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BACKGROUND: Data from extensive mobile measurements (MM) of air pollutants provide spatially resolved information on
pedestrians’ exposure to particulate matter (black carbon (BC) and PM2.5 mass concentrations).
OBJECTIVE: We present a distributional regression model in a Bayesian framework that estimates the effects of spatiotemporal
factors on the pollutant concentrations influencing pedestrian exposure.
METHODS: We modeled the mean and variance of the pollutant concentrations obtained from MM in two cities and extended
commonly used lognormal models with a lognormal-normal convolution (logNNC) extension for BC to account for instrument
measurement error.
RESULTS: The logNNC extension significantly improved the BC model. From these model results, we found local sources and,
hence, local mitigation efforts to improve air quality, have more impact on the ambient levels of BC mass concentrations than on
the regulated PM2.5.
SIGNIFICANCE: Firstly, this model (logNNC in bamlss package available in R) could be used for the statistical analysis of MM data
from various study areas and pollutants with the potential for predicting pollutant concentrations in urban areas. Secondly, with
respect to pedestrian exposure, it is crucial for BC mass concentration to be monitored and regulated in areas dominated by traffic-
related air pollution.
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INTRODUCTION
Adverse health effects of traffic-related air pollutants (TRAPs) .have
motivated the creation of mitigation policies across cities in
Europe [1] which are evaluated through the continuous monitor-
ing of the criteria pollutants in fixed locations. However, exposure
to unregulated TRAPs such as black carbon (BC), which has more
impact on health than PM2.5 mass concentration (PM with
aerodynamic diameter <2.5 micrometer (µm)) [2] and is highly
variable in space, may not be fully captured by fixed stations [3–5].
Nowadays, mobile measurements (MM) are done to determine the
spatial distributions of TRAPs. The high spatial resolution data it
provides have allowed the identification of hot spots and their
sources [3, 6], and investigation of pollutants in urban areas where
placing monitoring stations proves challenging. This spatially
resolved data are particularly beneficial for analyzing the exposure
of pedestrians to pollutants and for creating mitigation strategies
to address air pollution.

In MM studies, inference is often based on descriptive summary
statistics indicating the association of pollutant concentration with
single environmental factors individually [7–9]. Thereby, pollutant
measurements are typically spatially and/or temporally aggre-
gated and spatial context (like street type) often serves as
surrogate for traffic situation [3, 10–15]. This approach is
recommended [11, 14, 16, 17] for determining the typical spatial
distribution of pollutant concentration under a variety and
combinations of environmental and meteorological conditions.
Few studies have quantified the effects of several predictor
variables on the spatial variability of the target pollutants. Riley
et al. [18] used principal component analysis on data obtained
from MM aboard a vehicle driving through neighborhoods close
to an interstate. Rivas et al. [19] (and references therein) focused
on commuters’ exposure in various transportation modes using
regression models with multiple predictor variables to quantify
the contributions of different determinants to exposure. The study
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osest to our objective is that of Yu et al. [20], which used a
regression model on collocated MM performed along parallel
streets to quantify contributing factors.
More generally, related statistical approaches to modeling air

pollution based on the spatiotemporal context are often referred
to as “land use regression” (LUR) [21], which has been applied to
MM of BC [22–27] and other pollutants [28–30]. Applied
procedures comprise multiple (log-)linear regression with different
variable selection techniques and possibly extended to generalized
additive models (GAM), but also machine learning techniques
[23, 31]. LUR often focuses on predictive modeling [21, 31], but also
on interpretation of model coefficients [29, 30]. While various
model alternatives are considered, limited attention is given to
probability distributions implied by the selected model. The least
squares fit, conducted i.a. in linear regression, assumes normally (or
Gaussian) distributed concentrations where all observations are
assumed to have constant variance (homoscedasticity) and to be
uncorrelated. When modeling log-concentrations [20, 29, 32–34],
this translates to a lognormal distribution assumption for the
original concentrations. The methodological novelties presented in
this paper can be understood as extensions of this approach in the
context of a distributional perspective.
The most important methodological contribution is that we

explicitly address measurement error arising from normally
distributed noise in BC measurements by proposing a
lognormal-normal convolution (logNNC) [35] model. Instrument
measurement error has been deemed an important issue in recent
statistical approaches for air pollution-related epidemiological
studies [33, 36, 37]. Although it averages to zero, i.e., it is not
systematic itself, neglecting the error still leads to biased
coefficient estimates in a lognormal model [35]. Secondly, the
proposed approach allows for modeling of not just the mean but
also the standard deviation/variance of the (log) BC and PM2.5

mass concentrations in dependence of predictor variables. This
overcomes the usual homoscedasticity assumption and can
provide new insights concerning effects on the pollutant
variability. In addition, we utilize Gaussian processes to account
for unexplained spatiotemporal correlations in the observed
measurements. This is similar to, e.g., Pirani et al. [36], Kriging or
linear mixed models [38]. The distributional regression approach is
implemented in the Bayesian model framework provided in the R
package bamlss, which was extended to allow for logNNC models
and offers uncertainties for the model estimates. In this
investigation, we aim to better understand personal exposure in
urban areas using a high spatial and temporal resolution dataset
from MM. Specifically, we want to quantify the impacts of
meteorology, spatial and temporal factors, and traffic on the
ambient BC and PM2.5 mass concentrations in urban areas with
which pedestrians may be exposed to. To achieve this, we
developed a flexible statistical model suitable for addressing the
challenges arising from MM datasets, and apply it on MM datasets
from two European cities: Leipzig, Germany and Rome, Italy.

METHODS
Mobile measurement datasets
MM were taken at two locations. In 2016, year-long MM were done in
Leipzig [10] (~600,000 inhabitants) which is within a low emission zone
(area where gasoline vehicles with Euro 1 or higher and diesel vehicles
with Euro 3 (with diesel particle filter) or higher are allowed to enter) since
2011. The 5.5-kilometer (km) MM route east of the city center included
different microenvironments. MM or “rounds” were done twice per day,
one between 5:00 and 11:00 a.m. and one between 14:00 and 17:30 p.m.
The local rush hours occur at 7:00 a.m. and at 15:00 p.m. to 16:00 p.m.
(tomtom.com, accessed on 11.03.2021). During the winter (18/01–04/03),
55 rounds were made (53 on weekdays, 2 on weekends) and 70 (60 on
weekdays and 10 on weekends) during the summer (01/06–04/09) with a
total 39,811 data points for BC and 40,329 for PM2.5 mass concentrations.
No measurements were done during public holidays.

In Rome (4.5 million inhabitants), MM were done from 01/02 to 28/02,
2017. The 9-km route through different microenvironments included
touristic areas mostly inaccessible to vehicles and under a low emission
zone (entry for electric public buses and official vehicles only). The rounds
were done three times a day, in the morning (8:00–10:30 a.m.), noon
(13:00–15:30 p.m.), and evening (18:00–20:00 p.m.). The local rush hours
typically occur from 7:00 to 10:00 a.m., peaking at 8:00 a.m. and from 16:00
to 20:00 p.m., peaking at 18:00 p.m. The route included a 30-min stop by
the fixed station for intercomparisons with reference instruments (quality
assurance is outlined in [17, 39]) located in a gated garden ~150 meters
(m) away from any road publicly accessible to vehicles. Seventy-seven
rounds were analyzed in this study (54 on weekdays, 23 on weekends).
There were no holidays in the month of February. In total, 54,963 data
points were available for BC and 53,937 for PM2.5 mass concentrations.
For both cities, MM were done on foot (average speed of 1.25m s−1)

with an instrumented backpack. The backpack is equipped with a
microAethalometer (microAeth®, Model AE51, AethLabs, San Francisco,
CA, USA) for measuring equivalent black carbon (eBC) [40], a TSI optical
particle size spectrometer (OPSS, Model 3330, TSI Inc., Shoreview, MN,
USA), and a GPS, all with time resolutions of 1, 10, 1 s, respectively. Details
of the aerosol backpack are in the Supplementary material. PM2.5 mass
concentrations were derived from the particle number size distributions
obtained from the OPSS corrected for refractive index and the fine mode
was corrected against the mobility particle size spectrometer (MPSS, size
range: 0.001–0.800 µm). Details of this procedure can be found in [17].
Table S1 summarizes the description of the two measurement campaigns
along with references for more details on each. The quality assurance
protocols for MM using this aerosol backpack are in [17, 41] and briefly
described in the Supplementary material.

Statistical model
Predictor variables. The variables considered for this analysis and their
respective sources are listed in Table S2. Due to the differences of the set-up
of the Leipzig and Rome campaigns, the variables are not identical. The
common variables are wind speed (ws) and direction (wd), day of week
(weekend and weekdays, weekday), time of day (h), street classification
(strclass), street configuration (strconf), street activities (stract), and traffic
(traff). The wind speed and direction information were taken from fixed
stations at urban background areas. In Leipzig, this station is ~8 km away
from the route. In Rome, an air quality station within the route was where the
wind information was taken and the presence of high-time resolution
reference instruments allowed for the consideration of the ambient levels
(amb) of the target pollutants. This was not possible for the Leipzig
measurements, as there were no high-resolution data (at least 1min) of PM2.5

mass concentration available. The street classification was based on official
road types from OpenStreetMap [42]: “primary” streets are the highest-level
streets and often part of national roads, “secondary” streets are major streets
linking towns, “tertiary” streets provide access to suburbs, “residential” streets
serve as an access to housing without the function of connecting
settlements, and “park” are paths exclusive for pedestrians. The street
configuration was based on an arbitrary assessment by the first author
through onsite visual inspection of the road segments of the route: streets
without buildings on both sides were considered “open”, streets with
building on one side were considered as “half-open”, and streets with
buildings on both sides were considered as “street canyon”. The street
canyon was further split into street canyon traffic and street canyon
residential where necessary. The year-long measurements in Leipzig allowed
us to explore the seasonal dependence. However, “street activity” was
excluded for Leipzig because there are not enough predictor variable
combinations with street activities along the Leipzig route in contrast to
Rome where there are more than one “street activity” possible for a particular
street classification. This was done to avoid highly correlated variables (i.e., all
primary streets have commercial activities, all residential streets, have only
residential activities). Traffic counts were available for the main streets of the
Leipzig route, which were typical/mean levels for each hour of the day for the
year 2014 obtained through automatic counters by the city of Leipzig. For the
Rome dataset, there exists no traffic counts on the MM route. Instead, the
information on typical traffic flow was manually obtained from the traffic
layer in Google Maps for each hour of each day of the week for every street
that is part of the measurement route. The traffic flow is presented
qualitatively in colors from green (fast), orange, red, and dark red (slow).

Data structure. Figures 1 and S1 present the distributions of eBC and
PM2.5 mass concentrations (in micrograms per cubic meter: µgm−3) at a
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pedestrian-only street and a primary street for both Leipzig and Rome,
respectively, illustrating the skewness of the data. Additionally, eBC
measurements have negative values, which is normal for filter-based
measurements of light attenuation with high-time resolution, where the
values are a result of the difference between two consecutive readings.
These negative values are part of the internal noise level of the eBC
instrument. For locations with low concentrations as in Leipzig, this is even
more prevalent. As this is a sampling noise that averages to zero (Fig. S2),
removing the negative values risks overestimating the eBC mass
concentrations. This measurement uncertainty must be accounted for to
minimize the uncertainties of the model estimates as suggested by
previous studies listed above [33, 36, 37]. The dataset of the eBC mass
concentration is an aggregation of the raw data (1-s) to 10-s median, which
still has some recognizable influence from the measurement noise. This is
not applicable to the dataset of the PM2.5 mass concentrations, because
these values were obtained after a multi-step, post-process calculation
resulting in only positive values.
The Leipzig and Rome routes took 1 and 2.5 h to cover, respectively.

Naturally, spatial and temporal correlations could occur and would have to
be considered to achieve valid inference.
Finally, the uncertainties for the impacts that these predictor variables

have on the pollutant concentrations must be calculated. Therefore, the
statistical model must satisfy the following criteria:

Account for measurement error of the eBC mass concentrations,
account for the spatial and temporal correlations; and
provide uncertainties for the estimated impacts of the predictor variables.

Model description: lognormal distributional regression
To address the skewness of the datasets, we model the pollutant
concentrations Y using a lognormal model [32–34, 36, 43]:

Z ¼ log Y � N μ; σ2
� �

(1)

with mean μ and variance σ2 which depend on a set of predictor variables
x and, in spatiotemporal models, on locations s and time t. We employ a
Bayesian distributional regression framework [44] to model both the mean:

μ x; s; tð Þ ¼ ημ xð Þ þ γspaceμ sð Þ þ γtime
μ tð Þ (2)

and the log-standard deviation:

log σ x; s; tð Þ ¼ ησ xð Þ þ γspaceσ sð Þ þ γtime
σ tð Þ (3)

via an additive mean predictor ημ xð Þ as known from GAMs (e.g., [38, 45])
and with another additive predictorησ xð Þ for the standard deviation σ.

Fig. 1 Exemplary distribution of pollutant concentrations along the measurement route in Leipzig. Measurement route in Leipzig (a) with
centerpoints colored according to street classification. The location of a fixed monitoring station is indicated by “x”. Note that for Leipzig, no
data from this station was used in this analysis. In b, the distributions of mass concentrations of eBC (top panels) and PM2.5 (bottom panels) at
street classification “primary” and “park” of the MM route (in a shaded gray box in the map (a)) from MM done in Leipzig during winter.
“n_datapoints” indicate the number of data points for each distribution. The map source is OpenStreetMap® plotted with “ggmap” package in R.
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Note that this model is a direct extension of standard linear regression
corresponding to μ x; s; tð Þ ¼ ημ xð Þ a linear predictor and log σ x; s; tð Þ ¼
ησ a constant. The spatiotemporal structure of the data is accounted for by
zero mean latent error processes comparable to random intercepts in
linear mixed models (e.g., [38]): for both μ and σ, Gauss–Markov random
fields (e.g [46]) γspace sð Þ capture spatial correlations along the routes and
Gaussian processes γtime tð Þ with exponential correlation functions reflect
temporal correlations over the campaign period. Further details are given
in the Supplementary material (Section II). Conditional on these latent
processes, we assume the measurements to be uncorrelated. They can
represent possible factors that are not accounted for by the given
predictor variables which may contribute to the error term of the
regression analysis (e.g., building heights, other meteorological variables,
types and fuel used by the vehicles, etc.).
For Rome, we specify a model predictor (for both μ and σ):

ηRome
� Xð Þ ¼ α0 þ α1xws þ α2 log xamb þ βwd þ βstrclass þ βstrconf

þ βstract þ βtraff þ βweekday þ f1 xhð Þ (4)

with intercept α0, linear effects of wind speed xws and the log-ambient
concentration log xamb with coefficients α1 and α2, respectively, and
reference encoded categorical effects β for the remaining predictor
variables. The time of day is modeled by a cubic regression spline f1 xhð Þ of
the hour of the day. For Leipzig, the predictor writes:

ηLeipzig� Xð Þ ¼ α0 þ α1xws þ βwd þ βstrclass þ βstrconf þ βweekday

þ βseason þ f1 xhð Þ þ f2 xcountð Þ: (5)

Here, the effect of season is expressed in βseason. Instead of categorical
traffic information, we include another cubic regression spline f2 xcountð Þ for
the traffic counts available at the primary road. f2 xcountð Þ is constrained to
have zero mean on primary roads and is fixed to zero elsewhere to ensure
interpretability of street class effects. As the models involve comparably
many free parameters, we do not include any predictor variable interaction
terms, to achieve stable estimates and concise interpretability. Moreover,
in sensitivity checks including street class-wise time of day effects, they
were estimated generally very similar over all street classes for all models.

Model extension: incorporating measurement error. For the eBC mass
concentration, instrument noise presented a serious issue for low mass
concentrations (<4 µgm−3, which is the expected noise level at 1-s time
resolution and flow of 50ml min−1 according to the user manual). Instead
of Y, we, in fact, observe ~Y ¼ Y þ ε contaminated with some measurement
error ε, which might be reasonably assumed independent Gaussian noise
ε � N 0; λ2

� �
. Naïve approaches analyze such pathologic data nonetheless

with a lognormal model after, e.g., removing negatives [43]. However,
ignoring the measurement error in the model and omitting negative
values lead to biased results (Fig. S3). Hence, we explicitly model:

~Y � logNNC μ; σ2; λ2
� �

(6)

with a logNNC model incorporating ε into the lognormal model described
for Z ¼ log Y above. The logNNC distribution was first discussed by [35] in
1991 and later used by [47], in a Kriging context. We now model the
measurement error standard deviation λ as:

log λ tð Þ ¼ ηλ þ γtime
λ tð Þ (7)

on log scale and without including any predictor variables as the
instrument behavior should not depend on these. Besides an intercept
ηλ , we include a temporal latent error process γtime

λ tð Þ defined as above, as
we found some change in error variances over different control
experiments (deterioration of internal pump with use). With this logNNC
model, we implicitly assume the same model structure for the underlying
eBC concentrations as we do with the lognormal model for PM2.5, which is
assumed as error-free. Results for both models are, thus, comparable.

Bayesian modeling. We fit all models using the flexible Bayesian
distributional regression framework by Umlauf et al., which is implemented
in the add-on package bamlss [44] for the statistical programming
software R [48] and extended with the logNNC distribution family. To stay
close to usual non-Bayesian modeling, we chose priors to form a Bayesian
pendant to penalized GAMs: for the coefficients of any linear model effects,
we utilize an improper flat prior resembling a frequentist modeling
approach; for spline coefficients, we specify Gaussian priors resembling
quadratic penalty terms. A Markov chain Monte Carlo procedure is used to

obtain sampling-based estimates and credibility intervals (CIs), the
Bayesian analog to confidence intervals. The logNNC density itself involves
an intractable integral [35] which we approximate using Gaussian
quadrature. Further modeling details are in the Supplementary material
(Section III, Table S3, and Fig. S4).

RESULTS
Model evaluation and comparison: logNNC
To assess the proposed logNNC model, we compare it (Final
Model: lognormal, measurement error, and σ2 modeled) against
alternatives, each corresponding to the Final Model in all but one
key aspect distinguishing it from common approaches in
literature. Replacing the logNNC by a Gaussian distribution, the
distribution assumption in Model 3 (normal, measurement error
implicit, σ2 modeled) corresponds to that of a linear model directly
applied to the eBC mass concentration measurements [19, 30]
ignoring high skewness of its distribution. In Model 2 (lognormal,
measurement error ignored, σ2 modeled), we assume a lognormal
[20, 32–34] ignoring additive measurement error and omitting
negatives. In alternative Model 1 (lognormal, measurement error
modeled, σ2 constant), the usual constant variance σ2 assumption
is made. Note that depending on pollutant, measurement device,
concentration level, post-processing, available predictor variables
and other factors, the role of these aspects might vary. We, thus,
do not want to claim that comparison results necessarily carry
over to the cited analyses. They merely ought to substantiate our
experience that presented alternatives reflect popular approaches
in similar scenarios and, thereby, underpin practical relevance of
the issue.
For model diagnostics, we investigate quantile residuals (Defined

as r ¼ Φ�1 F Yjxð Þð Þ where F is the modeled cumulative distribution
function of Y given the predictor variables x, and Φ�1 is the quantile
function of a standard normal distribution. According to the inverse
sampling method, r follows a standard normal, if Y indeed follows F.)
which, under a hypothetical true underlying model, would be
standard normally distributed. Thus, we may apply standard residual
diagnostics from linear models, such as normal quantile–quantile
(Q–Q) plots: for a good performing model, the empirical quantiles of
the residual distribution (y-axis) would approximately match the
theoretical standard normal quantiles (x-axis) leading to points on or
close to the 1:1 line. Figure 2 shows normal Q–Q plots of our eBC
models for both Rome and Leipzig compared against Models 1, 2,
and 3. Models with the logNNC extension showed close to normally
distributed quantile residuals suggesting a good model fit, in
contrast to those without (Models 2 and 3). For the Leipzig model,
strong deviations are observed in both upper and lower tails of
Models 2 and 3, suggesting a heavily tailed residual distribution
which is also evident in the inset plots. On the other hand, the Rome
model with typically higher eBC mass concentrations showed a
strong deviation mostly in the upper tail for Models 2 and 3
indicating a right-skewed residual distribution. This confirms that
when ignoring the specifics of the data the model fails to capture
the underlying distribution. Moreover, note that, compared to a
standard model, Model 3 already benefits greatly from the
additional predictor for the log mass concentration variance σ2 as,
being bounded by zero, the pollutant distributions tend to become
more peaked toward lower concentrations. Observed discrepancies
also manifested into concrete effects on the coefficient estimates
(Fig. 3). By ignoring the measurement error and omitting negative
values in Model 2, covariate effects were under-estimated with all
but one coefficient estimate biased toward zero: low concentration
levels are over-estimated and, relatively, affected more by the
additive noise than higher concentrations. This masks underlying
effects and corresponds to the simulated example shown in Fig. S3.
For Model 1, some estimated coefficients deviate in negative and
some in positive direction. Here, due to the constant variance
assumption on log scale, variability on the original scale is fully
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attributed to μ instead of explaining it by both μ and σ. Qualitatively,
all models including Model 3 give similar, and to the largest extent,
consistent results, although the latter is not quantitatively compar-
able to the others (model estimates are for log(eBC) while Model 3
results are for eBC in the original scale). While the Final Model and
Model 1 fit similarly well, the Final Model adapts slightly better to
the most extreme 1% of the residuals toward the right side of the
distribution. Apparently, by modeling σ2 in dependence of predictor
variables, unusually high values which would otherwise be
considered as outliers, can be explained by the model. For Leipzig,
certain divergence in the lower tail of the Q–Q plot indicates slight
deviations from the assumed model. The affected smallest 1% of the
residuals reflect the most negative part of the eBC measurement
distribution (median −2 µgm−3) and show neither spatial nor
temporal structure. This might suggest that the true error
distribution exhibits somewhat heavier tails than the assumed
normal. However, considering the huge amount of data points
analyzed for both models, the majority of the residual distribution
(1–99th percentile) are in complete accordance with the theoretical
distribution. Thus, the logNNC model distinctly improves the severe
mismatch in the fitted distributions of Models 2 and 3.

Model evaluation: PM2.5 models and latent errors
Figure S5 shows the normal Q–Q plots of the lognormal PM2.5

models. Both plots show considerable deviation on the upper tail,
and the distribution of the residuals from the Rome PM2.5 dataset
is more normally distributed compared to Leipzig. This might be
attributed to the differences on how they were calculated. In
Rome, the daily intercomparison against an MPSS allowed for
“run”-resolved fine mode correction factors. In Leipzig, only one
correction factor was used to correct the fine mode of the volume
size distribution from the OPSS. Nevertheless, the 0.1–90% of the
residuals fall in the theoretical line which is satisfactory for the
current possibilities of calculations of PM2.5 mass concentrations
from optical size spectrometers.
By employing the latent spatial and temporal error processes

γspaceðsÞ and γtime tð Þ, it was possible to widely, yet not entirely,
decorrelate the residuals (see Fig. S6 for the autocorrelation

functions). In Leipzig and Rome, we observe a residual auto-
correlation of 0.35 and 0.51 to the subsequent measurement (i.e.,
after 10 s) and 0.09 and 0.20 to a measurement 5 min apart,
respectively. Therefore, we want to stress that the resulting effect
CIs are likely slightly too narrow. However, the large size of the
datasets makes it hard to account for more fine-grained
correlations while keeping the good interpretability of the model.
Finally, we observe that the estimates for the measurement

error standard deviation λ tð Þ in eBC mass concentration models
for both Leipzig and Rome attain realistic values matching results
from five control experiments (Fig. S7).

Model results
We first focus on the estimated effects of the predictor variables on
the mean (μ) of the log pollutant concentrations offering the most
accessible interpretation. Note that we term an effect “significant”
whenever the CI does not include zero. Moreover, we interpret the
effects ceteris paribus, i.e., when keeping all other variables
including the standard deviation σ fixed. Then, the effect values on
log scale translate to relative, percentual changes in concentra-
tions. Subsequently, we add a distributional perspective by
illustrating model results and potentials beyond mean regression.
Note that the results for Rome are limited to the cold season. We
suggest caution when extrapolating these to other seasons.
Figures 4 and 5 show the effects of the predictor variables on

the mean log eBC and PM2.5 mass concentrations for the Leipzig
and Rome models, respectively. Here, similarities were observed in
the model results from both datasets. For the eBC models, the
effects of spatial characteristics such as street classification and
configuration are similar in the two cities with the largest effect
when changing from a park/pedestrian-only area to a primary
street: in this case, the mean concentration is more than doubled
with 114% or 159% increase in Rome and Leipzig, respectively.
Similarly, moving from an open street to a street canyon (traffic)
results in a 55% and 20% eBC mass concentration increase in
Rome and Leipzig, respectively.
PM2.5 mass concentrations showed weak dependency on spatial

characteristics for either city. PM2.5 mass concentration did not

Fig. 2 Model comparison with normal Q-Q plots of the quantile residuals. Comparison of the normal Q–Q plots of the quantile residuals of
each experimental model against our model for a Leipzig, and b Rome. The inset plots show the same residual distributions in a density plot.
The horizontal lines represent the quantiles of the residuals of our model. The residuals are plotted for all n= 39,811 data points in Leipzig and
all n= 54,963 for Rome. Only for Model 2, the negative values are omitted. Their quantile residuals would be −∞.
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vary much from a pedestrian street to other settings of the street
classification. The results also show insignificant effects of traffic
flow on PM2.5 mass concentration in Rome. In urban areas, air
pollution is often dominated by TRAPs and BC particles originate
from these vehicular combustion processes. PM2.5 mass concen-
tration, on the other hand, is a bulk mass of undifferentiated PM
which could originate from particles transported over distance
and has less to do with local sources. The relative independence of
PM2.5 from local spatial features is also evident in the spatial latent
errors (Figs. S8 and S9).
This is further supported by the effects on eBC mass

concentration of day of week, which is closely linked to emission
patterns related to human activities. For Rome, weekday
concentration increases by 88% from weekends. The same can

be observed for Leipzig. However, the PM2.5 model of Rome shows
a slight effect from the temporal factors which is not the case in
Leipzig. With the limited data gathered in Leipzig, the weekend-
weekday variation was low and only captured changes in local
sources (fewer human activities) resulting in clear effects on eBC
mass concentration only.
For the effect of time of day on eBC mass concentration, we

observe strong similarities between Rome and Leipzig: increase in
the morning and evening, and a decrease in the middle of the
day. Naturally, this can be attributed to increased human activities
during rush hours. In addition, the low temperatures during the
mornings and evenings result in the accumulation of particles in
the urban surface layer, and high temperatures during the day
promotes the mixing of polluted air below with the clean air
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above. Therefore, the dynamics of the vertical mixing may also
influence the PM2.5 mass concentration. However, in contrast to
eBC, the pattern of the effect on PM2.5 mass concentration on
both cities is not entirely similar. In Rome, we observe a similar
pattern to eBC mass concentration. For Leipzig, the effect of hour
of day on PM2.5 mass concentration continues to decrease to the
early hours of the evening. This could be because, unlike Rome,
the measurements in Leipzig did not occur as late in the night
(only up to 17:30 local time) and the evening rush hour in Leipzig
occurs much earlier (from 15:00–16:00 local time). Therefore, in
Leipzig, on average over seasons, the evening rush hour and the

nighttime cooling of the urban surface layer do not coincide in
time, resulting in different effects on eBC and PM2.5 mass
concentrations.
The impact of traffic was also evaluated; however, the effect is

much clearer in eBC mass concentration in Rome than in Leipzig.
This could be attributed to traffic data used for the Leipzig model
where only average traffic counts from 2014 were available.
For the case of Leipzig, a strong effect of season was observed;

eBC mass concentration increases by 160% during winter
compared to summer, and PM2.5 mass concentration increases
by 119% during the wintertime. The meteorological conditions
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during winter promote the accumulation of particles on the urban
surface layer due to the less vertical mixing of clean air from
above. Hence, this affects both pollutants.
Aside from effects on the mean mass concentrations, a change

in the pollutant concentration level typically comes with a change
in variance: measurements in areas with a higher concentration
level tend to have higher variability than in lower levels. In part,
this is already accounted for by modeling the mean in a lognormal
model. Here, an increase in the mean of the log concentration
mathematically implies a certain increase in the assumed variance
on the original scale. However, explicitly modeling the standard

deviation (σ) of the log mass concentration depending on the
predictor variables provides an opportunity to further adapt to the
distribution of the data. Estimated effects on σ can be found in the
Supplementary material (Figs. S10 and S11, for Leipzig and Rome,
respectively). In Fig. 6, we demonstrate an example of how the
predictor variable “season” affects the (modeled) distribution of
the eBC mass concentrations in a central segment of the Leipzig
route (street class “primary”, street configuration “street canyon
(traffic)”). To achieve comparability with the empirical distribu-
tions, we aggregated the model densities, initially depending on
temporally varying predictor variables, such as “wind speed”, over
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Fig. 6 Illustration of the logNNC model results on a distributional level: for an exemplary segment of the Leipzig route, seasonal
differences in the empirical eBC distribution are depicted (shaded histograms). Corresponding densities resulting from the model are
deconvoluted into eBC distribution (black solid lines) and measurement error distribution (gray dashed line). Colored fading shades around
model eBC densities reflect estimation uncertainties (presenting 500 posterior samples).
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the seasons. We depict logNNC model densities deconvoluted into
the target distribution of the local eBC mass concentrations and
the distribution of the instrument measurement error (only shown
on the left). The comparably large share of negative values in the
summer season likely arises from many low eBC concentrations
and we expect the underlying eBC density to be highly peaked
close to zero. An overall increased eBC level in the winter season
goes hand in hand with increased spread of the distribution of
concentrations.

DISCUSSION
We analyzed the spatiotemporal distributions of eBC and PM2.5

mass concentrations in two European cities with data from MM.
MM comes with some challenges for statistical methodologies.
Besides their spatiotemporal correlation and right-skewed dis-
tribution, measurements might show high variability leading to a
comparably low fraction of variance explained by the model,
which might deem unsatisfactory at first glance. We experienced
this phenomenon in our data but also, e.g., van den Bossche et al.
[23] describe similar issues. When realizing, however, that in MM,
concentrations are recorded across permanently changing micro-
environments and subject to impacts of sudden events (e.g.,
smokers, turbulence) which cannot be accounted for by available
predictor variables, high variability appears rather natural. This
becomes particularly evident considering the extreme example of
internal instrument noise in the eBC monitor. With a noise
standard deviation of around 0.6 µgm−3, we observe median
measurements of 0.44 µgm−3 in pedestrian areas and 1.25 µg
m−3 in primary roads in Leipzig. Assuming, in a thought
experiment, that these values present a pair of true concentrations
underlying two measurements, even predictions from a theore-
tically perfect model would only achieve a share of around 0.33/
(0.33+ 0.62) ≈ 50% variance explained (corresponding to R2) (with
0.33 the variance of the two concentrations). This illustrates that,
especially in MM offering numerous measurements, the fact that
concentrations are stochastic itself is not a problem—it does,
however, suggest a probabilistic, distributional perspective on the
analysis. Similarly, while pre-aggregation of MM into segments/
periods [22] can certainly present a useful measure, it also masks
the original variability of the data to some degree. Consequently,
obtaining a higher R2 after a higher degree of aggregation can be
expected [29], which is, however, largely a mathematical
consequence and does not imply that models based on more
aggregated measurements would capture the original distribution
of the concentrations better. With this in mind, we only applied
minor aggregation in our datasets (10-s medians) and employed a
distributional modeling approach. The proposed Bayesian lognor-
mal model is based on the popular loglinear model (accounting
for a skewed distribution) and extends it by several building
blocks addressing different challenges arising in MM. Some of
these building blocks are well-known, namely GAMs allowing for
non-linear effects (e.g., [31]) and Gaussian error processes for
modeling spatiotemporal correlations (e.g., [36]), while simulta-
neous modeling of the concentration standard deviation has, to
our knowledge, not been employed before in the MM context.
Finally, we proposed a logNNC model extension for eBC
(accounting for the inherent instrument noise) which captures
the observed distribution quite well in both study areas and
distinctly better than comparable simplified approaches. It is of
particular importance as the instrument used in this study to
measure eBC mass concentrations is the most commonly used
portable instrument for MM and exposure studies. Provided free
software can be directly applied also by other researchers and
flexibly adjusted to other study designs.
Our main aim is to qualitatively and quantitatively understand

and compare the drivers of the spatial and temporal variabilities of
eBC and PM2.5 mass concentrations in urban areas. To this end, we

study a selected set of predictor variables which, besides general
availability, contains enough variables to provide a meaningful
picture while not too many to distinguish their influence in the
present data situation (statistically but also conceptionally).
Accordingly, we refrained from (automated) variable selection
techniques, as we focus on model interpretation and statistical
inference after such a selection procedure can be problematic
(post selection inference) [49], and additional complexity would
not add to the present investigation (even though our bamlss
implementation would directly allow gradient boosting-based
variable selection or Bayesian LASSO-type penalization). Our
model results show the eBC mass concentration in urban areas
studied here is more influenced by spatial characteristics such as
street classification, configuration, and traffic than PM2.5 mass
concentration is. This difference is also more clearly shown by the
effect of time of day as well as the difference between weekdays
and weekends. Our model also clearly captures the effect of
season on both eBC and PM2.5 mass concentrations in Leipzig.
Similar results were reported by Yu et al. [20]. Wu et al. [9] also
reported that BC at streets with higher traffic volume correlated
with traffic counts but not PM0.5–2.5. In addition, they also reported
strong correlation between BC and working days. These results are
consistent with previous studies on BC and PM2.5 with the latter
being more influenced by regional sources than local sources [9].
For further comparisons, special care has to be taken to consider
differences of the individual studies, e.g., differences in MM
strategy and predictor variables, limiting immediate comparability.
The model presented here has certain limitations and strengths.

Firstly, the model demonstrated sensitivity to how predictor
variables were obtained. For instance, using wind information
from a fixed site probably diminished the explanatory power of
this variable in our analysis. The modeled effect of traffic in Leipzig
did not lead to any conclusive results which could be addressed
by using real-time traffic counts for when the measurements were
done. The arbitrariness of the “street activities” could also play a
role in the uncertainties of the model results. Nevertheless, the
versatility and applicability of this model as an alternative method
for analyzing MM datasets can allow users to refine and explore
different predictor variables. Secondly, despite not drastically
improving the current model fit, modeling the variance offers the
possibility of in-depth analysis spatiotemporal effects on the
pollutants’ variabilities. This can be particularly useful in problem
settings where variability of the concentrations is of major interest,
such as for convergence analysis in these works [12, 14, 17].
Thirdly, we have only briefly touched upon the predictive power
of this model. Nonetheless, this model also has the potential for
predicting pollutant concentrations with considerable measure-
ment error in areas where in situ measurement data do not exist,
which could be beneficial for personal exposure estimates [33, 37].
Further developing this approach as an air pollution model is an
interesting direction for future research that is already gaining
traction in air pollution exposure and epidemiological studies ([50]
and reference therein).
Finally, our results provide valuable insights into the associa-

tions between local environmental factors with outdoor mass
concentrations of eBC as compared to PM2.5. This has important
implications on the assessment of the spatial variability of
personal exposure of pedestrians to traffic-related air pollution
in urban areas which are often based on PM2.5 mass concentra-
tions. The results of this study contribute to the growing evidence
of the importance of eBC as a metric, not only for monitoring the
effects of mitigation efforts in improving air quality, but also for
the health effects of traffic-related air pollution.

CODE AVAILABILITY
The “bamlss” package with the logNNC extension is available in R (version ≥ 3.5.0) [44].
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