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BACKGROUND: Perceptions of the built environment, such as nature quality, beauty, relaxation, and safety, may be key factors
linking the built environment to human health. However, few studies have examined these types of perceptions due to the
difficulty in quantifying them objectively in large populations.
OBJECTIVE: To measure and predict perceptions of the built environment from street-view images using crowd-sourced methods
and deep learning models for application in epidemiologic studies.
METHODS: We used the Amazon Mechanical-Turk crowdsourcing platform where participants compared two street-view
images and quantified perceptions of nature quality, beauty, relaxation, and safety. We optimized street-view image sampling
methods to improve the quality and resulting perception data specific to participants enrolled in the Washington State Twin
Registry (WSTR) health study. We used a transfer learning approach to train deep learning models by leveraging existing image
perception data from the PlacePulse 2.0 dataset, which includes 1.1 million image comparisons, and refining based on new
WSTR perception data. Resulting models were applied to WSTR addresses to estimate exposures and evaluate associations with
traditional built environment measures.
RESULTS: We collected over 36,000 image comparisons and calculated perception measures for each image. Our final deep
learning models explained 77.6% of nature quality, 68.1% of beauty, 72.0% of relaxation, and 64.7% of safety in pairwise image
comparisons. Applying transfer learning with the new perception labels specific to the WSTR yielded an average improvement
of 3.8% for model performance. Perception measures were weakly to moderately correlated with traditional built environment
exposures for WSTR participant addresses; for example, nature quality and NDVI (r= 0.55), neighborhood area deprivation
(r=−0.16), and walkability (r=−0.20), respectively.
SIGNIFICANCE: We were able to measure and model perceptions of the built environment optimized for a specific health study.
Future applications will examine associations between these exposure measures and mental health in the WSTR.
IMPACT STATEMENT: Built environments influence health through complex pathways. Perceptions of nature quality, beauty,
relaxation and safety may be particularly import for understanding these linkages, but few studies to-date have examined these
perceptions objectively for large populations. For quantitative research, an exposure measure must be reproducible, accurate,
and precise––here we work to develop such measures for perceptions of the urban environment. We created crowd-sourced
and image-based deep learning methods that were able to measure and model these perceptions. Future applications will
apply these models to examine associations with mental health in the Washington State Twin Registry.
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INTRODUCTION
There are many complex pathways through which the built
environment may influence human health. These include modify-
ing exposures to environmental hazards, such as air pollution [1]
or heat [2], providing accessibility to essential resources, such as
food and healthcare [3], modifying behaviors, such as physical
activity [4], facilitating or mitigating pedestrian safety [5], and

influencing stress [6] to name a few. Over the past two decades,
numerous studies have observed associations between measures
of the physical built environment and health outcomes [7].
For example, a systematic review of 36 longitudinal studies
found that neighborhood walkability (assessed by land use mix,
road connectivity, and destinations) was strongly associated with
obesity, type 2 diabetes, and hypertension [8]. These studies have
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been essential for urban planners to maximize health benefits, and
minimize health detriments, of built environments. However, our
understanding of how the built environment influences health
remains constrained by the methods currently available to
measure urban characteristics objectively and at scales needed
for population-based research.
Perceptions, defined here as a way of regarding and interpret-

ing different built environments, may be a particularly important
construct of the built environment that is challenging to assess
with traditional measurement methods. Perceptions can include
how safe individuals view an environment, the quality of green
space, or the overall attractiveness or liveliness of an environment.
These types of perceptions can influence diverse behaviors and
mental health states, ranging from physical activity [9] to
subjective well-being [10]. There are many psychological frame-
works to support how perceptions of the built environment may
influence health, such as the theory of planned behavior [11],
social cognitive theory [12], and the social ecological model [13].
According to these theories, perception is a key factor to
understanding the causal mechanism between the built environ-
ment, human behavior, and human health [14].
The widespread availability of street view images, combined

with new prediction methods using deep learning models, offers
an entirely new approach for measuring and modelling complex
built environment constructs [15]. Street view images are images
taken to capture the visible characteristics of a street. Many street
view image datasets, such as Google Street View (GSV), Baidu and
Tencent images are taken systematically to offer wide coverage
across large geographic areas. Other street view datasets (e.g.
Mapillary) are crowd-sourced, collected from voluntary partici-
pants. In addition to these available street-level imagery datasets,
deep learning models have recently gained popularity–these
models leverage millions of interconnected coefficients (weights)
and non-linear equations (activation functions) to capture
complex, non-linear associations. Together, image-based deep
learning exposure assessments are emerging as a feasible
approach for large-scale health studies [16]. Traditionally, time
consuming and costly large-scale surveys, personal interviews, or
field data collection are used to collect perceptions of the built
environment, such as the quality of green space [17] or safety of
neighborhoods [18]. This limits the application of these con-
structs to health studies. For example, most epidemiological
studies examining the health benefits of urban green space use
measures of the presence of green space (e.g., park locations, tree
canopy cover, or the satellite-derived Normalized Difference
Vegetation Index (NDVI)) [19], which do not capture the quality of
green space or other associated complex constructs (e.g. safety,
attractiveness) that could mediate the relationship between
green space and health.
Recent research using web-based crowdsourcing methods

and deep learning models show that complex perceptions can
be measured and modelled [20]. Crowdsourcing methods have
been used to collect perceptions via image comparison [21] or
ranking of images by instruments (e.g. 1–10 scale) to quantify
specific perceptions [22]. For example, the MIT Place Pulse
(PlacePulse) study was a crowdsourced game for capturing
image perceptions of the built environment [21]. Given a
comparison of two images, participants chose which image is
superior (i.e. wins) for a given perception of interest (e.g. safety,
lively). The PlacePulse study collected more than 1.1 million
votes from participants across the globe and results showed that
online images can be used to create reproducible measures of
urban perception and characterize differences between cities
[21]. In addition, deep learning models built upon the PlacePulse
data were able to explain a large component of these
perceptions [21], although more data on local, within-city
perceptions are needed to capture localized built environment
perceptions most important to health [23].

For quantitative research, an exposure measure must be
reproducible, accurate, and precise––here we work to develop such
a measure for perceptions of the urban environment. We developed
methodology to measure and predict perceptions of the built
environment using street-view imagery, crowd-sourced image
comparisons, and deep learning models. We focused on quantifying
built environment perceptions of nature quality, beauty, relaxation,
and safety for application in an epidemiologic cohort study (the
Washington State Twin Registry (WSTR)) [24] to examine how urban
green space is associated with mental health. We chose to examine
these four perceptions based on how we conceptualize green space
may influence mental health [25], and based on existing perception
data in the PlacePulse dataset [21]. We describe methodological
approaches to optimize perception data collection when using
crowdsourced methods specific for an epidemiological study and
develop transfer learning deep learning models to predict nature
quality, beauty, relaxation, and safety for street-view images. We
applied these models to residential locations of WSTR participants to
determine if our perception measures are distinct from traditional
built environment exposure measures used in health studies.

METHODS
Google street-view image training dataset
We focused on collecting perception data for GSV images in Washington
State, which contains nearly 80% of addresses collected by the WSTR. A
total of 117,374 GSV images were collected from the GSV API. Images were
restricted to the 2010 US Census Urbanized Areas (UA) and Urbanized
Clusters (UC) (Supplemental Figs. 1, 2). Images were sampled from each UA
and UC proportional to the percentage of WSTR participants residing
within each UA or UC. GSV image viewing angles were randomly chosen at
90° increments, and classified as straight (0° and 180°) or side (90° and 270°
relative to vehicle heading).
We used the deep learning model PSPNet to quantify features in each

image. PSPNet classifies each pixel of an image as one of 140 anthropogenic
(e.g., road, building) or natural (e.g., tree, sky) objects [26]. We also grouped
pixel classifications into themes including accessibility, green space, blue
space, built environment, housing, and animate (transient objects). Themes
and their corresponding set definitions are listed in Supplemental Table 1.
Street view images were grouped into subsets based on viewing angle

and urban area classification. Seattle was considered a separate group
from other UAs due to its high percentage of WSTR residents (50%). Within
each group, we selected a subset of images (~1%) which maximized the
uniform distribution of environmental composition calculated from the
PSPNet algorithm (Supplemental Figs. 3–8).

Selected Subset ¼ argmina
Xn

j¼1

X10

k¼1
Ojk � Ejk
�� �� (1)

Where
a is the subset of images within partition A
j is the jth theme or object
n is the number of themes and objects considered in the statistic
k is the range of percent pixels from (k–1)*10 to k*10–1. For example, for

k= 1 the range of percent pixels is 0–9%.
Ojk is the observed number of images within subset a whose percent

pixel count for subset j falls within range k
Ejk is the expected number of images, given a uniform distribution,

within subset a whose percent pixel count for subject j falls within range k

Collecting perception data
We collected perception data through Amazon Mechanical Turk (AMT).
AMT is a service which pays participants, called ‘Turkers’, a small amount of
money for completing short tasks, called ‘HITS’ (https://www.mturk.com/).
Metadata for each HIT includes the time accepted, time completed, Turker
id and state (based on IP address). Participants were paid on average $0.20
for each survey.
Surveys consisted of five image comparisons, one for each perception in

our study (nature quality, beauty, relaxation, and safety), and a quality
control question where participants chose which of two images had more
cars (Supplemental Fig. 9). The order of perceptions and position of images
on the left or right of image comparisons was randomly generated for each
survey. Rather than clicking on the chosen image as in the preceding
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PlacePulse study [21], participants used a slider to convey their selection
and moved the slider farther left or right based on how strongly they felt
about their choice (Fig. 1). To remove potential biases with comparing
images taken from different angles, all images within each survey
contained the same viewing angles (straight or side). Surveys were valid
if participants correctly answered a QA question (which image has more
cars). Surveys completed in less than 30 s had significantly greater rates of
failing the QA question (p < 0.001). We therefore excluded surveys
completed in less than 30 s. Participant inclusion criteria included 18
years of age or older and living within the US

Calculating perception scores
The TrueSkill algorithm [27] used in the PlacePulse study was created by
Microsoft to predict outcomes of video game competitions between two
opposing players. Each player is represented by two variables: predicted skill
level (mu) and uncertainty in predicted skill level (sigma). New players start
with (mu, sigma) values of (25,6). Given (mu, sigma) values for two
competing players, TrueSkill predicts which player will win. As players
compete against each other, mu scores increase or decrease for wins and
losses, respectively, and sigma values monotonically decrease. In PlacePulse,
each image comparison is a competition between two images (players) for
which image has a greater value for a specific perception (e.g. ‘beauty’).
Given an infinite number of comparisons, image mu scores will eventually
settle around their true perception value.
We created a multinomial version of the TrueSkill algorithm, which also

considers the magnitude of how much the chosen image in a comparison
is preferred by the participant. Each survey the participant completes is
transformed into three simulated games for slight, moderate, or strong
intensity wins. When a participant chooses an intensity less than the
minimum threshold for a greater intensity game, then the greater intensity
game is recorded as a tie between the comparison images. The overall
TrueSkill score and uncertainty is the sigma weighted average of the three
simulated TrueSkill scores and the arithmetic mean of the simulated
TrueSkill uncertainty, respectively.

σx ¼ σslight þ σmodereate þ σstrong
3

(2)

TSavg ¼ σslight � TSslight þ σmoderate � TSmoderate þ σstrong � TSstrong
3σx

(3)

Where
σx= average TrueSkill uncertainty
TSavg=multinomial TrueSkill score
In the PlacePulse study, deep learningmodel performance was dependent

on the similarity of images being compared [21]. For comparisons in which
images had similar TrueSkill scores, model performance did not differ from
random guessing. To properly train a sensitive deep learning perception

model, the training dataset requires a disproportionately greater number of
comparisons between similar rather than differing images. We developed an
algorithm that sampled image comparisons in proportion to the similarity of
image TrueSkill scores (Supplemental Methods 1, Supplemental Eqs. 1, 2,
Supplemental Fig. 11). We updated image TrueSkill scores in real time as
surveys were submitted and sampled image comparisons in real time as
surveys were requested by AMT participants.
Participants had varying individual tendencies for image comparison

magnitudes. To adjust for personal tendencies, we standardized magnitudes
using a weighted average of all image comparisons within a survey
(Supplemental Methods 2, Supplemental Eqs. 3–5, Supplemental Figs. 12, 13).

Developing transfer learning deep learning models
The PlacePulse deep learning perception model architecture is based on
two parallel Convolutional Neural Networks (CNNs) that extract features
from each image and compares features to choose the winning image
(Supplemental Fig. 14). We simplified the PlacePulse architecture to predict
a continuous rather than a binary score. The feature extractor layers were
retrained, the ranking subnetworks were removed, and the binary SoftMax
layer in the fusion subnetwork output was replaced with a continuous
output (mean squared error loss) (Fig. 2).
We leveraged the original PlacePulse image comparison dataset to

conduct transfer learning with our new image labels specific to the WSTR.
Transfer learning is a deep learning approach in which model coefficients
are first fitted to a large dataset related to the topic of interest and then
fine-tuned using a smaller but more relevant dataset. We pretrained our
perception models using PlacePulse image comparisons, replacing the
final layer in the fusion subnetwork before fine-turning model weights
with our survey records. Our safe model was pretrained with PlacePulse
comparisons for ‘safe’, while our beauty, relaxing, and greenspace
quality models were pretrained with PlacePulse comparisons for ‘beautiful’.
Sensitivity analyses include stratifying model performance by image
viewing angle, urban classification, voting intensity, and winning image
position (left or right).

Applying and evaluating measures in the WSTR Study
We collected GSV images for 31,607 WSTR participant addresses, capturing
the closest street-view image to each address and survey date as well as five
additional images within 100 meters (to assess neighborhood street-view
measures). For comparison, and to determine if our GSV perception measures
are distinct from traditional built environment exposure measures used in
health studies, we calculated a number of built environment exposure
variables. These included: summer (June and September) NDVI within 100m
of residential addresses using Landsat 30m images; a walkability score
derived from the EPA’s smart location database, a nationwide geographic
data resource for measuring location efficiency for the year 2013 [28]; an
urban sprawl index derived [29]; population density within 1 km of residences

Fig. 1 Example of the Mechanical Turk platform where perception data was collected. Here participants are shown two images and asked
“which street has a higher quality of nature?”. Participants used the slider bar to select what image they thought had higher nature quality and
how strongly they felt about this choice.
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derived from 2015 census block points; and an Area Deprivation Index (ADI)
[30]. We also explored associations with the PSPNet calculations of % green
space, % trees, % blue space, and % built up area within the GSV images. We
tested for spatial autocorrelation by calculating Moran’s I with the Spatial
Autocorrelation function in ArcPro (2.9.3) using euclidean inverse distance
weighting to define spatial relationships (default settings).

RESULTS
Perception measures
A total of 9,192 surveys were collected from Mechanical Turk. After
applying our exclusion criteria (QA/QC question and time spent on
survey) there were 8085 surveys from 4932 unique participants.
The estimated error rate in the screened dataset is 1.5%
(Supplemental Fig. 15, Supplemental Methods 3). More than
75% of comparisons (n= 6074) were from participants who
completed three or fewer surveys (Supplemental Table 2). The
number of completed surveys by state was proportional to US
population density (Supplemental Fig. 16, Supplemental Table 3).
Calculated TrueSkill metrics for nature quality, safety, beauty

and relaxation are summarized in Table 1. Morans’ I spatial
clustering values for TrueSkill scores and bias are shown in Fig. 3,
stratified by urban category. Clustering ranges from 0.94 (relaxing
in Seattle) to −0.20 (beauty bias in UC neighborhoods). Clustering
is greater for TrueSkill scores across Seattle (0.34–0.84) and UAs
(0.44–0.88) compared to UCs (0.09–0.26). However, weaker
clustering may be due to smaller UC sample size and fewer
nearby neighbor comparisons within the 1 km Moran’s I threshold.
Nature quality and relaxing perceptions are more strongly
clustered within Seattle and UA neighborhoods than safety
and beauty. Spatial clustering is weaker for bias (range −0.2
to 0.27).

Deep learning model performance
Performance metrics of the continuous perception models and
the original PlacePulse models in a validation dataset are shown in
Table 2. Metrics are based on binary evaluation metrics (did the
model correctly identify the winning image) since PlacePulse
outputs are binary. For both the binary and continuous models,
performance was greatest for nature quality (72.9–77.6%) and
lowest for safety (63.5–64.4%). Comparing the continuous and
binary PlacePulse models, performance metrics are consistently
greater for the continuous models, with metric improvements
ranging from 0.9% (safety) to 5.6% (relaxing).
Model performance stratified by image position, viewing angle,

urban development level, and vote intensity is shown in Table 3.
While model performance is not affected by image position (left or
right), images with a straight viewing angle have 4% greater
performance for relaxation, beautiful, and nature quality percep-
tions compared to a side viewing angle. Model performance is
7.3% (nature quality) to 12.5% (beautiful) higher for Seattle and
other UAs compared to UCs. Model performance also significantly
varies by voting intensity. Performance for comparisons between
similar images (1–10 intensity) is 29.4% (safety) to 54.1%
(beautiful) lower than comparisons between dissimilar images
(11–50 intensity). The impact on the modelled TrueSkill score
between unadjusted and adjusted perception votes was minimal
(Supplemental Fig. 17).

Application to the WSTR
A total of 24,354 out of 31,607 addressees (77%) had GSV images
within 100m of home; 25,730 twin addresses were located in
urban areas, of which 21,566 (84%) had GSV images within 100m.
We explored locations with missing images, which resulted for

Fig. 2 Architecture of the deep learning model used to predict continuous perception scores for GSV images.

Table 1. Mean and standard deviation of select TrueSkill performance metrics.

Scorea (sd) Intensity (sd) Uncertainty (sd)

Nature quality 24.95 (4.24) 3.49 (2.41) 2.53 (0.32)

Safety 24.99 (2.86) 2.29 (1.72) 2.38 (0.31)

Beauty 25.03 (3.50) 2.83 (2.05) 2.45 (0.32)

Relaxation 25.03 (3.77) 3.03 (2.23) 2.49 (0.33)
aMultinomial TrueSkill score. Intensity is the average magnitude of participant votes. Uncertainty is analogous to the binary TrueSkill parameter mu.
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many reasons, such as gated communities, newly built commu-
nities, or inaccessible roads. The mean (std) predicted TrueSkill
scores for study participants addresses was 25.05 (3.34), 25.11
(2.25), 25.12 (2.58) and 25.19 (2.01) for nature quality, beauty,
relaxation, and safety, respectively. The correlation between
perceptions ranged from a low of 0.15 (safety and beauty) to a
high of 0.70 (relaxation and nature quality) (Table 4). The
correlations between the nearest, average, and IDW of all images
within a 100m buffer of a home were all >0.77, suggesting
similarity in GSV measures for neighborhood areas around homes.
We therefore used the nearest images to the residence for
comparisons between perceptions, image features, and other built
environment exposures
The correlation between perceptions, image features, and other

built environment exposures is shown in Table 4. Image features,
especially the percent of the image that was green space or trees
contributed to nature and beauty perceptions, while built up
features were positively associated with safety. The correlation
between our predicted perceptions and satellite NDVI (within
100m) were low (−0.04 for safety) to moderate (0.55 for nature
quality) (Table 4). Increasing levels of walkability, sprawl, popula-
tion density, and area deprivation were all associated with
decreasing perceptions, with correlation coefficients below 0.38.

DISCUSSION
Measures of the built environment tend to focus on physical
characteristics, such as road density, tree cover, or temperature.
Perceptions of the built environment, such as urban nature
quality, beauty, relaxation, or safety, are unique constructs that

may be particularly important for understanding complex linkages
between the built environment, human behavior, and human
health. Here, we developed methods that successfully measured
and modelled perceptions of the built environment optimized for
the WSTR health study.
Measuring perceptions of different built environments for large

geographical areas is challenging. Crowd sourced data collection
designed with standardized quantitative questions has significant
potential for advancing measurement of perceptions at the
population level. We found that many decisions regarding survey
design and sampling strategies significantly influenced the quality
of the crowd sourced data we collected. Specifically, dynamically
updating image sampling weights to ensure comparison of similar
types of built environments ensured that we were not just capturing

Table 2. Performance of the updated continuous models compared
to the original place pulse models.

Perception Place pulse (Binary) Continuous models

Nature quality 72.9% 77.6%

Safety 63.5% 64.4%

Relaxing 66.4% 72.0%

Beautiful 63.7% 68.1%

Table 3. Stratification of perception training dataset and model
performance.

Nature
Quality

Safety Relaxation Beauty

Winning image position

Left 77.9% 63.9% 72.3% 68.4%

Right 77.4% 64.9% 71.6% 67.5%

Street Image Viewing Angle

Straight 79.5% 63.1% 75.0% 70.0%

Side 75.5% 65.7% 69.0% 66.0%

Urban Level

Seattle 81.1% 63.0% 72.4% 67.8%

Urban Area
(>50,000
people)

77.8% 65.7% 75.9% 69.7%

Urban Cluster
(2,500–49,999
people)

70.5% 53.3% 64.1% 55.3%

Vote intensity

1–10 votes 15.1% 18.8% 14.7% 6.8%

11–50 votes 68.2% 48.2% 57.1% 60.9%

Fig. 3 Morans’ I values for adjusted TrueSkill scores and bias, for the entire dataset and stratified by urban size category (Seattle images, urban
area (UA) images, and urban clusters (UC) images).
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extreme differences in perceptions, but that our measures (and
resulting models) were able to distinguish between common built
environments experienced everyday amongWSTR participants. This
was a major limitation of the original PlacePulse study, which was
primarily driven by between city and region differences [23]. In
addition, GSV images were selected so the entire dataset followed
uniform distributions for important physical features of the built
environment (e.g., percent of the images that were trees, buildings,
roads, etc.). Adjusting survey responses based on individual voting
tendencies also proved valuable in generalizing perceptions across
a diverse population. For future studies, we propose splitting safety
into two constructs: pedestrian safety and safety from crime.
Defining, identifying, and measuring inter-individual differences is
an important component of population level perception assess-
ment that needs further development. Collecting demographic
information from participants may help identify groups and cultures
that tend to diverge or disagree from the general population, which
may require different deep learning models to predict perceptions.
Future research should develop best practices to ensure consistency
and compatibility across crowdsourced studies and datasets.
The goal of our research was to develop models that could

predict perceptions of the built environment for any study
participant address within the WSTR. Deep learning models
based on CNNs are ideal for capturing the complex, non-linear
spatial relationships that are needed to predict perceptions from
images. For image comparisons, CNN models such as the
SIAMESE network identify and amplify important spatial
differences within comparisons that are associated with our
perception labels. The deep learning models we developed are
significant improvements over the previous PlacePulse models
[21]. By making key changes to the architecture of the original
model we can now capture not only which image participants
prefer, but also the magnitude of their preference. Recently,
there have been several new deep learning models published to
predict environmental features or perceptions from street-view
images. For example, a CNN to predict whether an image is
‘scenic’ or not [31], replicating the PlacePulse model in Chinese
Cities using Tencent Street View [32], and developing quantita-
tive measures of cleanliness, comfort and traffic with a CNN
model trained from Baidu Street View images [33]. Similar to
developing best practices for dataset collection, developing best
practices for model evaluation is important for comparing and
contrasting deep learning perception models. Standardized test
datasets for popular perceptions, such as beauty, should be
collected with representation from diverse populations and
central repositories developed where popular models can be
curated, independently evaluated, and publicly available.
We optimized our training data to be able to predict

perceptions for participants in the WSTR. A total of 24,354
addresses (77%) had GSV images within 100 m, with more
missing data in rural compared to urban locations. There is a
growing literature that has applied GSV images to assessing
environmental exposures in health studies [34, 35], but these are
typically measuring objects within images (e.g., cars, trees,
people) rather than complex perceptions like nature quality,
safety, or beauty. Here we assessed whether our new modeled
perceptions of green space quality, beauty, relaxation, and
safety were in fact distinct qualities of the built environment not
captured by objects within GSV images (e.g., % cars, trees,
people) and traditional built environment measures (NDVI,
walkability, sprawl, population density, and area deprivation).
Overall, we observed moderate to low correlations between
these metrics. For example, our measure of nature quality
was moderately correlated (r= 0.55) with the commonly used
NDVI measure to assess green space exposure, as well as the
percent of the GSV image that was green space (r= 0.57) or
trees (r= 0.60). This suggests that our perception measures are
in fact reflecting complex constructs of the built environmentTa
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not captured by simple measures of presence or amount
of green space features. Future research will explore how to
combine different metrics (e.g., presence of green space +
quality of nature) to best represent exposures most important to
health.
Perceptions of the built environment, compared to objective

measures of single (or single category) built environment features,
presents new opportunities for environmental epidemiologists to
examine complex relationships between cumulative built environ-
ment elements and their impacts on health. Research shows that
multiple built environment exposures are inter-related and that
the entirety of these environmental exposures are likely important
to health [36–39]. This concept has been referred to as the
exposome––a complement to the genome that captures the
totality of environmental exposures from conception throughout
the lifecourse [40, 41]. The objective perception measures we
developed here can be viewed as one approach to measuring an
overall built environment construct that could be important to
different health-related behaviors, exposures, and health out-
comes. Creating exposure measures based on individual built
environment components and linear relationships will not capture
these complex perceptions, as we have demonstrated in a
previous study [23]. Deep learning models of imagery are needed
to predict these perceptions. Importantly, the widespread avail-
ability of street-view imagery means that these models can be
applied to residential addresses in diverse epidemiological studies,
providing new, cumulative measures of built environment
exposures. The type of exposure measures that can be created
from images and deep learning models are endless [16], but these
should be driven by the specific research question being
examined and knowledge about the exposure pathways of
interest. For example, our overall study goal is to examine how
urban green space influences mental health in the WSTR, hence
our focus on green space quality and streetscape safety,
attractiveness and relaxation––important missing measures in
the current green space epidemiological literature [25].

LIMITATIONS
Several limitations to our measurement and modelling methods
should be considered with future applications. First, information
about a place captured by a street-view image is limited to only
streetscapes and does not include other built environment areas
or perceptions related to sound or smell. There are also slight
variations in GSV image quality (i.e., contrast, 57 hue, saturation,
brightness, tint, and clarity), as well as weather conditions, season,
and time of day that can introduce additional variation in the
perceptions associated with an image. Second, while online survey
methods and the AMT platform allowed us to reach participants
across the US, we had trouble recruiting participants within the
study area of interest (Washington State). Future improvements
include expanding the developed methodology to alternative
platforms (e.g., Survey Monkey) or offering greater rewards to
incentivize participation in targeted regions. Longer sampling
windows are also likely to recruit more participants. The trade-off
between participant representation, accuracy, and sample size is
also important to consider in future perception data collection.
Third, in our collected surveys we adjusted for, rather than
integrating, inter-individual differences in perception magnitudes.
Traditional Likert-scale surveys often include demographic vari-
ables such as age, gender, income, and education, which are
associated with differences in perception. Fourth, we collected
participant perceptions from April 17th to May 13th, 2020. During
this time, participants across the US were under stay-at-home
orders to reduce the spread of COVID-19. It’s uncertain how much
the collected data accurately portrayed the past or can predict
future perceptions. It is possible participant perceptions are driven
by an anchor effect, where preference for one image over another

is intuitive and consistent over time, and the magnitude of the
preference is dynamic. Under this hypothesis, collected percep-
tions would still represent long-term differences in perception, as
TrueSkill scores are relative rather than absolute measures. Fifth,
the estimated error rate before and after implementing QA
methods was 5.9% and 1.5%, respectively. Model sensitivity to
error rates are dependent on the predictive power of the model.
For example, in a training dataset with 5.9% sample error, the best
accuracy any model can hope for is 94.1%. Additional accuracy
would be overfitting. In these early stages of perception modeling,
5.9% error is not a concern; however, as models become more
refined, high single digit error rates will likely have a negative
impact on model performance. Sixth, GSV images were taken at
different times throughout the year, most in summer, with
repeated measures at most every year (with much lower temporal
updates in rural and lower density areas). GSV exposure measures
are therefore reflective of these time-periods. However, in
previous research we observed that perceptions were relatively
stable when applied to different GSV images over an approximate
ten-year period, suggesting our new perception measures likely
capture chronic-related, compared to acute, exposures [23].
Finally, GSV images within 100m were available for 77% of all
study residences (84% in urban areas). While no statistically
significance differences (p < 0.05) were observed between socio-
demographic characteristics for individuals with and without
images, careful assessment of missingness is required for
subsequent health analyses. Image missingness could also be
reduced by increasing the distance from residential locations to
the nearest GSV image (e.g. 250m).

CONCLUSIONS
Perceptions are important pathways through which the built
environment may influence behavior, psychological states, and
ultimately health and wellbeing. We created methods to measure
and model perceptions of the built environment that are optimized
for epidemiological research. Future applications will apply these
models to examine associations with mental health in the WSTR.

DATA AVAILABILITY
All scripts, database operations, and statistical analyses described in the methods
section are available at the GitHub repository (https://github.com/larkinandy/
Perceptions_MTurk). The WSTR dataset is not publicly available due to individual
privacy concerns, but researchers can apply to access the WSTR data at https://
wstwinregistry.org/.
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