Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A study on the association of placental and maternal urinary phthalate metabolites

Abstract

Background

Phthalate exposure in pregnancy is typically estimated using maternal urinary phthalate metabolite levels. Our aim was to evaluate the association of urinary and placental tissue phthalates, and to explore the role of maternal and pregnancy characteristics that may bias estimates.

Methods

Fifty pregnancies were selected from the CANDLE Study, recruited from 2006 to 2011 in Tennessee. Linear models were used to estimate associations of urinary phthalates (2nd, 3rd trimesters) and placental tissue phthalates (birth). Potential confounders and modifiers were evaluated in categories: temporality (time between urine and placenta sample), fetal sex, demographics, social advantage, reproductive history, medication use, nutrition and adiposity. Molar and quantile normalized phthalates were calculated to facilitate comparison of placental and urinary levels.

Results

Metabolites detectable in >80% of both urine and placental samples were MEP, MnBP, MBzP, MECPP, MEOHP, MEHHP, and MEHP. MEP was most abundant in urine (geometric mean [GM] 7.00 ×102 nmol/l) and in placental tissue (GM 2.56 ×104 nmol/l). MEHP was the least abundant in urine (GM 5.32 ×101 nmol/l) and second most abundant in placental tissue (2.04 ×104 nmol/l). In aggregate, MEHP differed the most between urine and placenta (2.21 log units), and MEHHP differed the least (0.07 log units). MECPP was positively associated between urine and placenta (regression coefficient: 0.31 95% CI 0.09, 0.53). Other urine-placenta metabolite associations were modified by measures of social advantage, reproductive history, medication use, and adiposity.

Conclusion

Phthalates were ubiquitous in 50 full-term placental samples, as has already been shown in maternal urine. MEP and MEHP were the most abundant. Measurement and comparison of urinary and placental phthalates can advance knowledge on phthalate toxicity in pregnancy and provide insight into the validity and accuracy of relying on maternal urinary concentrations to estimate placental exposures.

Impact statement

This is the first report of correlations/associations of urinary and placental tissue phthalates in human pregnancy. Epidemiologists have relied exclusively on maternal urinary phthalate metabolite concentrations to assess exposures in pregnant women and risk to their fetuses. Even though it has not yet been confirmed empirically, it is widely assumed that urinary concentrations are strongly and positively correlated with placental and fetal levels. Our data suggest that may not be the case, and these associations may vary by phthalate metabolite and associations may be modified by measures of social advantage, reproductive history, medication use, and adiposity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

Restrictions apply to the availability of some or all data generated or analyzed during this study to preserve patient confidentiality or because they were used under license. The corresponding author will on request detail the restrictions and any conditions under which access to some data may be provided. CANDLE is a participating cohort in the National Institutes of Health program Environmental Influences on Child Health Outcomes (ECHO), a mechanism for sharing birth cohort data.

References

  1. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003-2004. Environ Health Perspect. 2011;119:878–85.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Edwards L, McCray NL, VanNoy BN, Yau A, Geller RJ, Adamkiewicz G, et al. Phthalate and novel plasticizer concentrations in food items from U.S. fast food chains: a preliminary analysis. J Expo Sci Environ Epidemiol. 2021. https://doi.org/10.1038/s41370-021-00392-8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Serrano SE, Braun J, Trasande L, Dills R, Sathyanarayana S. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ Health. 2014;13:43.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Adibi JJ, Perera FP, Jedrychowski W, Camann DE, Barr D, Jacek R, et al. Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environ Health Perspect. 2003;111:1719–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shu H, Jonsson BAG, Gennings C, Lindh CH, Nanberg E, Bornehag CG. PVC flooring at home and uptake of phthalates in pregnant women. Indoor Air. 2019;29:43–54.

    Article  CAS  PubMed  Google Scholar 

  6. Branch F, Woodruff TJ, Mitro SD, Zota AR. Vaginal douching and racial/ethnic disparities in phthalates exposures among reproductive-aged women: National Health and Nutrition Examination Survey 2001-2004. Environ Health. 2015;14:57.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Just AC, Adibi JJ, Rundle AG, Calafat AM, Camann DE, Hauser R, et al. Urinary and air phthalate concentrations and self-reported use of personal care products among minority pregnant women in New York city. J Expo Sci Environ Epidemiol. 2010;20:625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol. 2003;37:4543–53.

    Article  CAS  PubMed  Google Scholar 

  9. Tetz LM, Aronoff DM, Loch-Caruso R. Mono-ethylhexyl phthalate stimulates prostaglandin secretion in human placental macrophages and THP-1 cells. Reprod Biol Endocrinol. 2015;13:56.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang XK, Agarwal M, Parobchak N, Rosen A, Vetrano AM, Srinivasan A, et al. Mono-(2-Ethylhexyl) phthalate promotes pro-labor gene expression in the human placenta. PLoS One. 2016;11:e0147013.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sathyanarayana S, Butts S, Wang C, Barrett E, Nguyen R, Schwartz SM, et al. Early prenatal phthalate exposure, sex steroid hormones, and birth outcomes. J Clin Endocrinol Metab. 2017;102:1870–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pacyga DC, Gardiner JC, Flaws JA, Li Z, Calafat AM, Korrick SA, et al. Maternal phthalate and phthalate alternative metabolites and urinary biomarkers of estrogens and testosterones across pregnancy. Environ Int. 2021;155:106676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bansal A, Mejia JH, Simmons RA. Immune system: an emerging player in mediating effects of endocrine disruptors on metabolic health. Endocrinology. 2017. https://doi.org/10.1210/en.2017-00882

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chiang HC, Kuo YT, Shen CC, Lin YH, Wang SL, Tsou TC. Mono(2-ethylhexyl)phthalate accumulation disturbs energy metabolism of fat cells. Arch Toxicol. 2016;90:589–601.

    Article  CAS  PubMed  Google Scholar 

  15. Sonkar R, Powell CA, Choudhury M. Benzyl butyl phthalate induces epigenetic stress to enhance adipogenesis in mesenchymal stem cells. Mol Cell Endocrinol. 2016;431:109–22.

    Article  CAS  PubMed  Google Scholar 

  16. Pereira-Fernandes A, Demaegdt H, Vandermeiren K, Hectors TL, Jorens PG, Blust R, et al. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect. PloS one. 2013;8:e77481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meruvu S, Zhang J, Choudhury M. Mono-(2-ethylhexyl) phthalate increases oxidative stress respon-sive miRNAs in 1st trimester placental cell line HTR8/SVneo. Chem Res Toxicol. 2016;29:430–5.

  18. Tetz LM, Cheng AA, Korte CS, Giese RW, Wang P, Harris C, et al. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro. Toxicol Appl Pharm. 2013;268:47–54.

    Article  CAS  Google Scholar 

  19. Adibi JJ, Hauser R, Williams PL, Whyatt RM, Calafat AM, Nelson H, et al. Maternal urinary metabolites of Di-(2-Ethylhexyl) phthalate in relation to the timing of labor in a US multicenter pregnancy cohort study. Am J Epidemiol. 2009;169:1015–24.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Latini G, De Felice C, Presta G, Del Vecchio A, Paris I, Ruggieri F, et al. Exposure to Di(2-ethylhexyl)phthalate in humans during pregnancy. A preliminary report. Biol Neonate. 2003;83:22–24.

    Article  CAS  PubMed  Google Scholar 

  21. Meeker JD, Hu H, Cantonwine DE, Lamadrid-Figueroa H, Calafat AM, Ettinger AS, et al. Urinary phthalate metabolites in relation to preterm birth in Mexico city. Environ Health Perspect. 2009;117:1587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swan SH. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res. 2008;108:177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Persp. 2005;113:1056–61.

    Article  CAS  Google Scholar 

  24. Swan SH, Sathyanarayana S, Barrett ES, Janssen S, Liu F, Nguyen RH, et al. First trimester phthalate exposure and anogenital distance in newborns. Hum Reprod. 2015;30:963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buckley JP, Engel SM, Braun JM, Whyatt RM, Daniels JL, Mendez MA, et al. Prenatal phthalate exposures and body mass index among 4- to 7-year-old children: a pooled analysis. Epidemiology. 2016;27:449–58.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Buckley JP, Engel SM, Mendez MA, Richardson DB, Daniels JL, Calafat AM, et al. Prenatal phthalate exposures and childhood fat mass in a New York City Cohort. Environ Health Perspect. 2016;124:507–13.

    Article  CAS  PubMed  Google Scholar 

  27. Maresca MM, Hoepner LA, Hassoun A, Oberfield SE, Mooney SJ, Calafat AM, et al. Prenatal exposure to phthalates and childhood body size in an urban cohort. Environ Health Perspect. 2016;124:514–20.

    Article  CAS  PubMed  Google Scholar 

  28. Gascon M, Casas M, Morales E, Valvi D, Ballesteros-Gomez A, Luque N, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol. 2015;135:370–8.

    Article  CAS  PubMed  Google Scholar 

  29. Ku HY, Su PH, Wen HJ, Sun HL, Wang CJ, Chen HY, et al. Prenatal and postnatal exposure to phthalate esters and asthma: a 9-year follow-up study of a taiwanese birth cohort. PloS One. 2015;10:e0123309.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Smit LA, Lenters V, Hoyer BB, Lindh CH, Pedersen HS, Liermontova I, et al. Prenatal exposure to environmental chemical contaminants and asthma and eczema in school-age children. Allergy. 2015;70:653–60.

    Article  CAS  PubMed  Google Scholar 

  31. Whyatt RM, Perzanowski MS, Just AC, Rundle AG, Donohue KM, Calafat AM, et al. Asthma in inner-city children at 5-11 years of age and prenatal exposure to phthalates: the Columbia Center for Children’s Environmental Health Cohort. Environ Health Perspect. 2014;122:1141–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Engel SM, Zhu C, Berkowitz GS, Calafat AM, Silva MJ, Miodovnik A, et al. Prenatal phthalate exposure and performance on the Neonatal Behavioral Assessment Scale in a multiethnic birth cohort. Neurotoxicology. 2009;30:522–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Engel SM, Miodovnik A, Canfield RL, Zhu C, Silva MJ, Calafat AM, et al. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ Health Perspect. 2010;118:565–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim Y, Ha EH, Kim EJ, Park H, Ha M, Kim JH, et al. Prenatal exposure to phthalates and infant development at 6 months: prospective Mothers and Children’s Environmental Health (MOCEH) study. Environ Health Perspect. 2011;119:1495–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, et al. Endocrine disruptors and childhood social impairment. Neurotoxicology. 2011;32:261–7.

    Article  CAS  PubMed  Google Scholar 

  36. Adibi JJ, Whyatt RM, Hauser R, Bhat HK, Davis BJ, Calafat AM, et al. Transcriptional biomarkers of steroidogenesis and trophoblast differentiation in the placenta in relation to prenatal phthalate exposure. Environ Health Perspect. 2010;118:291–6.

    Article  CAS  PubMed  Google Scholar 

  37. Strakovsky RS, Schantz SL. Using experimental models to assess effects of bisphenol A (BPA) and phthalates on the placenta: challenges and perspectives. Toxicol Sci. 2018;166:250–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adibi JJ, Layden AJ, Birru RL, Miragaia A, Xun X, Smith MC, et al. First trimester mechanisms of gestational sac placental and foetal teratogenicity: a framework for birth cohort studies. Hum Reprod Update. 2021;27:747–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Warner GR, Dettogni RS, Bagchi IC, Flaws JA, Graceli JB. Placental outcomes of phthalate exposure. Reprod Toxicol. 2021;103:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Calafat AM, Longnecker MP, Koch HM, Swan SH, Hauser R, Goldman LR, et al. Optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology. Environ Health Perspect. 2015;123:A166–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blount BC, Silva MJ, Caudill SP, Needham LL, Pirkle JL, Sampson EJ, et al. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect. 2000;108:979–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blount BC, Milgram KE, Silva MJ, Malek NA, Reidy JA, Needham LL, et al. Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS/MS. Anal Chem. 2000;72:4127–34.

    Article  CAS  PubMed  Google Scholar 

  43. Jensen MS, Norgaard-Pedersen B, Toft G, Hougaard DM, Bonde JP, Cohen A, et al. Phthalates and perfluorooctanesulfonic acid in human amniotic fluid: temporal trends and timing of amniocentesis in pregnancy. Environ Health Perspect. 2012;120:897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mose T, Mortensen GK, Hedegaard M, Knudsen LE. Phthalate monoesters in perfusate from a dual placenta perfusion system, the placenta tissue and umbilical cord blood. Reprod Toxicol. 2007;23:83–91.

    Article  CAS  PubMed  Google Scholar 

  45. Lashley S, Calafat A, Barr D, Ledoux T, Hore P, Lake M et al. Endocrine disruptors in the maternal and fetal compartments. Am J Obstetrics Gynecol. 2004; 191.6 S140.

  46. Kato K, Silva MJ, Needham LL, Calafat AM. Quantifying phthalate metabolites in human meconium and semen using automated off-line solid-phase extraction coupled with on-line SPE and isotope-dilution high-performance liquid chromatography-tandem mass spectrometry. Anal Chem. 2006;78:6651–5.

    Article  CAS  PubMed  Google Scholar 

  47. Adibi JJ, Whyatt RM, Williams PL, Calafat AM, Camann D, Herrick R, et al. Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environ Health Perspect. 2008;116:467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mose T, Knudsen LE, Hedegaard M, Mortensen GK. Transplacental transfer of monomethyl phthalate and mono(2-ethylhexyl) phthalate in a human placenta perfusion system. Int J Toxicol. 2007;26:221–9.

    Article  CAS  PubMed  Google Scholar 

  49. Silva MJ, Reidy JA, Herbert AR, Jr JLP, Needham LL, Calafat AM. Detection of phthalate metabolites in human amniotic fluid. Bull Environ Contam Toxicol 2004;72:1226–31.

  50. LeWinn KZ, Bush NR, Batra A, Tylavsky F, Rehkopf D. Identification of modifiable social and behavioral factors associated with childhood cognitive performance. JAMA Pediatrics. 2020;174:1063–72.

    Article  PubMed  Google Scholar 

  51. Sontag-Padilla L, Burns RM, Shih RA, Griffin BA, Martin LT, Chandra A et al. The urban child institute CANDLE study. Santa Monica, CA: RAND Corporation; 2015.

  52. Adgent MA, Carroll KN, Hazlehurst MF, Loftus CT, Szpiro AA, Karr CJ, et al. A combined cohort analysis of prenatal exposure to phthalate mixtures and childhood asthma. Environ Int. 2020;143:105970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neveu V, Moussy A, Rouaix H, Wedekind R, Pon A, Knox C, et al. Exposome-Explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res. 2017;45:D979–D984.

    Article  CAS  PubMed  Google Scholar 

  54. Neveu V, Nicolas G, Salek RM, Wishart DS, Scalbert A. Exposome-Explorer 2.0: an update incorporating candidate dietary biomarkers and dietary associations with cancer risk. Nucleic Acids Res. 2020;48:D908–D912.

    CAS  PubMed  Google Scholar 

  55. Hasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Lloyd B, Gosselin MC et al. IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 4.1, 2022, https://doi.org/10.13099/VIP21000-04-1. itis.swiss/database.

  56. Koren G, Ornoy A. The role of the placenta in drug transport and fetal drug exposure. Expert Rev Clin Pharm. 2018;11:373–85.

    Article  CAS  Google Scholar 

  57. Walker N, Filis P, Soffientini U, Bellingham M, O’Shaughnessy PJ, Fowler PA. Placental transporter localization and expression in the Human: the importance of species, sex, and gestational age differences†. Biol Reprod. 2017;96:733–42.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kelley KE, Hernandez-Diaz S, Chaplin EL, Hauser R, Mitchell AA. Identification of phthalates in medications and dietary supplement formulations in the United States and Canada. Environ Health Perspect. 2012;120:379–84.

    Article  CAS  PubMed  Google Scholar 

  59. Duty SM, Singh NP, Silva MJ, Barr DB, Brock JW, Ryan L, et al. The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect. 2003;111:1164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amaratunga D, Cabrera J. Analysis of Data From Viral DNA Microchips. J Am Stat Assoc. 2001;96:1161–70.

    Article  Google Scholar 

  61. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–93.

    Article  CAS  PubMed  Google Scholar 

  62. Adibi JJ, Xun X, Zhao Y, Yin Q, LeWinn K, Bush NR, et al. Second-trimester placental and thyroid hormones are associated with cognitive development from ages 1 to 3 years. J Endocr Soc. 2021;5:bvab027–bvab027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barrett ES, Corsetti M, Day D, Thurston SW, Loftus CT, Karr CJ, et al. Prenatal phthalate exposure in relation to placental corticotropin releasing hormone (pCRH) in the CANDLE cohort. Environ Int. 2022;160:107078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. James-Todd TM, Chiu YH, Zota AR. Racial/ethnic disparities in environmental endocrine disrupting chemicals and women’s reproductive health outcomes: epidemiological examples across the life course. Curr Epidemiol Rep. 2016;3:161–80.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zota AR, Calafat AM, Woodruff TJ. Temporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001-2010. Environ Health Perspect. 2014;122:235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Whyatt RM, Adibi JJ, Calafat AM, Camann DE, Rauh V, Bhat HK, et al. Prenatal di(2-ethylhexyl)phthalate exposure and length of gestation among an inner-city cohort. Pediatrics. 2009;124:e1213–1220.

    Article  PubMed  Google Scholar 

  67. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10:37–48.

    Article  CAS  PubMed  Google Scholar 

  68. Kaufman JS, Cooper RS. Seeking causal explanations in social epidemiology. Am J Epidemiol. 1999;150:113–20.

    Article  CAS  PubMed  Google Scholar 

  69. Frederiksen H, Skakkebaek NE, Andersson A-M. Metabolism of phthalates in humans. Mol Nutr Food Res. 2007;51:899–911.

    Article  CAS  PubMed  Google Scholar 

  70. Barr DB, Silva MJ, Kato K, Reidy JA, Malek NA, Hurtz D, et al. Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers. Environ health Perspect. 2003;111:1148–51.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kato K, Silva MJ, Reidy JA, Hurtz D, Malek NA, Needham LL, et al. Mono(2-Ethyl-5-Hydroxyhexyl) phthalate and mono-(2-Ethyl-5-Oxohexyl) phthalate as biomarkers for human exposure assessment to Di-(2-Ethylhexyl) phthalate. Environ Health Perspect. 2003;112:327–30.

    Article  Google Scholar 

  72. Kaestner F, Seiler F, Rapp D, Eckert E, Muller J, Metz C, et al. Exposure of patients to di(2-ethylhexy)phthalate (DEHP) and its metabolite MEHP during extracorporeal membrane oxygenation (ECMO) therapy. PLoS One. 2020;15:e0224931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ferguson KK, McElrath TF, Ko Y-A, Mukherjee B, Meeker JD. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environ Int. 2014;70:118–24.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mamsen LS, Björvang RD, Mucs D, Vinnars M-T, Papadogiannakis N, Lindh CH, et al. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ Int. 2019;124:482–92.

    Article  CAS  PubMed  Google Scholar 

  75. Bjorvang RD, Vinnars MT, Papadogiannakis N, Gidlof S, Mamsen LS, Mucs D, et al. Mixtures of persistent organic pollutants are found in vital organs of late gestation human fetuses. Chemosphere. 2021;283:131125.

    Article  PubMed  Google Scholar 

  76. Dunn CG, Gao KJ, Soto MJ, Bleich SN. Disparities in adult fast-food consumption in the U.S. by race and ethnicity, National Health and Nutrition Examination Survey 2017-2018. Am J Prev Med. 2021;61:e197–e201.

    Article  PubMed  Google Scholar 

  77. Zota AR, Phillips CA, Mitro SD. Recent fast food consumption and bisphenol A and phthalates exposures among the U.S. Population in NHANES, 2003–2010. Environ health Perspect. 2016;124:1521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Varshavsky JR, Morello-Frosch R, Woodruff TJ, Zota AR. Dietary sources of cumulative phthalates exposure among the U.S. general population in NHANES 2005-2014. Environ Int. 2018;115:417–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Buckley JP, Kim H, Wong E, Rebholz CM. Ultra-processed food consumption and exposure to phthalates and bisphenols in the US National Health and Nutrition Examination Survey, 2013-2014. Environ Int. 2019;131:105057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. James-Todd T, Senie R, Terry MB. Racial/ethnic differences in hormonally-active hair product use: a plausible risk factor for health disparities. J Immigr Minor Health. 2012;14:506–11.

    Article  PubMed  Google Scholar 

  81. Barrett ES, Parlett LE, Sathyanarayana S, Redmon JB, Nguyen RH, Swan SH. Prenatal stress as a modifier of associations between phthalate exposure and reproductive development: results from a multicentre pregnancy cohort study. Paediatr Perinat Epidemiol. 2016;30:105–14.

    Article  PubMed  Google Scholar 

  82. Hakkola J, Pelkonen O, Pasanen M, Raunio H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol. 1998;28:35–72.

    Article  CAS  PubMed  Google Scholar 

  83. Myllynen P, Pasanen M, Vähäkangas K. The fate and effects of xenobiotics in human placenta. Expert Opin Drug Metab Toxicol. 2007;3:331–46.

    Article  CAS  PubMed  Google Scholar 

  84. Hauser R, Duty S, Godfrey-Bailey L, Calafat AM. Medications as a source of human exposure to phthalates. Environ Health Perspect. 2004;112:751–3.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zafeiri A, Mitchell RT, Hay DC, Fowler PA. Over-the-counter analgesics during pregnancy: a comprehensive review of global prevalence and offspring safety. Hum Reprod Update. 2021;27:67–95.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of the following individuals in the collection of CANDLE data: Phyllis Richey, Maureen Sorrells, Lauren Simms, Matt Hood, Grant Somes, Ron Adkins, Julia Krushkal, Fred Palmer, Fridtjof Thomas, Jeanie Peeples, Priyanka Jani, Laura Murphy, Carolyn Graff, Pamela Connor, Andy Bush, Risa Ramsey, Owen Phillips, Marion Hare, and Anand Kulkarni. We are grateful for the participation of the families enrolled in the CANDLE cohort. We thank Stacey Pharrams of Healthy Start Inc. in reading this manuscript and providing comments.

Funding

This work was supported by the Department of Epidemiology at the University of Pittsburgh, the National Institute of Environmental Health Sciences (NIEHS; grant Nos. 1R01ES029336 and 1R56ES025728–01A1), and the Urban Child Institute.

Author information

Authors and Affiliations

Authors

Contributions

HWL carried out the data analysis and helped to write the manuscript. NS developed the method for the analysis of placental tissue phthalates, and helped to write the manuscript. JW contributed the quantile normalization method to compare phthalate levels in the two tissue types, and reviewed the manuscript. XX and QY contributed R code and contributed to the data analysis for this manuscript. KLW, KC, NRB and FT were all part of the original conception of the project, and KLW served as a liaison between the Adibi and CANDLE research groups. KLW, NRB, and KC contributed key perspectives on reporting race differences in these associations. KK analyzed the urinary phthalate metabolites and contributed to the manuscript. EB and RTM offered edits and comments on the manuscript. FT is the original PI of the CANDLE study. JJA conceived of and initiated this research, mentored HWL, XX, and QY, and wrote the manuscript.

Corresponding author

Correspondence to Jennifer J. Adibi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Research was performed in accordance with the Declaration of Helsinki and approved by the Institutional Review Boards at the University of Tennessee Health Science Center and the University of Pittsburgh. The University of Pittsburgh declared this research to be exempt as Pitt investigators had access to de-identified data, and no contact with research participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, HW., Snyder, N., Wang, J. et al. A study on the association of placental and maternal urinary phthalate metabolites. J Expo Sci Environ Epidemiol 33, 264–272 (2023). https://doi.org/10.1038/s41370-022-00478-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-022-00478-x

Keywords

This article is cited by

Search

Quick links