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BACKGROUND: Coal-fired power plants are a major source of air pollution that can impact children’s health. Limited research has
explored if proximity to coal-fired power plants contributes to children’s neurobehavioral disorders.
OBJECTIVE: This community-based study collected primary data to investigate the relationships of residential proximity to power
plants and neurobehavioral problems in children.
METHODS: 235 participants aged 6–14 years who lived within 10 miles of two power plants were recruited. Exposure to particulate
matter ≤10 μm (PM10) was measured in children’s homes using personal modular impactors. Neurobehavioral symptoms were
assessed using the Child Behavior Checklist (CBCL). Multiple regression models were performed to test the hypothesized
associations between proximity/exposure and neurobehavioral symptoms. Geospatial statistical methods were used to map the
spatial patterns of exposure and neurobehavioral symptoms.
RESULTS: A small proportion of the variations of neurobehavioral problems (social problems, affective problems, and anxiety
problems) were explained by the regression models in which distance to power plants, traffic proximity, and neighborhood poverty
was statistically associated with the neurobehavioral health outcomes. Statistically significant hot spots of participants who had
elevated levels of attention deficit hyperactivity disorder, anxiety, and social problems were observed in the vicinity of the two
power plants.
SIGNIFICANCE: Results of this study suggest an adverse impact of proximity to power plants on children’s neurobehavioral health.
Although coal-fired power plants are being phased out in the US, health concern about exposure from coal ash storage facilities
remains. Furthermore, other countries in the world are increasing coal use and generating millions of tons of pollutants and coal
ash. Findings from this study can inform public health policies to reduce children’s risk of neurobehavioral symptoms in relation to
proximity to power plants.
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INTRODUCTION
Coal-fired power plants that are a major source of toxic air
pollution including SO2, NOx, particulate matter ≤10 μm (PM10),
and particulate matter ≤2.5 (PM2.5) can adversely impact residents’
health in the nearby communities [1, 2]. In addition to pollutants
that are emitted from the stack of power plants, communities may
be exposed to coal ash, which is a waste product that is generated
during the combustion of coal. Coal ash is comprised of fly ash,
bottom ash, boiler slag, and flue gas desulfurization material [3]
that contains several neurotoxic components, including heavy
metal(loid)s, dioxins, and PAHs [4–8]. Fly ash, which is the
component that is generated in the greatest quantities, consists
of spherical particles with diameters that range from 0.1 µm to
>100 µm. Fly ash is composed of silicon, iron, aluminum, and
oxygen, but may also contain neurotoxic metal(loid)s such as
arsenic, mercury, and lead at trace levels [9, 10].

Fly ash that is captured in air pollution control devices is usually
stored in landfills and surface impoundments on the property of
the power plant. In the United States, there are over 1,400 landfills
and surface impoundments, which are frequently placed near low-
income residential communities [11–14]. These storage facilities
may give rise to fugitive dust that exceeds the National Ambient
Air Quality Standards for fine particulate matter and hence affects
the health of nearby residents [15, 16]. For example, Mueller et al.
found that fugitive dust PM10 concentrations in the vicinity of coal
fly ash storage sites frequently exceed 60 µg/m [17]. Research has
also suggested that fly ash can be blown by wind to as far as 30
km away from coal-fired power plants [18, 19]. Dinis et al. [20]
estimated population exposure to radionuclides emitted from
coal-fired power plants in communities within a 20 km radius.
Studies using source apportionment analysis methods have
identified a linkage between coal fly ash and the concentration
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of ambient PM10 near coal-burning power plants [21–24]. Taken
together, stack emissions and landfill/surface impoundment
emissions can release high levels of PM10 within communities
residing in proximity to coal-fired power plants.
Small particles from coal-fired power plants and storage sites

can reach the brain indirectly through the lungs and bloodstream
or directly through the olfactory bulb [25] causing neurobeha-
vioral symptoms [26]. Substantial research has suggested that
compared with adults, children are more vulnerable to the effects
of air pollution. Children living near power plants may be at risk
for poor health outcomes. Researchers have shown that compared
with children not living near power plants, children living in
proximity to coal-fired power plants experience increased
respiratory effects [27–30]. However, limited studies have inves-
tigated how residential proximity to coal-fired power plants
contributes to children’s neurobehavioral disorders [31–33]. A
recent study reported that children who resided near coal-fired
power plants with coal ash storage facilities and were exposed to
greater PM10 concentrations indoors. Meanwhile, those children
had a higher risk of commission errors on the continuous
performance and selective attention tests, compared with children
exposed to lower concentrations of PM10 [31]. Coal ash may
contain several neurotoxins found to impact cognitive ability and
behavior in children including manganese [34], arsenic [35],
chromium [36], lead [37], mercury [38], and cadmium [39, 40].
Among existing studies that have explored the impact of

emissions from power plants on children’s health, scholars have
primarily measured residential proximity to polluting sources
using aggregated data (e.g., zip or postal codes, and census tracts),
which may be subject to ecological fallacy [11, 29, 41–43]. Using
individual-level observations for a carefully selected sample can
provide more convincing information regarding the nexus
between proximity to power plants and neurobehavioral symp-
toms. Furthermore, prior studies have mainly relied on the use of
global statistical methods that capture only general characteristics
of the entire data set or all observations. Latest research has
suggested the rationale of using local spatial statistical approaches
(e.g., hot spot analysis) that can help reveal detailed spatial
disparities in epidemiological or health problems within a study
area [44–46].
This article examined the relationships between neurobeha-

vioral symptoms in children and their proximity to coal-fired
power plants with coal ash storage facilities, which are the major
sources of air pollution to nearby communities. It is hypothesized
that participants who resided in the vicinity of the two power
plants have higher levels of PM10 exposure and higher risks of
neurobehavioral problems and their magnitude decreases with
distance. We used linear and nonlinear regression methods to
investigate factors associated with neurobehavioral symptoms
and employed global and local geospatial statistical methods to
explore the geographical disparities in neurobehavioral symptoms
among the children being surveyed. The data for this paper comes
from a larger community-based study that is exploring the
relationship between coal ash exposure and children’s health
[31, 47]. This is the first study to map hot spots of neurobehavioral
symptoms in children in the vicinity of coal-fired power plants
located in a large urban community.

MATERIALS AND METHODS
Power plants and storage facilities
Both power plants—Cane Run and Mill Creek—are in Louisville, Kentucky,
USA, a river city located on the south bank of the Ohio River, which divides
the state of Kentucky and Indiana (Fig. 1). Their latitude and longitude
coordinates are as following: Cane Run (38.175573N, 85.894129W) and Mill
Creek (38.0441N, 85.907309W). The Cane Run Generating Station was built
in the 1950s and by 1969 operated a total of six units with a total

generating capacity of 943 MW [48]. Cane Run burnt over one million tons
of high sulfur coal each year when operating as a coal-fired plant. This
plant has a 110-acre coal ash landfill and a surface impoundment with
multiple ponds that store coal ash. The main pond is 52 acres in size and
received a high hazard rating by the Environmental Protection Agency
(EPA) indicating that collapse of the pond may lead to loss of life or major
damage to buildings or utilities [49]. In 2015, the Cane Run power plant
began operating using natural gas, and the landfill and pond were capped
by August 2017.
The Mill Creek Generating Station sits on 544 acres of land, along the

Ohio River downstream from Cane Run. It is Kentucky Utilities’ largest coal-
fired power plant and began operating in the early 1970s [50]. It burns ~4.8
million tons of coal a year and has a generating capacity of 1465MW.
There is one large landfill onsite and five surface impoundments on the
property. The main pond that holds coal ash is rated as high hazard by
the EPA [51]. The two power plants have been the center of neighborhood
concern for years. Residents claim coal ash blows into their homes,
yards, and cars, and is made airborne by wind and storms and when trucks
drive around or move piles on the landfill and into the surface
impoundments.

Spatial sampling strategy and study participants
For this research, we focused on communities on the Kentucky side, which
are densely populated urban areas while the Indiana side separated by the
Ohio River is sparsely populated. To increase the accuracy and consistency
of spatial sampling, following a practice similar to Allpress et al. [52], we
used a quadrat-buffer reference system to guide our recruitment
endeavors. The straight-line that connects the two power plants and the
mid-point between them were used to create four quadrants and five
distance buffers (i.e., 2-mile interval), which split the study area into
20 sampling units (i.e., A1–A5, B1–B5, C1–C5, and D1–D5 in Fig. 1). These
20 sampling units cover an area of 157 square miles encompassing the
southwestern portions of Jefferson and northern Bullitt counties in
Kentucky [47]. Small portions of A4 and A5 (i.e., small areas located on
the north side of the Ohio River) were excluded for sampling because they
fall in the state of Indiana.
Recruitment began in fall 2015 and continued until COVID-19 ended

home visits in March of 2020. The research team implemented a mixture of
recruitment strategies to enroll children who were eligible for this project,
including door-to-door flyer distribution, placing flyers in public places,
mailing of letters and flyers, media broadcasting, local government
outreach, and snowball sampling. University of Louisville (UofL) and
University of Alabama Birmingham at Birmingham (UAB) have approved all
study protocols and documents (i.e., UofL IRB#:14.1069 and UAB
IRB#:300003807, respectively).
Participants for this study (N= 235) consisted of children aged 6–14

years old and one of their parents/guardians. This age group was chosen
based on the ability to utilize the same neurobehavioral measures to
assess cognitive ability, attention, and behavior. Parental consent and child
assent were obtained before data collection began. All the 235 participants
were successfully geocoded based on their residential addresses using
geographic information systems and the Topologically Integrated Geo-
graphic Encoding and Referencing System database provided by the U.S.
Census Bureau. The participants were recruited from more than 12 zip
codes encompassing homes in subdivisions, single-standing homes,
apartment complexes, and mobile home parks. In order to avoid the bias
introduced by the inclusion of multiple children who reside in the same
address (i.e., siblings) with the same potential exposure, only one
participant was recruited from each household. The children enrolled are
predominately white (n= 176, 75%), followed by Black or African American
(n= 31, 13%) and other ethnic groups (n= 28, 12%). There are slightly
more males (n= 129, 55%) than females (n= 106, 45%). The median age of
the population is 11 years old. The age data were not normally distributed,
so the Wilcoxon test was used to test the difference in median age
between males and females. There is no significant difference between the
median age of males (11) and females (10) (p= 0.34).
According to 2015 American Community Survey data, 28% of children

ages 5–14 years lived below the poverty level [53]. Focus group research
and results from a community survey, reported that parents of children
living near one coal-fired power plant with coal ash storage facilities were
more likely to state that their children had neurobehavioral symptoms and
disorders (e.g., ADHD)), compared with parents of children not living near
coal-fired power plants [54, 55].
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Measures of exposure and neurobehavioral problems
Measure of exposure. The magnitude of exposure to air pollution was
measured in two ways—proximity to power plants from each participant’s
residence and indoor concentration of PM10. A distance-based proximity
measure is helpful because it provides an unvarying objective indicator of
exposure to environmental risks that gradually decreases as distance
increases. The Euclidean distance tool in ArcGIS 10.7 was used first to
calculate the straight-line distance from participants’ residence to the
nearest power plant. A maximum of ten miles was then used to demarcate
the limit of child exposure metric to power plants following a practice used
by prior studies [56, 57].
Whereas the distance-based proximity measure is helpful, using distance

alone cannot provide direct estimation of the magnitude of exposure that
validates a link between toxic emissions from coal-fired power plants and
children’s neurobehavioral symptoms in the nearby neighborhoods.
Supplementing the distance measure, a pollutant-based exposure
indicator (i.e., PM10) allows us to better understand the adverse health
effects of coal ash blown up from storage facilities of power plants that can

easily infiltrate into people’s homes and yards by wind and storms. It is
rational to use indoor PM10 as a proxy measure of air pollution emitted
from nearby coal-fired power plants that can travel a long distance and
prior research has suggested air pollutants from coal-fired power plants
contribute to ambient PM10 [21, 58]. Moreover, scholars have suggested a
strong correlation exists between indoor and outdoor levels of particular
matter [24, 59, 60] and indoor air quality is largely impacted by outdoor
pollution, other home characteristics, and occupant behaviors [61, 62].
PM10 samples were taken for 1-week inside the children’s homes

using personal modular impactors (PMIs) with polycarbonate filters. The
PMIs were placed ~1.5 m above the ground, to represent the breathing
zone of a child and away from ventilation systems, fireplaces, and
windows. During the weeklong PM10 sampling, smoking parents were
asked to smoke outside the home to prohibit bias introduced to the
measure of indoor PM10. During the study period, mean annual average
outdoor PM10 concentrations did not change dramatically and
were measured by monitoring stations of the Jefferson County, Air

Fig. 1 Hot Spots of PM10 Using One-Mile Buffer. Getis-Ord Gi* analysis of hot spots and cold spots of indoor PM10 readings with data
collected at 235 children’s homes in west Louisville, KY. Combinations of letters and numbers (e.g., A1, B5, etc.) labeled on the map represent
quadrant and distance buffer coordinates that have been used for sampling and recruiting participants.
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Pollution Control District. The PM10 concentrations were 17.5 µg/m
3 (2015),

15.4 µg/m3 (2016), 16.5 µg/m3 (2017), 17.5 µg/m3 (2018), 18.1 µg/m3 (2019),
and 17.5 µg/m3 (2020).

Measure of neurobehavioral problem. Using the Child Behavior Checklist
(CBCL), we collected data for six neurobehavioral scales including affective
problems, anxiety problems, attention deficit, and hyperactivity disorder
(ADHD) problems, conduct problems, social problems, and thought
problems [63]. The CBCL is a widely used parent-completed behavior
checklist that compares child behavior patterns to age and gender norms
and provides a t-score that ranges from 50 to 100. The primary caregiver
for the child completed the behavior checklist and it was scored using
CBCL software. The mean of each CBCL scale is 50 (SD= 10) that indicates
normal behavior. A t-score of 60 indicates borderline significant behavior
problem and a score of 70 is two standard deviations above the mean for
the sample and indicates a clinically significant behavior problem.

Multiple regression analysis of the association between
exposure and health measures
Multiple linear regression methods were used to investigate the
associations between the t-score from each CBCL problem behavior scale
and proximity to power plants and intensity of PM10. Children residing
closer to any of the two power plants and their affiliated coal ash storage
facilities are expected to have increased behavior problems, compared to
their counterparts living farther away. Likewise, a positive relationship was
expected between exposure to PM10 and participants’ neurobehavioral
symptoms. It was also hypothesized that non-whites (i.e., blacks and other
minorities) and participants living in poor neighborhoods experienced
higher levels of neurobehavioral problems. Each of the six neurobehavioral
symptoms was used as the dependent variable, respectively.
Exposure measures including straight-line distance to the closest power

plant, indoor PM10, and traffic proximity were used as the major
independent variables. Obtained from the Environmental Justice database
collected by the EPA, traffic proximity measures the average annual daily
traffic at major roads within 500m from each block group and then
divided by the distance to the roads (in meters). Prior research has
explored the impact of exposure to traffic-related air pollution on
children’s health in urban communities [64, 65]. We also controlled the
effects of participants’ personal characteristics (i.e., age, gender, ethnicity)
and neighborhood-level poverty rates, which were obtained from the 2012
to 2016 American Community Survey (ACS) 5-year estimates for census
block groups. Gender and ethnicity were coded as dummy variables with
female (1) and male (0); non-white (1), and white (0).
In addition to multiple linear regression models, we also applied

generalized additive models (GAMs) and Tobit models to assess if non-
linear relationships existed between the CBCL outcomes and the
independent variables [66, 67]. GAMs were used to assess the significance
of spline terms for continuous variables. If the terms were significant in a
GAM, then a Tobit model containing a spline term was fit and compared
against a Tobit model without the spline term using ANOVA. The model
containing the spline term was selected given a statistically significant
difference existed between models.

Mapping hot spots of PM10 and children’s health conditions
To explore if proximity and exposure to air pollutants emitted from power
plants and neurobehavioral symptoms had a spatially clustered distribu-
tion across the study area, the High/Low Clustering (Getis-Ord General G)
statistic, a global spatial statistical method that measures the degree of
clustering for either high values or low values, was used in this study [68].
The Getis-Ord General G tool calculates outputs including observed
General G statistic, its z score, and p value, which allow analysts to
determine the degree of spatial autocorrelation or dependence across a
spatial data set (e.g., PM10 or a problem behavior) in comparison to a
random distribution. One strength of the Getis-Ord General G statistic is
that it allows researchers to differentiate high-value clustering from low-
value clustering, thus enabling us to diagnose the spatial concentration of
elevated levels of PM10 and children’s neurobehavioral symptoms
surrounding the two power plants under study.
While the above-mentioned High/Low Clustering analysis is helpful, it

provides only an overall diagnosis of the magnitude of spatial clustering for a
given spatial distribution such as PM10 [69, 70]. Complementing global spatial
clustering analysis, the Hot Spot Analysis (Getis-Ord Gi*) tool, a local spatial
statistical method, allows us to map spatial clusters of high values (hot spots)
and low values (cold spots) within a study area [46]. A distance threshold is
needed to define the spatial context or neighborhood based on which local
Getis-Ord Gi* values are calculated for each feature in the data set. Likewise,
the statistical significance of hot spots can be determined by checking z
scores and p values affiliated with the Getis-Ord Gi* output for each feature.
The Getis-Ord Gi* statistic evaluates each feature’s attribute value within the
context of its neighborhood to identify spatially clustering hot spots of high
values or cold spots of low values in comparison to the average of the entire
data set. We used 1-mile distance buffer in the initial global and local hot
spot analysis and then conducted a sensitivity analysis using two different
distance thresholds (i.e., 0.5-mile and 2-mile) to evaluate if the results were
responsive to the choice of neighborhood settings.

RESULTS
Multiple regression
Descriptive statistics for the exposure and health outcome
variables are presented in Table 1. Considerable variations of
indoor exposure to PM10 (ranging from 3.83 to 164 µg/m3) were
observed from the 235 participants. Indoor PM10 concentrations
did not differ by sex (male= 18 µg/m3, female= 18 µg/m3).
However, children aged 6–10 had higher indoor concentrations
of PM10 (18.7 µg/m

3) compared with children aged 11–14 (17.1 µg/
m3) (p= 0.019). Disparities in the six measures of neurobehavioral
symptoms were also noteworthy with conduct problems and social
problems having the largest ranges of variations (i.e., 50–87).
The results of multiple regression analyses showed mixed

findings (Table 2). No statistically significant association was
observed between personal characteristics (i.e., age and sex) and
any of the six neurobehavioral symptoms. It is noteworthy that

Table 1. Descriptive statistics of dependent and independent variables (n= 235).

Variables Mean Standard. Deviation Minimum Maximum

Age (Years) 10.757 2.529 6.00 14.00

Gender (Female= 1, male= 0) Female: 106 (45.1%); Male: 129 (54.9)

Ethnicity (Non-white = 1, white= 0) White: 176 (74.9%); Minorities: 59 (25.1%)

Distance to nearest power plant (miles) 4.116 1.971 0.519 9.463

PM10 (µg/m3) 22.316 17.508 3.83 164

Traffic proximity (1000 cars/m) 0.374 0.821 0 9.853

Neighborhood poverty (%) 10.816 10.860 0 54.698

Affective problems (AP) 55.153 7.177 50 84

Anxiety problems (ANP) 55.298 7.088 50 78

Attention-deficit and hyperactivity disorder (ADHD) 55.851 7.604 50 80

Conduct problems (CP) 53.728 6.380 50 87

Social problems (SP) 54.826 7.107 50 87

Thought problems (TP) 56.021 7.510 50 82
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contrary to our expectation and the prevailing environmental
justice literature [11, 71], non-white participants showed negative
signs (i.e., non-white participants had lower values of the
neurobehavioral measures than their white counterparts in
general) in all six models although statistically insignificant. The
main exposure measure—log PM10—showed positive signs as
expected for all outcomes (except thought problems) but was not
statistically associated with any of the six neurobehavioral
measures. Nearest distance to a power plant showed significant
and negative regression coefficients with four neurobehavioral
symptoms: affective problems, anxiety problems, ADHD, and
social problems. The effect of traffic proximity was statistically
significant and positive in the models for affective problems,
anxiety problems, social problems, and thought problems.
Neighborhood-level poverty rate showed consistent positive signs
with all six neurobehavioral symptoms but was statistically
significant only in models for affective problems, anxiety
problems, and thought problems. Regarding model performance,
the model for social problems explained about 7% of its variance
while the model for anxiety and affective problems explained
about 5% and 4% of their variances, respectively. The regression
models for ADHD, thought problems and conduct problems were
less helpful.
The results from the GAM nonlinear analysis improved model

performance indicated by larger pseudo R2 values, which are
equivalent of adjusted R2 in linear models (Table S1). For example,
the Tobit regression models explained nearly 11% of the variance
in anxiety problems (up from 5% in the linear model) and 9% of
the variations of social problems (up from 7% in the linear model).
Square root of distance to power plant was statistically significant
(i.e., linear negative) in relation to anxiety problems, ADHD, and
social problems as hypothesized. In contrast, square root of traffic
proximity showed positive associations (linear) with affective
problems, ADHD, social problems, and thought problems.
Furthermore, age was positively associated (linear) with affective
problems but had a significant nonlinear association with anxiety
problems. The regression coefficients for non-white participants
were statistically significant but remained negative in the model
for ADHD and social problems, while sex showed a statistically
significant and negative association with conduct problem that
was consistent with what the literature has suggested [72, 73].

Global statistical analysis of the spatial patterns of PM10 and
health outcomes
Results of global autocorrelation analysis suggest that PM10 had a
spatially clustered distribution (i.e., high values were found

together) indicated by statistically significant Getis−Ord General
G statistic (i.e., Observed G= 0.005 with a z-score of 2.808 and p
value 0.005). Distributions of all the six CBCL behavior scales were
not statistically significant, indicating random or dispersed spatial
patterns. However, this does not exclude the existence of local
clusters across the study area – pockets of high values of exposure
and neurobehavioral symptoms remain suspicious given that
global clustering patterns were not confirmed.

Hot spot analysis of spatial clustering
Results of hot spot analysis of PM10 and each of the CBCL behavior
problem scales using 1-mile distance threshold were mapped. Hot
spots and cold spots of three significance levels (i.e., 99%, 95%,
and 90%) are displayed in the legend of each map with the
numbers in parentheses representing the count of hot spots or
cold spots being identified. Whereas hot spots or cold spots are
illustrated as single dots on maps, it is noteworthy that a hot spot
indicates that a given feature (i.e., participant) along with other
adjacent features (e.g., within a 1-mile threshold) had statistically
significant higher values in exposure to PM10 or CBCL diagnoses
than the mean for the entire study area, not just the target feature
itself, and vice versa for a cold spot.
Consistent with our hypothesis, numerous hot spots of

statistically significant high values of PM10 (i.e., 3 at the confidence
level of 99%, 26 at the confidence interval of 95%, and 7 at 90%
confidence level) were identified around Mill Creek (Fig. 1). Most
hot spots clustered near the Mill Creek power plant can be better
viewed in the inset maps. But no hot spots were observed near
Cane Run. It is also unclear that two clusters of hot spots were
found in the outskirts of the sampling area (i.e., B4 and B5) while
several cold spots were highlighted in closer vicinity to the power
plant of Cane Run.
Social problems showed the most remarkable spatial clustering

encompassing 22 hot spots being at the 99% confidence level, 6
hot spots being at the 95% confidence interval, and 2 being at the
90% level (Fig. 2). More importantly, nearly all the hot spots (i.e., 28
out of 30) were observed in the near vicinity of the two power
plants (i.e., <2 miles), especially Mill Creek, the plant that is still a
coal-fired power station with storage facilities. The inset maps
within Fig. 2 allow readers to see discrete locations of individual
hot spots, which largely overlapped on top of each other due to
close distances between them, in the vicinity of Cane Run and Mill
Creek. 19 hot spots (all significant at 99% level) were found near
Mill Creek and 9 hot spots were found near Cane Run. Meanwhile,
five cold spots are scattered in the periphery of the sampling area
(i.e., B3, B4, and A4 quadrants).

Table 2. Multiple linear regression results of six types of neurobehavioral problems (n= 235).

Variables Regression models

AP ANP ADHD CP SP TP

Constant 52.487*** 56.655*** 27.223*** 56.277*** 57.264*** 55.101***

Age (Years) 0.306 0.028 0.018 −0.150 0.049 0.131

Gender (Female= 1, male = 0) −0101 −1.644 −1.078 −0.973 −0.717 −0.357

Ethnicity (Non−white = 1, white = 0) −1.608 −1.908 −1.935 −0.816 −1.604 −0.808

Log value of PM10 (µg/m3) 0.089 0.646 0.631 0.127 0.287 −0.797

Distance to power plant (miles) −0.395* −0.609** −0.531** −0.257 −0.934*** −0.135

Traffic proximity (1000 cars/m) 1.331** 1.253** 0.972 −0.022 1.444** 1.319**

Neighborhood poverty (%) 0.078* 0.072* 0.040 0.056 0.065 0.087*

Adjusted R Squared 0.035 0.045 0.011 −0.008 0.068 0.013

Variance inflation factor (VIF) values for all independent variables in each model had values lower than 1.1, indicating multicollinearity is not of concern.
AP affective problems, ANP anxiety problems, ADHD attention-deficit and hyperactivity disorder, CP conduct problems, SP social problems, TP thought
problems.
*Significance level of 0.10; ** significance level of 0.05; *** significance level of 0.01.
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For ADHD problems, a total of 29 statistically significant hot
spots including 7 being significant at the 95% confidence interval
and 22 at the 90% level were identified (Fig. 3). It is not random to
see congregations of hot spots around the two power plants,
especially Mill Creek, which produce both stack emissions of coal
ash and fugitive dust emissions from the storage facilities. For
anxiety problems, most hot spots were identified near Mill Creek
—5 being significant at 95% confidence level and 17 being
significant at 90% level—while three other hot spots (significant
at 0.10 level) were identified in areas that were relatively closer to
Cane Run. It is unclear that 21 cold spots were observed in close
vicinity to Cane Run and the upper half of the study area. For
CBCL affective and conduct problem scales, only a small number
of hot spots were identified across the sampling area but a few
hot spots for both problems were found near the Cane Run
power plant. Thought problems were the only CBCL behavior
scale with no hot spot identified in the vicinity of any of the two
power plants.

Results of sensitivity analysis using a 2-mile distance threshold for
social problems were presented in Fig. 4. Whereas the number of
hot spots in different confidence levels slightly changed, the spatial
patterns of hot spots were similar to our observations from the
earlier analyses in which 1-mile cutoff distance was used. The results
of hot spots for social problems using 0.5-mile as the distance
interval is displayed in Supplementary information (Fig. S1).

DISCUSSION AND CONCLUSION
This exploratory research investigated the associations of proxi-
mity to coal-fired power plants and the prevalence of neurobe-
havioral symptoms for children using primary data collected from
an urban community in the U.S. It extends the existing literature
on this topic by applying advanced geospatial statistical methods
to the analysis of neurobehavioral health outcomes for individual
participants in addition to using classical multiple regression
models. Other studies have not incorporated geospatial methods

Fig. 2 Hot Spots of Social Problems Using One-Mile Buffer. Getis-Ord Gi* analysis of hot spots and cold spots of children who have been
diagnosed with social problems in west Louisville, KY (N= 235).
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and are thus overlooking important environmental factors that
may influence children’s neurobehavioral conditions. Furthermore,
although existing research has linked coal-fired power plants with
neurodevelopmental conditions such as delayed language,
delayed motor skills, and poorer cognitive control [31–33], no
research has been conducted among a population of children
living within proximity to coal-fired power plants and neurobe-
havioral symptoms measured by the CBCL.
Multiple regression models (including linear and nonlinear)

explained a small proportion of the variations (i.e., ranging from 4
to 11%) of the six types of CBCL diagnoses. From the regression
models, we have observed mixed findings regarding the
associations between CBCL diagnoses and the independent
variables. The primary exposure measure—PM10—was statistically
insignificant in all models. This finding is inconsistent with
what earlier studies had suggested regarding the adverse
impact of proximity to coal-fired power plants on children’s
health [31, 32].

However, significant and inverse associations were observed
between distance to the nearest power plant and four CBCL
diagnoses (i.e., affective problems, anxiety problems, ADHD, and
social problems). These findings justified our hypothesis about a
distance decay effect of air pollution from the power plants on
participants’ neurobehavioral health. Likewise, traffic proximity
showed significant and positive impact on four CBCL diagnoses.
Neighborhood poverty was significant (and positive) in three
linear models, which is consistent with what the prevailing
scholarly view that low-income communities are exposed to
higher risks of environmental pollution and are more susceptible
to poor health. While non-white race was significant in the
nonlinear model for ADHD and social problems, it showed a
negative sign, which is contrary to our expectation. This could be
due to the small proportion of non-white participants (25%) in our
sample.
Given that the global Getis-Ord General G analyses for the six

CBCL outcomes showed statistically insignificant results, the use of

Fig. 3 Hot Spots of Attention Deficit Hyperactivity Disorder (ADHD) Using One- Mile Buffer. Getis-Ord Gi* analysis of hot spots and cold
spots of children’s attention deficit hyperactivity disorder (ADHD) problem in west Louisville, KY (N= 235).
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local cluster analysis enabled us to determine numerous hot spots
of PM10 exposure surrounding the two power plants. More
important, hot spots of social problems, ADHD, and anxiety
problems were identified in the vicinity of the two power plants,
especially Mill Creek. Mill Creek is the largest coal-fired power
plant in the area and has uncapped coal ash surface impound-
ments and a landfill. The Cane Run plant converted to natural gas
in the summer of 2015, but still had uncapped surface
impoundments and a landfill. However, in subsequent years, the
storage facilities were capped. This capping process may have
reduced exposure to coal ash and therefore may explain why we
do not see much clustering or significant effects from these
analyses.
Findings from local geospatial statistical analyses shed new light

on the spatial disparities or complexities regarding the associa-
tions of children’s neurobehavioral symptoms and pollutant
emissions from power plants across space. The non-random
congregation of hot spots of high values of neurobehavioral

symptoms in children surrounding the two power plants, which
are concealed when using global statistical methods, can be
considered partial evidence that supports a positive association of
proximity to coal-fired power plants and escalated risks of
neurobehavioral problems. Furthermore, our strategy of spatial
sampling and recruiting one participant per household excluded
the phenomenon of ‘false clustering’ when analyzing spatial
patterns of health outcomes.
There are several strengths of this study that need to be

highlighted. First, this was a community-based study, so that we
were able to gather a large sample of first-hand data on PM10 in
homes of the participants. Prior studies have largely relied on
secondary pollution data to investigate health conditions asso-
ciated with emissions from coal-fired power plants. Furthermore,
this research utilized the Child Behavior Checklist or CBCL, a
widely used measure of neurobehavioral symptoms in children
that warranted a systematic diagnosis of symptom severity [74].
To date, no studies have been performed using high-resolution

Fig. 4 Sensitivity Analysis of Social Problems Using Two-Mile Buffer. Sensitivity analysis using a 2-mile distance threshold for mapping hot
spots and cold spots of children who have been diagnosed with social problems in west Louisville, KY (N= 235).
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primary data of pollutants combined with observed data on
neurobehavioral outcomes.
There are also some limitations of this study. Whereas distance-

based proximity is helpful to reveal how health risk levels decrease
as distance increases from polluting facilities, it is an indirect
exposure measure and wind direction can confound this inverse
relationship. Future research should consider using more mean-
ingful exposure measures based on the results of source
apportionment validation analyses that validate the pollutants
originated from nearby coal-fired power plants or coal ash storage
facilities [75, 76]. Recent studies have identified neurotoxic effects
of heavy metal(loid)s in fly ash leading to social problems and
ADHD in children based on evidence of epigenetic [77] neuroin-
flammatory [78] mechanisms in the etiology of autism and ADHD.
Therefore, collecting additional data on exposure to metal(loid)s
and other elements of coal ash emissions from coal-fired power
plants [79, 80], in future research may provide more convincing
evidence that supports the hypothesized relationship of proximity
to coal-fired power plants and elevated levels of neurobehavioral
symptoms. Also, it is important to control for emissions from other
nearby polluting facilities in future research that may also impact
the neurobehavioral health condition of children.
Another limitation of this study was that the concentration of

PM10 might have changed by season. Although the yearly
concentrations did not vary much, seasonality might have had a
greater impact. However, when we assessed the difference of
PM10 concentrations in the homes of the participants, there was
not a significant difference of PM10 by season. The final weakness
of this study is that the participants we have recruited may be
subject to spatial sampling errors or selection biases. Although we
have used multiple recruitment strategies and did not highlight
that this study was about neurobehavioral symptoms on
recruitment materials, households who are more knowledgeable
about coal ash or whose children have health problems may have
been more likely to participate [47, 55]. Therefore, future research
should adopt more innovative strategies to improve the
geographic and demographic coverage of participants recruit-
ment, thus warranting a more holistic diagnosis of the detrimental
impacts of coal ash on children’s neurobehavioral symptoms who
live in proximity to coal-fired power plants.
A final limitation of this study was that we used a week-long

sample of PM10 to represent exposure. Since PM10 levels and
composition may change daily and children’s exposure may also
vary by day, future research that includes daily personal samples
and daily area samples would be an improved assessment of
exposure.
Despite the weaknesses, the innovative research design - the

collection of a large dataset from in situ investigations and the use
of local geospatial statistical methods to identify hot spots of
neurobehavioral symptoms - and the novel findings of this
research help extend the existing studies on spatial health
disparities in general and children’s neurobehavioral symptoms
in particular. Moreover, findings from this study have important
policy implications for reducing children’s neurobehavioral
symptoms in relation to exposure to pollution from coal-fired
power plants in urban communities.
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