Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Associations of cadmium exposure with risk of metabolic syndrome and its individual components: a meta-analysis

Abstract

Data directly associating cadmium (Cd) with metabolic syndrome (MetS) are sparse and inconsistent. We aimed to quantitatively assess the association of Cd exposure with risk of MetS and its individual components. Literature searching was performed in PubMed, EMBASE, and MEDLINE-OVID through September, 2021. Weighted odds ratios (ORs) for MetS and its components were pooled by comparing the highest to the lowest category of Cd exposure using random-effects models. Eleven (10 from Asia and 1 from the US) cross-sectional studies (33,887 participants and 7176 cases) were identified. Overall, Cd exposure was not associated with risk of MetS [OR: 1.08, 95% confidence interval (CI): 0.92, 1.28]. However, the association became significant when pooling Asian studies (OR: 1.18, 95% CI: 1.02, 1.35), and it was more pronounced with Cd measured in blood (OR: 1.24, 95% CI: 1.05, 1.45). Additionally, Cd exposure was significantly associated with reduced HDL-cholesterol (OR: 1.27, 95% CI: 1.05, 1.54) and elevated triglyceride (OR: 1.17, 95% CI: 1.05, 1.30), but not other components. This meta-analysis indicates that Cd exposure is associated with risk of MetS among Asian populations, which is mainly explained by Cd’s association with dyslipidemia. Further studies are needed to better understand the mechanism of action.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2: Weighted ORs (95% CIs) of MetS comparing the highest to the lowest Cd exposure category in 12 independent cohorts from 11 cross-sectional studies.
Fig. 3: Weighted ORs (95% CIs) of MetS comparing the highest to the lowest Cd exposure category in Asian studies.
Fig. 4: Weighted ORs (95% CIs) of individual MetS components comparing the highest to the lowest Cd exposure category in 7 cross-sectional studies.

Data availability

All the STATA codes for performing the analyses and generating the figures will be made available upon request pending from the corresponding author.

References

  1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.

    CAS  PubMed  Article  Google Scholar 

  2. Alberti KG, Zimmet P, Shaw J. The metabolic syndrome-a new worldwide definition. Lancet. 2005;366:1059–62.

    PubMed  Article  Google Scholar 

  3. O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16:1–12.

    PubMed  Article  Google Scholar 

  4. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287:356–9.

    PubMed  Article  Google Scholar 

  5. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003-12. JAMA. 2015;313:1973–4.

    CAS  PubMed  Article  Google Scholar 

  6. Hirode G, Wong RJ. Trends in the prevalence of metabolic syndrome in the United States, 2011-6. JAMA. 2020;323:2526–8.

    PubMed  PubMed Central  Article  Google Scholar 

  7. Di Marzo V, Silvestri C. Lifestyle and metabolic syndrome: contribution of the endocannabinoidome. Nutrients. 2019;11:1956 https://doi.org/10.3390/nu11081956.

    CAS  Article  PubMed Central  Google Scholar 

  8. Gallardo-Alfaro L, Bibiloni MDM, Mascaró CM, Montemayor S, Ruiz-Canela M, Salas-Salvadó J, et al. Leisure-time physical Activity, sedentary behaviour and diet quality are associated with metabolic syndrome severity: the PREDIMED-Plus study. Nutrients. 2020;12:1013 https://doi.org/10.3390/nu12041013.

    CAS  Article  PubMed Central  Google Scholar 

  9. Planchart A, Green A, Hoyo C, Mattingly CJ. Heavy metal exposure and metabolic syndrome: evidence from human and model system studies. Curr Environ Health Rep. 2018;5:110–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Lee BK, Kim Y. Blood cadmium, mercury, and lead and metabolic syndrome in South Korea: 2005-10 Korean National Health and Nutrition Examination Survey. Am J Ind Med. 2013;56:682–92.

    CAS  PubMed  Article  Google Scholar 

  11. Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, et al. Toxicological profile for cadmium. 2012. https://stacks.cdc.gov/view/cdc/12391.

  12. Jin T, Lu J, Nordberg M. Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology. 1998;19:529–35.

    CAS  PubMed  Google Scholar 

  13. Kjellström T. Exposure and accumulation of cadmium in populations from Japan, the United States, and Sweden. Environ Health Perspect. 1979;28:169–97.

    PubMed  PubMed Central  Article  Google Scholar 

  14. Yamano T, DeCicco LA, Rikans LE. Attenuation of cadmium-induced liver injury in senescent male fischer 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharm. 2000;162:68–75.

    CAS  Article  Google Scholar 

  15. Thévenod F. Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol. 2003;93:p87–93.

    PubMed  Article  CAS  Google Scholar 

  16. Go YM, Sutliff RL, Chandler JD, Khalidur R, Kang BY, Anania FA, et al. Low-Dose cadmium causes metabolic and genetic dysregulation associated with fatty liver disease in mice. Toxicol Sci. 2015;147:524–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Lee BK, Kim Y. Association of blood cadmium level with metabolic syndrome after adjustment for confounding by serum ferritin and other factors: 2008-12 Korean National Health and Nutrition Examination Survey. Biol Trace Elem Res. 2016;171:6–16.

    CAS  PubMed  Article  Google Scholar 

  18. Noor N, Zong G, Seely EW, Weisskopf M, James-Todd T. Urinary cadmium concentrations and metabolic syndrome in U.S. adults: the National Health and Nutrition Examination Survey 2001-14. Environ Int. 2018;121:349–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Gallagher CM, Meliker JR. Blood and urine cadmium, blood pressure, and hypertension: a systematic review and meta-analysis. Environ Health Perspect. 2010;118:1676–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Tangvarasittichai S, Niyomtam S, Pingmuangkaew P, Nunthawarasilp P. Dyslipidemia in the elevated cadmium exposure population. Int J Toxicolcol Pharmacol. 2015;7:92–98.

    Google Scholar 

  21. Xiao L, Li W, Zhu C, Yang S, Zhou M, Wang B, et al. Cadmium exposure, fasting blood glucose changes, and type 2 diabetes mellitus: A longitudinal prospective study in China. Environ Res. 2021;192:110259.

    CAS  PubMed  Article  Google Scholar 

  22. Xu P, Liu A, Li F, Tinkov AA, Liu L, Zhou JC. Associations between metabolic syndrome and four heavy metals: a systematic review and meta-analysis. Environ Pollut. 2021;273:116480.

    CAS  PubMed  Article  Google Scholar 

  23. Bulka CM, Persky VW, Daviglus ML, Durazo-Arvizu RA, Argos M. Multiple metal exposures and metabolic syndrome: a cross-sectional analysis of the National Health and Nutrition Examination Survey 2011-4. Environ Res. 2019;168:397–405.

    CAS  PubMed  Article  Google Scholar 

  24. Herzog R, Álvarez-Pasquin MJ, Díaz C, Del Barrio JL, Estrada JM, Gil Á. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health. 2013;13:1–17.

    Article  Google Scholar 

  25. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–52.

    PubMed  Article  Google Scholar 

  26. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    CAS  PubMed  Article  Google Scholar 

  27. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45:139–45.

    PubMed  PubMed Central  Article  Google Scholar 

  28. Moon S-S. Additive effect of heavy metals on metabolic syndrome in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES) 2009-10. Endocrine 2014;46:263–71.

    CAS  PubMed  Article  Google Scholar 

  29. Sirivarasai J, Chunhabundit R, Chansirikarnjana S, Chottivitayatarakorn S, Prasanatikom W, Khansakorn N, et al. Environmental Lead and Cadmium Exposure and Metabolic Syndrome in Women. Thai J Toxicol. 2016;31:20–35.

    Google Scholar 

  30. Lee J-M, Seok K-J, Ryu J-Y, Jung W-S, Park J-B, Shin K-H, et al. Association between heavy metal exposure and prevalence of metabolic syndrome in adults of South Korea. Korean J Fam Pract. 2017;7:172–8.

    Article  Google Scholar 

  31. Guo X, Yang Q, Zhang W, Chen Y, Ren J, Gao A. Associations of blood levels of trace elements and heavy metals with metabolic syndrome in Chinese male adults with microRNA as mediators involved. Environ Pollut. 2019;248:66–73.

    CAS  PubMed  Article  Google Scholar 

  32. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    PubMed  PubMed Central  Article  Google Scholar 

  33. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Rhee SY, Hwang Y-C, Woo J-T, Sinn DH, Chin SO, Chon S, et al. Blood lead is significantly associated with metabolic syndrome in Korean adults: an analysis based on the Korea National Health and Nutrition Examination Survey (KNHANES), 2008. Cardiovasc Diabetol. 2013;12:9.

    PubMed  PubMed Central  Article  Google Scholar 

  35. Shim YH, Ock JW, Kim YJ, Kim Y, Kim SY, Kang D. Association between heavy metals, bisphenol A, volatile organic compounds and phthalates and metabolic syndrome. Int J Environ Res Public Health. 2019;16:671.

    CAS  PubMed Central  Article  Google Scholar 

  36. Jin Y-N, Fu H-L, Liao S, Fan X-M, Zhao Y, Xu H-X, et al. Relationship between 23 serum elements and metabolic syndrome among rural residents. Chinese J Public Health. 2013. 1834–8.

  37. Xu Y, Wei Y, Long T, Wang R, Li Z, Yu C, et al. Association between urinary metals levels and metabolic phenotypes in overweight and obese individuals. Chemosphere. 2020;254:126763.

    CAS  PubMed  Article  Google Scholar 

  38. Park Y, Oh CU. Association of lead, mercury, and cadmium with metabolic syndrome of young adults in South Korea: The Korea National Health and Nutrition Examination Survey (KNHANES) 2016. Public Health Nurs. 2021;38:232–8.

    PubMed  Article  Google Scholar 

  39. Yoo I-Y. The association of blood heavy metal concentration and components of metabolic syndrome in Korean male adults. Indian J Sci Technol. 2015;8:467–74.

    CAS  Article  Google Scholar 

  40. Ayoub N, Mantash H, Dhaini HR, Mourad A, Hneino M, Daher Z. Serum cadmium levels and risk of metabolic syndrome: a cross-sectional study. Biol Trace Elem Res. 2021;199:3625–33.

    CAS  PubMed  Article  Google Scholar 

  41. Park SB, Choi SW, Nam AY. Hair tissue mineral analysis and metabolic syndrome. Biol Trace Elem Res. 2009;130:218–28.

    CAS  PubMed  Article  Google Scholar 

  42. Samarghandian S, Azimi-Nezhad M, Shabestari MM, Azad FJ, Farkhondeh T, Bafandeh F. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats. Interdiscip Toxicol. 2015;8:151–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Larregle EV, Varas SM, Oliveros LB, Martinez LD, Antón R, Marchevsky E, et al. Lipid metabolism in liver of rat exposed to cadmium. Food Chem Toxicol. 2008;46:1786–92.

    CAS  PubMed  Article  Google Scholar 

  44. Rogalska J, Brzóska MM, Roszczenko A, Moniuszko-Jakoniuk J. Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact. 2009;177:142–52.

    CAS  PubMed  Article  Google Scholar 

  45. Lopez E, Arce C, Oset-Gasque M, Canadas S, Gonzalez M. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med. 2006;40:940–51.

    CAS  PubMed  Article  Google Scholar 

  46. Almenara CC, Broseghini-Filho GB, Vescovi MV, Angeli JK, Faria TDO, Stefanon I, et al. Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS ONE. 2013;8:e68418.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, et al. Cadmium stress: an oxidative challenge. Biometals. 2010;23:927–40.

    CAS  PubMed  Article  Google Scholar 

  48. Murugavel P, Pari L. Diallyl tetrasulfide protects cadmium-induced alterations in lipids and plasma lipoproteins in rats. Nutr Res. 2007;27:356–61.

    CAS  PubMed  Article  Google Scholar 

  49. Olszowski T, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Pro-inflammatory properties of cadmium. Acta Biochim Pol. 2012;59:475–82.

    CAS  PubMed  Article  Google Scholar 

  50. Feingold KR, Grunfeld C The effect of inflammation and infection on lipids and lipoproteins. In: Endotext; 2019. https://www.ncbi.nlm.nih.gov/sites/books/NBK326741/. Accessed 1 Sep 2021.

  51. Feingold KR, Grunfeld C. Effect of inflammation on HDL structure and function. Curr Opin Lipidol. 2016;27:521–30.

    CAS  PubMed  Article  Google Scholar 

  52. Tohidi M, Hatami M, Hadaegh F, Azizi F. Triglycerides and triglycerides to high-density lipoprotein cholesterol ratio are strong predictors of incident hypertension in Middle Eastern women. J Hum Hypertens. 2012;26:525–32.

    CAS  PubMed  Article  Google Scholar 

  53. Cabrera de León A, Domínguez Coello S, Almeida González D, Brito Diaz B, del Castillo Rodríguez J, González Hernández A, et al. Impaired fasting glucose, ancestry and waist‐to‐height ratio: main predictors of incident diagnosed diabetes in the Canary Islands. Diabet Med. 2012;29:399–403.

    PubMed  Article  CAS  Google Scholar 

  54. Salazar MR, Carbajal HA, Espeche WG, Leiva Sisnieguez CE, March CE, Balbín E, et al. Comparison of the abilities of the plasma triglyceride/high-density lipoprotein cholesterol ratio and the metabolic syndrome to identify insulin resistance. Diab Vasc Dis Res. 2013;10:346–52.

    PubMed  Article  CAS  Google Scholar 

  55. Fittipaldi S, Bimonte VM, Soricelli A, Aversa A, Lenzi A, Greco EA, et al. Cadmium exposure alters steroid receptors and proinflammatory cytokine levels in endothelial cells in vitro: a potential mechanism of endocrine disruptor atherogenic effect. J Endocrinol Investig. 2019;42:727–39.

    CAS  Article  Google Scholar 

  56. Lin HC, Hao WM, Chu PH. Cadmium and cardiovascular disease: an overview of pathophysiology, epidemiology, therapy, and predictive value. Rev Port Cardiol (Engl Ed). 2021;40:611–7.

    Article  Google Scholar 

  57. Pi X, Xie L, Patterson C. Emerging roles of vascular endothelium in metabolic homeostasis. Circ Res. 2018;123:477–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Alexander RW. Hypertension and the pathogenesis of atherosclerosis: oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 1995;25:155–61.

    CAS  PubMed  Article  Google Scholar 

  59. Bimonte VM, Besharat ZM, Antonioni A, Cella V, Lenzi A, Ferretti E, et al. The endocrine disruptor cadmium: a new player in the pathophysiology of metabolic diseases. J Endocrinol Investig. 2021;44:1363–77.

    CAS  Article  Google Scholar 

  60. Haverinen E, Fernandez MF, Mustieles V, Tolonen H. Metabolic syndrome and endocrine disrupting chemicals: an overview of exposure and health effects. Int J Environ Res Public Health. 2021;18:13047.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Wong WPS, Wang JC, Schipma MJ, Zhang X, Edwards JR, El Muayed M. Cadmium-mediated pancreatic islet transcriptome changes in mice and cultured mouse islets. Toxicol Appl Pharmacol. 2021;433:115756.

    CAS  PubMed  Article  Google Scholar 

  62. Sarmiento-Ortega VE, Moroni-González D, Díaz A, Eduardo B, Samuel T Oral subacute exposure to cadmium LOAEL dose induces insulin resistance and impairment of the hormonal and metabolic liver-adipose axis in Wistar rats. Biol Trace Elem Res. 2021; https://doi.org/10.1007/s12011-021-03027-z.

  63. Gallagher CM, Meliker JR. Blood and urine cadmium, blood pressure, and hypertension: a systematic review and meta-analysis. Environ Health Perspect. 2010;118:1676–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia A. Cadmium toxicity and treatment: an update. Casp J Intern Med. 2017;8:135–45.

    Google Scholar 

Download references

Author contributions

LL was responsible for conducting the research, screening potentially eligible studies, extracting and analyzing data, quality assessment, interpreting results, updating reference lists, creating tables and figures, and writing original draft preparation. YL was responsible for conducting the research, screening potentially eligible studies, extracting and analyzing data, quality assessment, interpreting results, writing review, and revising the manuscript. CC was responsible for quality assessment, interpreting results, writing review, and revising the manuscript. YZ was responsible for creating tables and figures, writing review, and revising the manuscript. WG was responsible for writing review and revising the manuscript. SZ was responsible for writing review and revising the manuscript. KK was responsible for conceptualization, supervision, writing review, and revising the manuscript.

Funding

This study was partially supported by the grants from the National Institutes of Health (R01DK116603 and RF1AG056111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Kahe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This meta-analysis does not require ethical approval.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Li, Y., Chen, C. et al. Associations of cadmium exposure with risk of metabolic syndrome and its individual components: a meta-analysis. J Expo Sci Environ Epidemiol (2022). https://doi.org/10.1038/s41370-022-00444-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41370-022-00444-7

Keywords

  • Cadmium
  • Metabolic syndrome
  • Asian
  • Lipid metabolism
  • Biomarker
  • Meta-analysis

Search

Quick links