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BACKGROUND: Disparities in adverse COVID-19 health outcomes have been associated with multiple social and environmental
stressors. However, research is needed to evaluate the consistency and efficiency of methods for studying these associations at
local scales.
OBJECTIVE: To assess socioexposomic associations with COVID-19 outcomes across New Jersey and evaluate consistency of
findings from multiple modeling approaches.
METHODS: We retrieved data for COVID-19 cases and deaths for the 565 municipalities of New Jersey up to the end of the first
phase of the pandemic, and calculated mortality rates with and without long-term-care (LTC) facility deaths. We considered
84 spatially heterogeneous environmental, demographic and socioeconomic factors from publicly available databases, including air
pollution, proximity to industrial sites/facilities, transportation-related noise, occupation and commuting, neighborhood and
housing characteristics, age structure, racial/ethnic composition, poverty, etc. Six geostatistical models (Poisson/Negative-Binomial
regression, Poison/Negative-Binomial mixed effect model, Poisson/Negative-Binomial Bersag-York-Mollie spatial model) and two
Machine Learning (ML) methods (Random Forest, Extreme Gradient Boosting) were implemented to assess association patterns.
The Shapley effects plot was established for explainable ML and change of support validation was introduced to compare
performances of different approaches.
RESULTS: We found robust positive associations of COVID-19 mortality with historic exposures to NO2, population density,
percentage of minority and below high school education, and other social and environmental factors. Exclusion of LTC deaths does
not significantly affect correlations for most factors but findings can be substantially influenced by model structures and
assumptions. The best performing geostatistical models involved flexible structures representing data variations. ML methods
captured association patterns consistent with the best performing geostatistical models, and furthermore detected consistent
nonlinear associations not captured by geostatistical models.
SIGNIFICANCE: The findings of this work improve the understanding of how social and environmental disparities impacted COVID-
19 outcomes across New Jersey.

Keywords: COVID-19; Social/environmental health disparities; Exposome and socioexposome; Explainable machine learning;
Bayesian geospatial modeling
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INTRODUCTION
COVID-19 had caused over 6.7 million deaths worldwide as of the
end of 2022 (https://covid19.who.int/) and it is expected to have
long-lasting impacts on global health [1]. Various ecological and
individual-level studies have been conducted [2–7], exploring
associations of COVID-19 morbidity and mortality with environ-
mental and social determinants of health. Most studies focused on
a single stressor or a single group of stressors; an exception is an
external exposome-wide association study of county-level COVID-
19 mortality across the contiguous US [8]. However, it is
recognized that it is important to establish integrated frameworks
that simultaneously consider heterogeneous stressors at multiple

scales [9, 10], in order to assess risk factors associated with health
disparities.
It has also been recognized that COVID-19 is not just a

pandemic but a syndemic, involving interactions of multiple
factors and conditions [11]; advanced data-driven approaches are
therefore needed to capture complex underlying association
patterns. The socioexposome provides a multidisciplinary frame-
work for accomplishing this by integrating the concepts of the
exposome and precision health with socioeconomic and beha-
vioral factors to better understand repercussions of regulatory and
corporate practices on public health and social justice [12]. Within
the exposome [13], the socioexposome specifically focuses on
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external exposures and socioeconomic conditions and the need
for community engagement in exposome science [14]. This
framework is particularly relevant to modeling spatial hetero-
geneities of COVID-19, that are driven by a multitude of correlated
and interacting biological, demographic, socioeconomic and
environmental factors [15]. For instance, racial/ethnic minorities
are more likely to live near industrial sites and pollution hotspots,
and these communities are therefore exposed to higher levels of
pollutants and other stressors that may exacerbate the severity of
COVID-19 [16, 17]; built environment factors such as green space
and noise exposure were also found to be related to disparities in
COVID-19 outcomes [18, 19].
Comparisons of linear statistical models have been conducted

in exposome-health studies [20–22], showing that no method is
consistently superior to others across different data sets and
criteria: selection of efficient models should be based on specific
tasks and data behaviors [23]. Various models have been used to
quantify associations between stressors and COVID-19 outcomes.
Ordinary linear regression (OLR) was applied to model numbers of
cases/deaths [24, 25], but inappropriate Gaussian assumptions
may lead to overoptimistic p-values and erroneous estimates of
association [26]. To alleviate this issue, generalized linear
regression (GLR), such as Poisson regression and Negative-
Binomial (NB) regression, can be used [2, 27]. However, GLR may
still not be sufficient for describing health outcomes with high
variabilities due to overdispersion, group randomness, spatial
autocorrelation, etc. Failure to consider these elements may
drastically affect interval estimates of different variables. It is
therefore needed to systematically evaluate and compare the
performance of geospatial models in assessing socioexposomic
patterns of COVID-19.
Machine Learning (ML) has been gaining popularity in environ-

mental health sciences [28]. However, most ML applications are
pursued for prediction rather than for association inference [29].
Barrera-Gómez et al. [21] compared seven algorithms with respect to
detecting interactions in exposome-health associations, and found
boosted regression trees to have the lowest predicted R2 compared
to other linear framework algorithms. Boosted regression was
reported to have undesirably higher false positive discoveries for
variable selection than other linear models in a simulated case-control
study [30]. Since these results were generated with analyses assuming
linear data structures, they do not truly reflect the strengths of ML.
Supervised ML can capture underlying nonlinear associations and
interactions using flexible model architectures and efficient algo-
rithms [31]. ML has been considered less interpretable than linear
models, a concern that has limited its application in association
studies. Recently, metrics such as variable importance were
introduced to compare performance and consistency of different
ML algorithms in environmental health association studies [32, 33].
However, important questions remain regarding how these algo-
rithms perform with respect to identifying and quantifying complex
patterns of socioexposome-health associations.
The present study implemented a unified framework (Fig. 1)

applying and comparing eight representative ML and geostatis-
tical models with structure hierarchy, for health impact assess-
ment and prediction of COVID-19 adverse health outcomes at
municipality level across New Jersey.

MATERIALS AND METHODS
Study settings
The spatial domain of this study covered the 565 municipalities of the
State of New Jersey (Fig. S1). We focused on the first wave of the
pandemic (March to September 2020) to exclude effects from factors such
as vaccination and virus variants. It should be noted that New Jersey was
one of the earliest and largest hotspots for COVID-19 (Fig. S2), with the
highest per capita fatalities from the first wave of COVID-19. New Jersey is
one of the most ethnically, socioeconomically and environmentally

diverse States; while it has on average the highest population density in
the nation, its 565 municipalities include urban centers, suburban sprawl,
shore towns, an aging industrial infrastructure, as well as agricultural land
and forested areas. So, New Jersey constitutes a remarkably hetero-
geneous environmental landscape that has often been considered a
“microcosm” representative of conditions occurring across the entire
contiguous US [34].

Data sources
The variables and data sources used in this study are summarized in
Table S1.

COVID-19 cases/deaths. Cumulative COVID-19 cases/deaths as of Sep-
tember 24, 2020 were available from local health departments across New
Jersey. Deaths in long-term-care facilities (LTCF) were provided by NJDOH;
see Text S1 for calculation of mortality rates with/without LTCF deaths.

Demographic characteristics. Demographic factors were retrieved from
the 2015–2019 US Census Bureau American Community Survey (ACS).
These factors include population density, age groups, racial and ethnic
communities, etc.

Socioeconomic status. Socioeconomic factors considered here included
education, language isolation, household crowding, poverty, disability,
unemployment, uninsured community, social vulnerability index (SVI), etc.
Please refer to Text S1 for details on individual socioeconomic variables
and combined indices.

Air pollutants. Metrics for three criteria air pollutants were considered in
this study: Annual average PM2.5 and summer seasonal average of daily
maximum 8-hour ozone concentrations (2016) were retrieved from the
EJSCREEN at the block group level. Annual averages of daily maximum 1-h
NO2 concentrations (2016) were made available by Di et al. [35] at
1 × 1 km2 resolution. We also considered twenty air toxics and relevant risk
indices retrieved from the USEPA NATA estimates; see Text S1 for details.

Proximity to industrial sites. Proximity data associated with significant
industrial sites and facilities (2019) were extracted from EJSCREEN. The
spatial distribution of power plants in 2020 was available from NJDEP;
inverse distance weighting by facility size was used to calculate proximity
to energy generating units.

Transportation-related noise. Noise estimates from the transportation
sector, i.e., aviation, roadway, and passenger rail, were made available by
the Bureau of Transportation Statistics providing 24-h equivalent
A-weighted noise levels for 2018 at 30 × 30m2 resolution averaged at
the municipality level.

Occupation and commuting. Occupation data were obtained from the
Longitudinal Employer-Household Dynamics database for 2018. Occupa-
tion types considered include health care, food service, transportation,
retail and wholesale. Commuting data to residents’ workplaces (either in
another county or in New York City) were also extracted from LEHD.

Other. The number of licensed long-term-care beds for each facility
(2020) was acquired from the NJDOH, and summed up for each
municipality. Data from the Agency for Healthcare Research and Quality
were used to calculate numbers of full-service restaurants and super-
markets per 1000 residents.

Statistical/machine learning approaches
Geostatistical models with structure hierarchy. We used six statistical/
geospatial models (Table S2) with flexible random components: Poisson
regression, Poison mixed effect model, Poisson Bersag-York-Mollie (BYM)
spatial model, Negative-Binomial (NB) regression, NB mixed effect model,
NB BYM spatial model. Poisson regression assumes the response to be
Poisson distributed, where the log mean is modeled as a linear
combination of covariates (linear predictor). The Poisson distribution has
equal mean and variance, limiting the model’s ability to capture high
variability (overdispersion) in count data. NB regression imposes a
hierarchical structure on the Poisson mean and includes a dispersion
parameter to capture greater variability. Both methods link the fixed effect
(linear predictor) to the response, ignoring potential differences between
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samples or sample groups. Poisson/NB mixed effect models simulta-
neously consider fixed and random effects to better simulate data
behaviors; herein, a random intercept varied by five geographic regions
within New Jersey (Fig. S1) was included.
Since the ordinary random effect component cannot sufficiently capture

spatial patterns, spatial mixed Poisson/NB regression, incorporating both
random and spatial components, was used to capture spatial hetero-
geneities. We employed a municipality-specific ordinary random effect
component to describe non-spatial heterogeneity and the intrinsic
conditional autoregressive structure to formulate the spatial component
(a.k.a., Poisson/NB BYM spatial models). We constructed a 565 × 565
adjacency matrix wi;j

� �
565 ´ 565 based on neighbor relationships to

characterize spatial correlations, i.e., wi,j=1 if municipality i is adjacent to
municipality j (j ≠ i) and wi,j = 0 otherwise. Spatial correlations are
estimated using the 356 municipalities with available death data, while
predictions for the remaining 209 municipalities are generated from
estimated spatial correlations. Frequentist and Bayesian inference (Text S2)
were applied to fit these models. In the Bayesian models, non-informative
priors were introduced, using default values specified in R-INLA (https://
www.r-inla.org/).

Ensemble machine learning models. Two widely used machine learning
(ML) models, i.e., Random Forest (RF) and Extreme Gradient Boosting
(XGBOOST) were also implemented in this study. The models utilize two
ensemble algorithms (bagging and boosting) for improved performance.
RF averages outputs from multiple independent trees, where each tree
grows with a subsample set from bootstrap resampling and partitions data
using the optimal features in a random subset: aggregation of these less
correlated trees can significantly increase model stability and accuracy.
XGBOOST combines the scaled outputs from multiple successive trees,
where each tree grows based on residuals (i.e., gradient of loss) from
previous trees and “boosts” via gradient descent; the outputs scaled with
the learning rate can promote establishment of more complementary trees
to reduce model bias and avoid overfitting.
These two ensemble ML models involve flexible and scalable

components/modules (e.g., regularization term used by LASSO, tree
pruning used by decision tree, parallel scheme for big data) to further
enhance model accuracy/robustness, and thus generally perform better
than other ML methods in regression [23]. It should be noted that ML
requires determining multiple hyperparameters to truly utilize the
“learning capability” of the algorithms. Herein, we used repeated coarse-

Fig. 1 Flow diagram of the COVID-19 socioexposomic modeling framework. Six main components/procedures are shown in the left
rectangular blocks, with descriptions of each component given on the right.
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fine grid search for hyperparameter tuning to maximize model perfor-
mance. The best (parsimonious) structures were selected based on the
minimum predicted R2 for a fivefold cross validation set. The tuned
hyperparameters selected for the two models are provided in Table S3.

Variable selection
A forward stepwise algorithm starting with a predefined set was used for
variable selection. This algorithm was implemented in two frameworks
(Poisson and NB regression). To prevent collinearity and to ensure stable
estimates, in each step, variables with variance inflation factor below 5
were considered and selected according to the deviance information
criterion (DIC) [36]. The two regression frameworks obtained consistent
results with ten selected variables: % population (age > 64), % minority,
% below high school education, median gross rent, population density, %
occupation (high risk), PM2.5 average concentration, ozone seasonal
DM8HA, % high occupancy residence, and % unemployed. Base models
were constructed with these variables; each of the remaining variables
was then added to the base models for statistical analysis. For fair
comparison, the ten variables were also used to build the ML base
models.

Association interpretation and quantification
Linear regression and its extensions use simple structures to ensure
straightforward interpretation in effect analysis. The Poisson/NB modeling
frameworks assume a log linear structure: logðyÞ ¼ β0 þ β1x1 þ ¼þ
βixi þ ¼ þ βpxp , where βi denotes the regression coefficient of the ith
variable xi. Based on this structure, it can be stated that a unit increase in xi
is associated with 100[exp(βi) − 1]% increase in response y. The predictor
effects plot can be used to provide graphical summaries of the relationship
between xi and y for fitted regression models: The plot calculates the
response for each predefined value of xi with the remaining p-1 variables
fixed, i.e., ŷ ¼ eβ0þβ1x1þ¼þβi xiþ¼þβpxp , where xp denotes the mean of xp.
To enable automatic detection and learning of nonlinear relationships

and interactions, ML incorporates complex model structures that require
advanced interpretation tools to ensure transparency [23, 37]. The Shapley
value is employed here, because (a) it is a tool providing local “granular”
metrics which can be “rolled up” to less granular metrics for implementing
various interpretation tasks (feature importance, effect trend, and
interaction plot, etc.), and (b) it is based on solid theoretical foundations
(coalitional game theory) providing a unique solution satisfying properties
(local accuracy, consistency, and missingness) desired for explanatory ML
analysis [38].
The Shapley value for the ith variable φi,j measures the contribution to the

prediction of the jth sample, calculated as the average of the marginal
responses over all possible coalitions of the remaining p-1 variables. The
prediction of the jth sample satisfies (additivity property): logðyjÞ ¼ φ0þ
φ1;j þ ¼ þ φi;j þ ¼ þ φp;j , where φ0 is a constant representing the
prediction average across all samples. For fair comparison, we similarly
defined the “Shapley effects plot” for variable i through estimated responses
for all samples, each with the remaining p-1 Shapley values (excluding φi,j)
fixed, i.e., ŷj ¼ eφ0þφ1;jþ¼þφi;jþ¼þφp;j , where φp;j ¼ 1

n

Pn
j¼1 φp;j . The relative

percent changes of ŷj for the first and third quartile of xi with respect to the
median were calculated and their average was used to quantify the
associations. It should be noted that this metric may become invalid for
highly nonlinear patterns as, for instance, positive and negative associations
can be canceled in a non-monotonic trend.

Change of support validation
Two hundred nine NJ municipalities did not make COVID-19 death data
available and their numbers were predicted with the eight base models; all
estimates were aggregated by county to compare with the county-level
deaths reported by the NJDOH. Though the focus of this study is on effect
analysis (i.e., magnitude and significance of regression coefficients) for
socioexposomic health studies, prediction results (i.e., responses of
models) on other scales (change of support), where observations are
available, can provide additional insight into the reliability of different
analytical models.

Simulation analysis
Simulation analysis was performed to improve comparisons of association
estimates obtained from different approaches. Geostatistical and machine
learning models were constructed using simulated data generated for
three representative scenarios (see Text S4).

Socioexposome generation. To maintain realistic correlation information
(linear/nonlinear), we set the “simulated inputs” X as the actual socio-
exposomic data; for simplicity, we did not consider the uncertainty of
socioexposomic variables.

Health outcome generation. To simulate “responses” with overdispersion,
group randomness and spatial autocorrelation, we generated health
outcomes Y as a function of the socioexposome:

Y � NBinomialðλ; θÞ
log λð Þ ¼

X10

i¼1
βiXi þ v þ uþ logðpopulationÞ

(1)

In Eq. (1), municipality death number Y is drawn from Negative-Binomial
distribution with mean λ and a size parameter θ that controls the
overdispersion strength. log(λ) equals the summation of three components
plus an offset term (i.e., logarithm of municipality population). The fixed
effect component

P10
i¼1 βiXi was calculated as a linear combination of ten

selected socioexposomic variables (true predictors). The ordinary random
effect component v follows a univariate normal distribution Nð0; σ2vÞ,
where σ2v denotes the variance of the random effect/intercept. The spatial
random effect component u follows a multivariate normal distribution
(Gaussian process) MVN(0, Σ), where Σ ¼ σ2uðI� ρWÞ�1 represents the
spatial correlation matrix, σ2u denotes the conditional variance of the spatial
effect, ρ denotes the spatial coefficient, and W represents the adjacency
matrix.

Simulation scenarios and parameter settings. Without loss of generality,
regression coefficients of the ten “true predictors” were set as: β0 = −5, β1 =
0.5, β2= 0.35, β3= 0.2, β4 = 0.2, β5= 0.25, β6 = 0.05, β7= 0.15, β8 =−0.05, β9
= 0.15, β10 = −0.5. W was calculated based on the neighbor relationships of
the 565 municipalities. We set θ= 20 to simulate significant overdispersions
and ρ=−0.2 to ensure Σ positive definite.
We considered three scenarios based on two metrics: r1 measures the

proportion of variance explained by predictors among the total fixed/random
effect components and r2 the proportion of variance explained by the spatial
random effect in the total random components. Scenario 1 (r1= 0.6, r2= 0.6) is
defined as a reference scenario; Scenario 2 (r1 = 0.6, r2 = 0.3) corresponds to
more significant ordinary random effect; Scenario 3 (r1 = 0.3, r2 = 0.6)
corresponds to more significant total random effect. σ2v and σ2u determine r1
and r2, and the relevant parameters and simulated distributions are presented
in Fig. S8. Furthermore, we investigated the impact of missing data on
association estimation by constructing spatial models using a subset of
simulated data where the sample size equals that of the realistic case.

RESULTS
COVID-19 morbidity and mortality were found to be correlated with
a range of socioexposomic factors, among which strong inter-
correlations were also observed (Fig. S3). The spatial distribution of
the LTCF deaths across New Jersey is depicted in Fig. S2. By
removing LTCF deaths, the Spearman correlation coefficient (ρ)
between COVID-19 death rates and % uninsured increased from
0.27 to 0.38; for % below high school education, the correlation
increased from 0.24 to 0.36. However, exclusion of LTCF deaths does
not significantly affect correlations (|Δρ| < 0.08) for other correlated
factors (ρ > 0.2). Similar results hold for the case rates.
Table S4 presents the associations of municipality COVID-19

death rates with different factors estimated from eight models.
The Poisson regression model provided the narrowest 95%
confidence intervals (CIs) for all variables. The Poisson mixed
effect model improved the outcomes by considering randomness
from five geographical areas, with a lower DIC metric (Table S2).
However, inclusion of the random effect component (i.e., the NB
mixed effect model) does not affect substantially the outcomes of
the NB regression model. The Poisson/NB BYM spatial models
provided the widest CIs due to the simultaneous consideration of
random effect and spatial autocorrelation. The RF and XGBOOST
models are deterministic and do not provide CIs.
Figure 2 shows the associations of COVID-19 deaths rates with

9 selected factors estimated from the eight models. All eight
models revealed significant positive association of COVID-19
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death rates with population density: the Poisson/NB BYM spatial
models indicated that 20% quantile increase in population density
is associated with 17% (95% CI: 7%, 29%) increase in mortality rate
and the ML models indicated 7–8% (RF and XGBOOST estimates)
increase in mortality rate. For % below high school education, the
BYM spatial models indicated that a standard deviation increase
(6.3%) is associated with 36% (20%, 55%) increase in mortality rate
and the ML models indicated 28–40% increase in mortality rate.
For NO2 average concentration, the BYM spatial models indicated
that 1 ppb increase is associated with 6% (4%, 9%) increase in
mortality rate and the ML models indicated 4–5% increase in
mortality rate. Association analyses for other socioexposomic
factors are presented in Text S3. To facilitate interpretation, some
variables were normalized and the units are specified in Table S4.
The effects plots for the 9 selected factors estimated from the

eight models are displayed in Fig. S7. The different models
captured consistent trends, though differences exist in the
description of complex patterns. The six geostatistical models
only described the exponential relations, while the two ML models
can capture more complex relations. The nonlinear effects
captured by RF and XGBOOST are similar and stable, pointing to
the presence of underlying nonlinear relations in the data (Fig. 3).
The ML models detected an exponential increasing trend of
mortality rate for NO2 average concentration, which is consistent
with the assumption of the geostatistical models, thus leading to
similar association estimates. In addition, the ML models “learned”
a steeper increasing trend for % minority below 20%; this
corresponds to a situation when the exponential assumption is
violated. The ML models also “learned” that COVID-19 mortality
rates increase with population density at the lower range but
become “saturated” at higher densities [34], a fact that cannot be
captured by geostatistical models with “naive” structures.

Figure 4 presents the change of support validation results for the
eight models in estimating county COVID-19 death numbers during
the first wave in New Jersey. The two ML models achieve prediction
accuracy comparable to all six geostatistical models considered.
Though the Poisson regression model achieved the highest R2

(=0.984), the estimated 95% prediction intervals (PIs) are unreliable
(Accuracy = 3/21). In comparison, the BYM spatial models can
capture uncertainties and variations well, with the lowest DIC metric
(Table S2) across the six geostatistical models. In the NB BYM spatial
model, 19 out of 21 PIs contain the exact values (Accuracy= 19/21).
In addition, the BYM spatial models capture local spatial variations
better than Poisson and NB regression (Fig. 5). Though the ML
models do not provide CIs, their ability to capture spatial variations
was comparable to that of the BYM spatial models.
Figure 6 shows simulation outcomes comparing true and

estimated predictor effects profiles of two selected variables from
eight geostatistical models in a reference scenario. The BYM spatial
models (column 3 of Fig. 6) produced estimates closer to the truth;
the remaining four statistical models (columns 1–2 of Fig. 6)
exhibited significant biases, with the true predictor effects profiles
being outside the 95% CIs. Missing data do not drastically affect the
association estimates but increase uncertainties for spatial models
(column 4 of Fig. 6): such uncertainties will decrease for a smaller
proportion of variance explained by the spatial effect in the data
(columns 1-2 of Fig. S10). In the simulation study, we did not
observe performance of ML comparable to advanced geostatistical
models, while ML successfully detected the exponential trend and
generated slopes (association strengths) consistent with the truth
(Fig. S11). Simulation outcomes, including regression coefficients
(Tables S7-S9) and predictor effects profiles (Fig. S9), for the
remaining variables for each of the three scenarios are available in
the Supplement (Text S4).

Fig. 2 Associations of municipality COVID-19 mortality rates with 9 selected socioexposomic factors, calculated from 8 geostatistical and
machine learning models. The black vertical lines depict the 95% confidence intervals (CIs) of the estimates.
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DISCUSSION
Efficient modeling tools are needed for improved, interpretable,
socioexposome-wide association studies. To our knowledge, this is
the first work that conducted a comprehensive comparison of
different geostatistical and ML approaches to model associations

of multiple socioeconomic, demographic and environmental
factors with COVID-19 outcomes.
Various regression models have been employed in previous

association studies of COVID-19 outcomes with social and
environmental factors, but caution should be exercised in

Fig. 3 Effects plots of 3 representative socioexposomic factors from 8 geostatistical and machine learning models. 1st-2nd rows:
NO2 average concentration, 3rd-4th rows: % minority, 5th-6th rows: population density.
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interpreting such analyses [26]. The present study shows that
estimated associations with health effects can be substantially
influenced by model structures and assumptions, and a reliable
estimation should be based on frameworks that ensure adequate
considerations of data behaviors. Among the factors considered,
the estimated CIs for the Poisson regression model were 9–41%
(mortality rates) narrower than those for the BYM spatial models
(corresponding to lower p-values), due to insufficient description
of overdispersion. The NB regression and mixed effect models
provided wider CIs than the Poisson regression model; however,
their point estimates deviated by −14% to 14% from those of the
BYM spatial models. The Poisson/NB BYM spatial models provided
the “best” association estimates with the lowest DIC metric; both
approaches modeled significant variations from overdispersion,
group randomness, and spatial autocorrelation (p < 0.05). Regard-
ing prediction (change of support validation), the BYM spatial
models can identify reasonably higher uncertainties for areas with
clustered missing data, while the other models provided narrow
PIs that were overly optimistic (Fig. 4).
Simulation analysis was performed to evaluate and interpret

association estimates, enabling a direct comparison with “true”
benchmarks. Previous simulation studies used ordinary linear
regression to generate data for detecting “true” variables and
interactions [20–22]. The present study implemented a simulation
method appropriate for complex data variations that strength-
ened the evidence regarding insufficient description of data
variability causing significant biases, while missing data increasing
uncertainties of association estimates. Simulations also improved
interpretation of modeling results: statistical models such as
Poisson regression are simple but significantly biased; advanced
geospatial models are more accurate but somewhat conservative
in the case of missing data; machine learning, while not superior in
modeling linear data, can capture underlying complex patterns. It
is therefore advisable to compare multiple models that can help
compensate for the shortfalls of some methods over others.
The feasibility and effectiveness of both Frequentist and

Bayesian frameworks were investigated in model development.
Most previous models were built using Frequentist frameworks

[3–5, 7] while Bayesian frameworks can consider flexible
uncertainties in model parameters and incorporate prior expert
knowledge with hierarchical structures [36]. Herein, Frequentist
inference for the six geostatistical models (i.e., generalized, mixed
effect and BYM spatial Poisson/NB regression) was implemented
with three R packages (stats, lme4 and spaMM) and Bayesian
inference for the six models was implemented with R-INLA
(Integrated Nested Laplace Approximation) [39]. By setting non-
informative priors, Bayesian inference obtained results almost
identical to those from Frequentist inference, with <1% mortality
rate errors across all association estimates (Table S5); however,
Bayesian inference was more computationally efficient than
Frequentist inference, especially for complex models. For example,
it takes 9.02 ± 0.53 s (Intel Xeon 6130) to build the Bayesian NB
BYM spatial model, while 60.63 ± 2.50 s are required for Frequen-
tist inference (Table S6). Frequentist inference must solve
optimization problems and the computational load increases
rapidly for complex structures with additional parameters to be
estimated; Bayesian inference gains enhanced computational
efficiency through the Laplace approximation implemented in
R-INLA. Because of their higher flexibility and efficiency, Bayesian
frameworks provide advantages over Frequentist frameworks for
ecological and environmental health modeling.
Comprehensive comparisons of geostatistical and ML models

for exposomic health association studies have been rare. Here, we
extended the predictor effects plot, and derived a generic Shapley
effects plot (different from the Shapley scatter plot) to perform fair
comparisons in health effect analysis. An association metric was
also constructed to approximate effects captured by the ML
models and showed that ML (even for small datasets) played a
complementary role to advanced geostatistical models: those
models can capture similar associations when an underlying
exponential relation holds, but ML can further “learn” non-
exponential patterns in the data, an attribute that is important
for knowledge discovery. For instance, RF and XGBOOST detected
nonlinear saturation effects of increasing population density that
can be explained by the combined effects of “density-dependent”
and “frequency-dependent” mechanisms [34, 40].

Fig. 4 Scatter plots of the observed vs predicted county COVID-19 death numbers calculated from 8 geostatistical and machine learning
models. The blue points represent counties where all municipalities have deaths reported and the yellow points represent counties with
unavailable deaths in at least one municipality. The vertical lines depict the 95% CIs of the predictions and accuracy measures the proportion
of predictions where the CIs contain the observed values.
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Applications of ML on large datasets (e.g., over 100,000 samples)
have been evaluated in environmental health modeling [41, 42].
For small/moderate sample size (e.g., tens or hundreds of
samples), earlier studies found no evidence of superior perfor-
mance of ML over traditional statistical models [21, 43]. ML was
considered “data hungry” [44], and in fact, instability and
overfitting are prone to occur when ML models are trained with
small sample sets. These problems are exacerbated for data with
large errors: ML tends to treat random noise as nonlinear patterns,
so an overinterpretation among small samples can lead to poor
generalization and unstable results. In contrast, geostatistical
models employ “naive” structures that inherently facilitate
robustness with respect to data noise. To avoid overfitting and
to stabilize model performance, different ML hyperparameters
must be tuned carefully using multiple evaluation metrics to
control model complexity and learning capability [23]. Further-
more, explainability (interpretability) testing and model refine-
ment are essential for obtaining reliable ML models applicable to
effect characterization and prediction [45].
Associations obtained from the complementary modeling

frameworks strengthen the evidence on the role of multiple
environmental and social determinants on COVID-19 severity. Our
estimate for NO2 effect size is similar across the eight models
considered, and it is consistent with the Los Angeles County

neighborhoods study [46], that observed a 5.6% (3.7%, 7.5%)
increase in mortality rate for every 1 ppb increase in NO2. Ours
and Lipsitt’s local studies, accounting for greater spatial variability,
detected larger effect size than that reported for a US nationwide
county-level study [3], that observed a 3.3% (1.8%, 4.8%) increase
in mortality rate for every 1 ppb increase in NO2. We did not
observe stable significant positive association between COVID-19
death rates and annual PM2.5 average concentration (Table S4),
while ML models identified a positive nonlinear association for
annual PM2.5 averages above 8 μg/m3 (Fig. S7). We found that a
small increase in concentrations of certain air toxics can lead to
large increases in mortality rate, which is in alignment with the US
nationwide county-level study of Petroni et al. [5]. We observed
significant positive associations between mortality rate and
proximity to industrial facilities and waste sites (traffic, NPL sites,
TWWD sites, and TSDF facilities). Transportation-related noise was
highly correlated with mortality rate (ρ= 0.43); however, the
association adjusted with confounders was statistically insignif-
icant [18]. We observed a significant negative association of
mortality rate with the 15–44 age group and significant positive
association with age group >64, which is consistent with the
J-shaped nature of the age pattern for COVID-19 mortality [47]. We
also found that multiple demographic and socioeconomic factors
were significantly associated with mortality rates: these patterns

Fig. 5 Spatial distributions of the predicted and observed municipality COVID-19 mortality rates (at the end of the first phase of the
pandemic in New Jersey, September 24, 2020) calculated from 8 geostatistical and machine learning models. The first three columns
correspond to 6 geostatistical models, the fourth column corresponds to 2 machine learning models, and the last column corresponds to
observations.
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can be considered as driving forces associated with racial/ethnic
and socioeconomic disparities [7] of the pandemic across New
Jersey.
Our study has limitations: First, associations were obtained from

an ecological design that may not reflect individual associations
[26]. Such biases are relevant to data gaps that cannot be
addressed by solely improving analytical tools; however, to
mitigate the issue, the study accounted for “sub-county” spatial
variations (for areas that are more homogeneous with respect to
socioexposomic factors than counties) and is the first work that
conducted comprehensive socioexposomic analyses for COVID-19
at municipality scale across a State. Second, we did not study
synergistic effects of stressor/exposure “mixtures”, though ML
actually detected interactions that can be directly interpreted with
the Shapley value. Like the exposure-response cross-section
function in Bayesian kernel machine regression (BKMR) [48],
Shapley values can provide an interaction analysis tool for
arbitrary ML models. RF and XGBOOST (tree ensemble algorithm)
were considered here, due to their high computational efficiency
and learning capability [23]. Third, the ML models in the present
study employed a deterministic framework and therefore did not
provide CIs/PIs that can be important in health effect analyses.
Our regional socioexposomic study revealed significant associa-

tions between COVID-19 health outcomes and multiple, spatially

heterogeneous, stressors: this evidence can help improve the
understanding of social and environmental justice issues relating
to the impact of the pandemic. Integrated methodological
frameworks were developed, to examine stability and complex
behaviors of factor associations. Our results suggest that the
Bayesian geospatial models have advantages over the Frequentist
statistical models in precision health/exposomic modeling.
Furthermore, explainable (interpretable) ML/AI can be an effective
supplement to traditional geostatistical modeling for uncovering
underlying complex patterns, even for small/moderate data sets.
The tools and analyses presented here can be extended to other
ecological and individual-level health studies at multiple scales.
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