.

    Article  CAS  PubMed  Google Scholar 

  42. Song J, Ding Z, Zheng H, Xu Z, Cheng J, Pan R, et al. Short-term PM(1) and PM(2.5) exposure and asthma mortality in Jiangsu Province, China: What’s the role of neighborhood characteristics?. Ecotoxicol Environ Saf. 2022;241:113765. https://doi.org/10.1016/j.ecoenv.2022.113765.

    Article  CAS  PubMed  Google Scholar 

  43. Wu H, Zhang B, Wei J, Lu Z, Zhao M, Liu W, et al. Short-term effects of exposure to ambient PM(1), PM(2.5), and PM(10) on ischemic and hemorrhagic stroke incidence in Shandong Province, China. Environ Res. 2022;212:113350. https://doi.org/10.1016/j.envres.2022.113350.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Wei J, Shi Y, Quan C, Ho HC, Song Y, et al. Early-life exposure to submicron particulate air pollution in relation to asthma development in Chinese preschool children. J Allergy Clin Immunol. 2021;148:771–782.e712. https://doi.org/10.1016/j.jaci.2021.02.030.

    Article  CAS  PubMed  Google Scholar 

  45. Chen S, Oliva P, Zhang P. The effect of air pollution on migration: Evidence from China. J Dev Econom. 2022;156. https://doi.org/10.1016/j.jdeveco.2022.102833.

  46. Deschenes O, Wang HX, Wang S, Zhang P. The effect of air pollution on body weight and obesity: Evidence from China. J Dev Econom. 2020;145. https://doi.org/10.1016/j.jdeveco.2020.102461.

  47. Andersson T, Alfredsson L, Källberg H, Zdravkovic S, Ahlbom A. Calculating measures of biological interaction. Eur J Epidemiol. 2005;20:575–9. https://doi.org/10.1007/s10654-005-7835-x.

    Article  PubMed  Google Scholar 

  48. Tapia VL, Vasquez BV, Vu B, Liu Y, Steenland K, Gonzales GF. Association between maternal exposure to particulate matter (PM(2.5)) and adverse pregnancy outcomes in Lima, Peru. J Expo Sci Environ Epidemiol. 2020;30:689–97. https://doi.org/10.1038/s41370-020-0223-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stieb DM, Chen L, Beckerman BS, Jerrett M, Crouse DL, Omariba DW, et al. Associations of Pregnancy Outcomes and PM2.5 in a National Canadian Study. Environ Health Perspect. 2016;124:243–9. https://doi.org/10.1289/ehp.1408995.

    Article  CAS  PubMed  Google Scholar 

  50. Hyder A, Lee HJ, Ebisu K, Koutrakis P, Belanger K, Bell ML. PM2.5 exposure and birth outcomes: use of satellite- and monitor-based data. Epidemiology. 2014;25:58–67. https://doi.org/10.1097/ede.0000000000000027.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Wang J, Chen L, Yang H, Zhang B, Wang Q, et al. Ambient PM(2.5) and clinically recognized early pregnancy loss: A case-control study with spatiotemporal exposure predictions. Environ Int. 2019;126:422–9. https://doi.org/10.1016/j.envint.2019.02.062.

    Article  CAS  PubMed  Google Scholar 

  52. Chen J, Li PH, Fan H, Li C, Zhang Y, Ju D, et al. Weekly-specific ambient fine particular matter exposures before and during pregnancy were associated with risks of small for gestational age and large for gestational age: results from Project ELEFANT. Int J Epidemiol. 2022;51:202–12. https://doi.org/10.1093/ije/dyab166.

    Article  PubMed  Google Scholar 

  53. Isaevska E, Fiano V, Asta F, Stafoggia M, Moirano G, Popovic M, et al. Prenatal exposure to PM(10) and changes in DNA methylation and telomere length in cord blood. Environ Res. 2022;209:112717. https://doi.org/10.1016/j.envres.2022.112717.

    Article  CAS  PubMed  Google Scholar 

  54. Kannan S, Misra DP, Dvonch JT, Krishnakumar A. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect. 2006;114:1636–42. https://doi.org/10.1289/ehp.9081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu Z, Hu H, Benmarhnia T, Ren Z, Luo J, Zhao W, et al. Gestational PM(2.5) exposure may increase the risk of small for gestational age through maternal blood pressure and hemoglobin: A mediation analysis based on a prospective cohort in China, 2014-2018. Ecotoxicol Environ Saf. 2022;242:113836. https://doi.org/10.1016/j.ecoenv.2022.113836.

    Article  CAS  PubMed  Google Scholar 

  56. Macdonald-Wallis C, Tilling K, Fraser A, Nelson SM, Lawlor DA. Associations of blood pressure change in pregnancy with fetal growth and gestational age at delivery: findings from a prospective cohort. Hypertension (Dallas, Tex: 1979). 2014;64:36–44. https://doi.org/10.1161/hypertensionaha.113.02766.

    Article  CAS  PubMed  Google Scholar 

  57. Kingdom JC, Kaufmann P. Oxygen and placental villous development: origins of fetal hypoxia. Placenta. 1997;18:613–21. https://doi.org/10.1016/s0143-4004(97)90000-x.

    Article  CAS  PubMed  Google Scholar 

  58. Wang YY, Li Q, Guo Y, Zhou H, Wang X, Wang Q, et al. Association of Long-term Exposure to Airborne Particulate Matter of 1 mum or Less With Preterm Birth in China. JAMA Pediatr. 2018;172:e174872. https://doi.org/10.1001/jamapediatrics.2017.4872.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-Dependent Proinflammatory Effects of Ultrafine Polystyrene Particles: A Role for Surface Area and Oxidative Stress in the Enhanced Activity of Ultrafines. Toxicol Appl Pharmacol. 2001;175:191–9. https://doi.org/10.1006/taap.2001.9240.

    Article  CAS  PubMed  Google Scholar 

  60. Zhu W, Xu X, Zheng J, Yan P, Wang Y, Cai W. The characteristics of abnormal wintertime pollution events in the Jing-Jin-Ji region and its relationships with meteorological factors. Sci Total Environ. 2018;626:887–98. https://doi.org/10.1016/j.scitotenv.2018.01.083.

    Article  CAS  PubMed  Google Scholar 

  61. Qin Y, Zhang X, Tan K, Wang J. A review on the influencing factors of pavement surface temperature. Environ Sci Pollut Res Int. 2022;29:67659–74. https://doi.org/10.1007/s11356-022-22295-3.

    Article  PubMed  Google Scholar 

  62. Wagner DR, Brandley DC. Exercise in Thermal Inversions: PM(2.5) Air Pollution Effects on Pulmonary Function and Aerobic Performance. Wilderness Environ Med. 2020;31:16–22. https://doi.org/10.1016/j.wem.2019.10.005.

    Article  PubMed  Google Scholar 

  63. Wagner DR, Clark NW. Effects of ambient particulate matter on aerobic exercise performance. J Exerc Sci Fit. 2018;16:12–15. https://doi.org/10.1016/j.jesf.2018.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lee B-E, Park H, Hong Y-C, Ha M, Kim Y, Chang N, et al. Prenatal bisphenol A and birth outcomes: MOCEH (Mothers and Children’s Environmental Health) study. Int J Hyg Environ health. 2014;217:328–34. https://doi.org/10.1016/j.ijheh.2013.07.005.

    Article  CAS  PubMed  Google Scholar 

  65. Liu W, Huang C, Cai J, Wang X, Zou Z, Sun C. Household environmental exposures during gestation and birth outcomes: A cross-sectional study in Shanghai, China. Sci Total Environ. 2018;615:1110–8. https://doi.org/10.1016/j.scitotenv.2017.10.015.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Q, Sun S, Sui X, Ding L, Yang M, Li C, et al. Associations between weekly air pollution exposure and congenital heart disease. Sci total Environ. 2021;757:143821. https://doi.org/10.1016/j.scitotenv.2020.143821.

    Article  CAS  PubMed  Google Scholar 

  67. Challis J, Newnham J, Petraglia F, Yeganegi M, Bocking A. Fetal sex and preterm birth. Placenta. 2013;34:95–99. https://doi.org/10.1016/j.placenta.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  68. Mokoena KK, Ethan CJ, Yu Y, Quachie AT. Interaction Effects of Air Pollution and Climatic Factors on Circulatory and Respiratory Mortality in Xi’an, China between 2014 and 2016. Int J Environ Res Public Health. 2020;17. https://doi.org/10.3390/ijerph17239027.

  69. Li H, Li M, Zhang S, Qian ZM, Zhang Z, Zhang K, et al. Interactive effects of cold spell and air pollution on outpatient visits for anxiety in three subtropical Chinese cities. Sci Total Environ. 2022;817:152789. https://doi.org/10.1016/j.scitotenv.2021.152789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eccles R. An explanation for the seasonality of acute upper respiratory tract viral infections. Acta Otolaryngol. 2002;122:183–91. https://doi.org/10.1080/00016480252814207.

    Article  CAS  PubMed  Google Scholar 

  71. Wang YY, Li Q, Guo Y, Zhou H, Wang QM, Shen HP, et al. Ambient temperature and the risk of preterm birth: A national birth cohort study in the mainland China. Environ Int. 2020;142:105851. https://doi.org/10.1016/j.envint.2020.105851.

    Article  PubMed  Google Scholar 

  72. He JR, Liu Y, Xia XY, Ma WJ, Lin HL, Kan HD, et al. Ambient Temperature and the Risk of Preterm Birth in Guangzhou, China (2001-2011). Environ Health Perspect. 2016;124:1100–6. https://doi.org/10.1289/ehp.1509778.

    Article  PubMed  Google Scholar 

  73. Wei Y, Qiu X, Yazdi MD, Shtein A, Shi L, Yang J, et al. The Impact of Exposure Measurement Error on the Estimated Concentration-Response Relationship between Long-Term Exposure to PM2.5 and Mortality. Environ Health Perspect. 2022;130:77006. https://doi.org/10.1289/ehp10389.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by grants from the Fundamental Research Funds for the Central Universities (204202021kf0044).

Author information

Authors and Affiliations

Authors

Contributions

JW, WZ and DL conceived and designed the study; YZhang, YZhong, GZ, SZ, Xiaowei Zhang, TL, BC and AH collected and cleaned the data; Xupeng Zhang and FZ performed the data analysis and drafted the manuscript. YG helped revise the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jing Wei, Wei Zhu or Dejia Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study was approved by the Ethics Committee of Wuhan Children’s Hospital (2021R139-F01).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, F., Gao, Y. et al. Synergic effects of PM1 and thermal inversion on the incidence of small for gestational age infants: a weekly-based assessment. J Expo Sci Environ Epidemiol 33, 652–662 (2023). https://doi.org/10.1038/s41370-023-00542-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-023-00542-0

Keywords

Search

Quick links