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BACKGROUND: Air pollution has been linked to increased susceptibility to SARS-CoV-2. Thus, it has been suggested that wildfire

smoke events may exacerbate the COVID-19 pandemic.

OBJECTIVES: Our goal was to examine whether wildfire smoke from the 2020 wildfires in the western United States was associated

with an increased rate of SARS-CoV-2 infections in Reno, Nevada.

METHODS: We conducted a time-series analysis using generalized additive models to examine the relationship between the SARS-
CoV-2 test positivity rate at a large regional hospital in Reno and ambient PM2.5 from 15 May to 20 Oct 2020.

RESULTS: We found that a 10 pg/m? increase in the 7-day average PM2.5 concentration was associated with a 6.3% relative increase
in the SARS-CoV-2 test positivity rate, with a 95% confidence interval (Cl) of 2.5 to 10.3%. This corresponded to an estimated 17.7%
(Cl: 14.4-20.1%) increase in the number of cases during the time period most affected by wildfire smoke, from 16 Aug to 10 Oct.
SIGNIFICANCE: Wildfire smoke may have greatly increased the number of COVID-19 cases in Reno. Thus, our results substantiate the
role of air pollution in exacerbating the pandemic and can help guide the development of public preparedness policies in areas
affected by wildfire smoke, as wildfires are likely to coincide with the COVID-19 pandemic in 2021.
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INTRODUCTION

During the second half of the summer of 2020, two crises
converged on residents of the western United States: the second
wave of the COVID-19 pandemic and widespread wildfires. As a
result of the wildfires, many residents had prolonged exposure to
smoke containing elevated levels of particulate matter 2.5 pm in
diameter or smaller (PM2.5). It has been suggested that even a
moderate magnitude wildfire smoke event may increase the
impact (incidence or mortality) of COVID-19 by ~10% (ref. [1]), but
this has not yet been adequately verified.

Air pollution is detrimental to health in general and to
respiratory health in particular (ref. [2, 3]). While air pollution is
composed of various gases and particles of different sizes, PM2.5
is likely the chief mediator of its ill effects (ref. [4, 5]). PM2.5
increases susceptibility to respiratory viruses via modified immune
responses, including systemic and airway inflammation (ref. [6, 7]).
Moreover, it has been shown that small particulates can enhance
the spread and survival of bacterial, fungal, and viral bioaerosols
(ref. [8, 9]), including bioaerosols containing SARS-CoV-2 (ref. [10]).
An association between particulate matter (PM) and daily
mortality from SARS-CoV-1 was reported in 2005 (ref. [11]). Copat
et al. provide a systematic review of the role of air pollution and its
effect on the spread and lethality of COVID-19 (ref. [12]).

PM2.5 specifically from wildfires has been shown to be
detrimental to respiratory health as well (ref. [13-15]). Washoe

County, in Northern Nevada (NV), was heavily exposed to smoke
from the 2020 wildfires, while simultaneously experiencing
increasing numbers of COVID-19 cases. See Table S1 for a list of
major wildfires that affected air quality in Washoe County during
our study period, and see Fig. 1A for a corresponding map. The
county has a population of 480,000, with at least 75% of residents
living in the Reno-Sparks metropolitan area (Reno). Reno’s location
in an intermountain valley restricts the dispersion of pollutants
(ref. [16]), possibly increasing the magnitude of exposure. The
largest healthcare system in Washoe County is Renown Health
(Renown), whose laboratory-confirmed about 25% of the county’s
COVID-19 cases.

Our objective was to determine whether wildfire PM2.5 is
associated with an increased rate of SARS-CoV-2 infections. Thus,
we examined the association between positive COVID-19 cases at
Renown and ambient concentrations of PM2.5 in Reno, NV during
a time period that included a severe, prolonged smoke event
caused by the 2020 wildfires.

METHODS

Data

Preliminary PM2.5 concentrations were obtained via the Environmental
Protection Agency's (EPA’s) internet database (www.epa.gov/airdata) from
four air quality monitors located in Reno and Sparks (see Fig. 1B for exact
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Maps of wildfire and air quality monitor locations. A Map of major wildfires occurring in the region during our study period, 15 May

to 20 Oct 2020, that likely impacted air quality in Reno, Nevada. The size of the points indicates the number of acres burned in each
wildfire. Additional information on wildfire names, locations, start and end dates, and size measured in acres can be found in Table S1.
B Map of air quality monitors in Reno. The location of the KRNO weather station is also shown. API calls for Google Maps provided in

refs. [38, 39].

locations). These federal equivalent method (FEM) PM2.5 monitors were
hourly Beta Attenuation Monitors (Met One BAM 1020s) with a very sharp
cut cyclone (VSCC). To estimate the daily exposure of the population to
PM2.5, we used a weighted average of the daily concentrations reported
by each monitor, with the weights proportional to the count of Renown
patients living within five kilometers of each monitor. If measurements of
PM2.5 were missing at a particular monitor, we used a weighted average of
the remaining monitors. PM2.5 concentrations were missing for all
monitors on 29 Sep 2020 due to a change in AirNow's file transfer
protocol (FTP) address that occurred that afternoon, causing data not to be
reported. We obtained the missing values directly from the Washoe County
air quality management division. Six negative values for PM2.5 concentra-
tion were replaced with a value of zero before obtaining the weighted
average.

Temperature and humidity data were obtained from the KRNO weather
station (via mesowest.utah.edu), which is located near the Reno airport
(Fig. 1B), and records data every five minutes. These values were averaged
by date in order to obtain daily means. However, some 5 minute
measurements were missing. These missing values were ignored unless
they represented more than 25% of the values for a given day. This
occurred on only 1 day, 9 Aug 2020. For this day, mean temperature and
mean humidity was estimated as the average of the daily means from the
day prior and the day after.

SARS-CoV-2 nucleic acid amplification (NAA) test results and patient
demographic data were obtained from Renown. During the study period,
no significant shortages of SARS-CoV-2 tests were observed and testing
indications followed published CDC and Washoe County Health District
clinical guidelines. For our analysis, we included all available types of SARS-
CoV-2 NAA tests except one. We excluded this test because it was used
only briefly during our study period, it was administered in very large
numbers during that brief period, it had a very low positivity rate, and it
was rarely utilized during the period most heavily affected by wildfire
smoke (16 Aug to 10 Oct 2020). For calculating the daily count of positive
SARS-CoV-2 NAA test results, we included only a patient’s initial positive
test. For calculating the daily total of tests administered, we included the
first positive test for patients who tested positive and only one negative
test per patient per day of patients who never tested positive from the
start of the pandemic (2 Mar 2020) to the end of our available data (21
Oct 2020).

We selected 15 May 2020 as the beginning of our study period, as that
appears to be when the number of tests administered stabilized, and our
study period ended on 20 Oct 2020.

SPRINGER NATURE

Modeling

We used a generalized additive model from the Negative Binomial
distribution, rather than from the Poisson distribution, to account for any
over-dispersion present in the counts of positive COVID-19 cases. Our base
model specification was:

log(Yi) = By + Bitemp; + B,Yi_1 + SDOW; + s(time;) + log(total;) + e;

where Y; is the count of positive COVID-19 cases on the day i, temp; are the
7-day average of mean temperature, Y;_; is the count of positive cases on
the previous day, DOW,; is an indicator for the day of the week, s(time)) is a
cubic regression spline of time (measured in the number of days since the
start of the study period), and total; is the total number of tests administered.
B and & indicate coefficients to be estimated, with & indicating the
coefficient specific to a particular day of the week. €; is the random error. In
this paper, we define the 7-day average for day i as the mean of the variable
value on days i through i-6. Similarly, we define the 3-day average for day i
as the mean of the variable value on days i through i-2.

Because we used the total number of tests administered as an offset, we
essentially modeled the positivity rate, rather than counts of positive cases.
The positivity rate has the advantage of being less dependent on the
number of SARS-CoV-2 NAA tests administered than the number of
positive cases, though it is not completely independent, as changes in the
number of tests administered may result in changes in the population
being tested.

We adjusted for the temperature to account for any seasonal changes in
the SARS-CoV-2 infection rate. The 7-day average of mean temperature
was used instead of the daily mean temperature to account for a probable
delay between changes in temperature and changes in the infection rate.

The smooth of time was necessary to control for confounding factors
that contribute to changes in the positivity rate, but for which no
reasonable data source exists. These confounding factors include the
prevalence of the virus in the community at any given time, changes in
human behavior, and changes in which patients are being tested. While
some information exists on pertinent events that may affect human
behavior (such as the Phase 2 reopening of Nevada or the start of school,
indicated in Fig. 2), it is uncertain how to specifically model these events.
Using a smooth function of time as a predictor allowed us to model the
general course of the pandemic, while still examining whether PM2.5
explained particular features of the data.

The autoregressive term Y.; was added as a predictor because
autocorrelation function (ACF) and partial autocorrelation function (PACF)

Journal of Exposure Science & Environmental Epidemiology (2021) 31:797 - 803



D. Kiser et al.

2
<
> 0.08-
=
7
o
Q.
3 114
N 0.044
<>:> )
o S
) 5
: g
& 3
0.00-
0
el
& 500-
8 400-
@ 300
& 2004
T 100
o
30
25+
O 20+
s
15+
10
Jun Jul Sep oct Nov

Date

Fig. 2 SARS-CoV-2 tests, PM2.5, and temperature over time. Top panel: SARS-CoV-2 test positivity rate from 15 May 2020 to 20 Oct
2020. Expected positivity rates were estimated by the model which included the 7-day average of daily mean PM2.5 as a predictor. The black
line indicates the 7-day moving average of the positivity rate (each day averaged with the 3 days prior and the 3 days following). The blue line
indicates the expected positivity rate if the concentration of 7-day average PM2.5 during the period 16 Aug 2020 to 10 Oct 2020 had remained
at the average level of the same period in 2019 (4.5 ug/m?3). The red-shaded region indicates the expected positivity rate based on the actual
PM2.5, which is indicated by the red line. For this figure, weekday effects were removed from the model estimates for clarity. Middle panel:
Daily number of patients with SARS-CoV-2 NAA tests at Renown is indicated by the thin line, while the 7-day average is indicated by the bold
line. Bottom panel: daily mean temperature (°C) is indicated by the thin line, while the 7-day average is indicated by the bold line.

plots revealed significant autocorrelation at lag 1 of the residuals. This was
confirmed by the Durbin-Watson test (p =6.3e—14). After adding this
term, the ACF plot, PACF plot, and Durbin-Watson test (p = 0.78) indicated
that the autocorrelation had been removed.

However, we noticed that when PM2.5 terms were added to the model,
we tended to see negative autocorrelation in the residuals at various lags.
We concluded that the smooth of time was somewhat overfitting. The
software we used automatically determines the degrees of freedom for the
smooth term based on restricted maximum likelihood, with an upper limit
selected by the user. The default maximum value for degrees of freedom is
nine. When we lowered this value to four, the negative autocorrelation
disappeared. Thus, we used four as the degrees of freedom for the smooth
of time.

We initially investigated the relationship between the positivity rate and
PM2.5 using lags 0, 7, and 14 of both daily mean PM2.5 and the 7-day
average of daily mean PM2.5. To further refine our understanding of the
chronological relationship between PM2.5 and positive SARS-CoV-2 tests,
we subsequently tested the association of the remaining lags of daily
mean PM2.5 between 0 and 14, as well as lags 0, 3, 6, 9, and 12 of the 3-day
averages of daily mean PM2.5.

We then used the method described by Schwartz to fit distributed lag
models (DLMs), which constrain the lag effects to follow a polynomial
function (ref. [17]). We concluded based on the single-day and three-day
average models that the lag effects were likely to follow a quadratic or
cubic function. Modifying the number of lags included in the DLM can
have a sizable influence on the estimates for each lag, and it is not
necessarily clear how many lags should be included. Based on the results
of previous models, we assumed that a reasonable quadratic or cubic
function for the lags would include (1) significant positive associations at
some lags, (2) no large negative associations at large lags, and (3) a near-
zero effect at the largest lag.

Calculating excess cases

We used the model which included the 7-day average of PM2.5 as a
predictor to estimate how many fewer COVID-19 cases were likely to have
occurred if there had been no wildfire smoke between 16 Aug and 10 Oct
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2020. This model was chosen because the lags were selected a priori and it
was more parsimonious than the distributed lag models. Below is a
description of how we estimated excess cases and found a confidence
interval for that estimate.

For our model, the fitted value for a day i is:

2 = By + By temp; + B,Y; 1 + SDOW; + §(time;) + B3 PM2.5;

where z; is the fitted value on the link scale for day i, PM2.5; is the 7-day
average of PM2.5, and the other variables are defined the same as they
were previously. Each z; is necessarily a normally distributed variable, given
that the model diagnostics indicate normally distributed residuals (Fig. S1).

We assumed that if there had not been a wildfire smoke event from 16
Aug to 10 Oct 2020, the 7-day average of PM2.5 would have remained at
the average level of the same period in 2019, when no major wildfire
smoke events occurred. We generated fitted values for each day from 16
Aug to 10 Oct 2020, based on the altered data. We then calculated excess
cases as follows:

n
W= Z Y; — (exp(z;) x total;)

i=1

where W is the expected number of excess cases for the entire time
period, and Y; is the actual number of cases on day i. Day 1 is the first
day of the time period of interest (in our case, 16 Aug 2020) and day n
is the last day (10 Oct 2020). z; was exponentiated and multiplied by
the offset (total;) in order to transform it to the same scale as the
response (Y;).

Because of the exponentiation of z;, finding the variance (and hence a
confidence interval) for W is not straightforward. We thus adopted a
resampling approach that uses the distribution of the individual z;

1. For each day i, we selected a random value from the distribution of
z;, assuming normality and using the standard errors for each z;
reported by the software. We denote this value as z;.

2. We then calculated: W* = 37, Y; — (exp(z}) x total;), where W' is a
new estimate of excess cases.
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Steps 1 and 2 were repeated 10,000 times, and the 2.5th and 97.5th
percentiles of the empirical distribution of the W"s were assigned as the
lower and upper confidence interval limits of W.

Additional methods

To test the robustness of our results, we made several modifications to the
base model and evaluated their separate effects on the results. We (1)
increased the maximum degrees of freedom for the smooth of time from
four degrees of freedom to nine degrees of freedom, (2) added the 7-day
average of relative humidity as a predictor, and (3) replaced the 7-day
average of temperature with a 3-day average of temperature.

We used R version 3.6.0 and the R packages mgcv 1.8-28 (ref. [18]) and
mgcv.helper 0.1.8 (ref. [19]) for all of our statistical modeling. ggmap 3.0.0
was used to generate maps (ref. [20]). Work on this study was Institutional
Review Board exempt by the University of Nevada, Reno Institutional
Review Board (#1106618-25) as part of a larger body of work “Interoper-
ability, operational efficiency and quality of care improvements through
health data analysis.” The funders had no role in study design, data
analysis, decision to publish, or preparation of the manuscript.

RESULTS

During the study period (159 days), 35,955 individuals were tested
at Renown for SARS-CoV-2, of which 2881 (8.0%) tested positive
(Table 1). 72% of patients were 30 years of age or older, but the
rate of patients testing positive was highest among patients aged
18-29, with a positivity rate of 11.3%. The number of NAA tests
administered at Renown increased steadily during our study
period, from an average of 130 patients tested per day in the
second half of May to 404 patients tested per day in the first half
of October (Fig. 2).

Air quality was affected by wildfire smoke for 59 days during our
study period, with 50 of those days occurring between 16 Aug and
10 Oct 2020 (Fig. 2). Daily mean concentrations of PM2.5 averaged
across all four monitors ranged between 1.5 pg/m3 (17 Jun 2020)
to 1143 ug/m> (13 Sep 2020). We note that a dust storm event
contributed to PM2.5 on 7-8 Sep 2020.

Using lags selected a priori, we found that a 10 pg/m? increase
in the 7-day average of PM2.5 was associated with a 6.3% relative
increase in the positivity rate, with a 95% confidence interval (Cl)
of 2.5-10.3% (Fig. 3). Lag 14 single-day PM2.5 had a significant
negative association with the positivity rate. This appears to be
due to the limited duration of especially high concentrations of
PM2.5 in our data, which causes lag 14 PM2.5 to predict the
troughs between the surges in the positivity rate (Fig. S2). After
examining other lags of PM2.5, we found positive associations
between the SARS-CoV-2 test positivity rate and lags 2-6 of single-

day PM2.5, as well as lags 0 and 3 of 3-day average PM2.5 (Fig. 3).
Additional negative associations were found for lag 13 of the
single-day PM2.5 and for lag 12 of the 3-day average PM2.5.
Based on the results of the single-day and the 3-day average
models, we determined that intermediate-length lags had the
largest association with the positivity rate. Using the criteria
described previously, we selected lags 0-8 for the quadratic DLM
and lags 0-12 for the cubic DLM. These models indicated that lags
2-6 have a significant positive association with the positivity rate,
with a 10 ug/m? increase in PM2.5 being associated with an ~1%
relative increase in the positivity rate on any given lag (Fig. 4).
Based on the model using 7-day average PM2.5 as a predictor,
exposure to wildfire PM2.5 accounted for an additional 178 (Cl:

Table 1. Demographics of the patient population tested for SARS-
CoV-2 at renown from 15 May to 20 Oct 2020.

Patients tested Percent

= Positive

Total Negative® Positive
Patients, 35955 (100) 33074 (100) 2881 (100) 8.0%
N (%)
Male 15798 (44) 14432 (44) 1366 (47) 8.6%
gender,
N (%)
Age, 454 (23.0) 45.6 (23.2) 423 (204) NA
mean (SD)
Age© category, N (%)
<18 4632 (13) 4352 (13) 280 (10) 6.0%
18-29 5598 (16) 4964 (15) 634 (22) 11.3%
30-49 9653 (27) 8729 (26) 924 (32) 9.6%
50-69 10071 (28) 9325 (28) 746 (26) 7.4%
>70 6001 (17) 5704 (17) 297 (10) 4.9%
Race, N (%)
White 29439 (82) 27483 (83) 1956 (68) 6.6%
Non-white 2881 (8) 2600 (8) 281 (10) 9.8%
Unknown 3635 (10) 2991 (9) 644 (22) 17.7%

?Patient had only negative tests results.

Ppatient had at least one positive test result.

“Age in years at the first test, regardless of whether the test was positive or
negative.

Single-day PM2.5

Three—day average PM2.5

Seven-day average PM2.5
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Fig. 3 The relative percent change in the SARS-CoV-2 test positivity rate associated with an increase of 10 ug/m? PM2.5 at lags 0-14 of
single-day PM2.5 (left panel); lags 0, 3, 6, 9, and 12 of the three-day average PM2.5 (middle panel); and lags 0, 7, and 14 of the 7-day
average PM2.5 (right panel). Error bars indicate 95% confidence intervals, which were not corrected for multiple testing.
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Fig.4 The relative percent change in the SARS-CoV-2 positivity rate associated with an increase of 10 ug/m?® in daily mean PM2.5 at each
lag, where separate lag effects are considered within the same model and the effects are constrained to follow a quadratic function over
lags 0-8 (left panel) and a cubic function over lags 0-12 (right panel). Error bars indicate 95% confidence intervals, which were not

corrected for multiple testing.

149-98) positive COVID-19 cases at Renown alone between 16
Aug and 10 Oct 2020, or an increase of 17.7% (Cl: 14.4-20.1%).
Fig. 2 compares the expected positivity rate in the presence and
absence of wildfire smoke during that time period.

The results of the models in our main analysis are shown in
tabular form in Table S2, while the results of the models in our
sensitivity analyses are shown in Tables S3-S5, for comparison. A
comparison of excess cases estimated in each analysis can be
viewed in Table S6. None of the results of the sensitivity analyses
meaningfully differed from the results of the main analysis.

DISCUSSION

We found a large increase in the SARS-CoV-2 test positivity rate at
Renown during periods of elevated PM2.5 from wildfires. These
results, although based on observational data with their inherent
limitations, lend credence to earlier predictions that wildfire
smoke would exacerbate the COVID-19 pandemic (ref. [1, 21]). Our
findings also bolster arguments that PM2.5 from other sources,
such as vehicle traffic or industry, increases susceptibility to SARS-
CoV-2. An association of elevated levels of air pollution with
increased infectivity and severity of COVID-19 cases was found in
populated areas in Italy (ref. [22, 23]), the United States (ref.
[24, 25]), England (ref. [26]), China (ref. [27]), and other nations (ref.
[23, 28]), but not in Spain (ref. [23, 29]).

A previous study by Meo et al. examining the relationship
between PM2.5 and daily new COVID-19 cases in San Francisco,
California during the 2020 wildfires found an association of similar
direction and magnitude as some of the effects observed in our
study—a 5.1% increase in daily cases per 10 ug/m? increase in
PM2.5 (ref. [30]). Another study by Leifer et al. observed increased
numbers of COVID-19 cases following wildfire smoke events in
Orange County, California (ref. [31]). However, our study sig-
nificantly improved on these studies by controlling for additional
covariates: the general prevalence of the virus, which increased
over time (not included in Meo et al.); and temperature and the
number of tests administered (not included in Meo et al. or Leifer
et al.). Thus, we believe that our study greatly strengthens the
evidence that wildfire smoke can enhance the spread of SARS-
CoV-2.

In addition to the mechanisms mentioned previously, where
PM2.5 enhances the pathogenicity of viruses by modifying
immune responses and facilitating the transport of the virus into
the lungs, a third possible mechanism specific to SARS-CoV-2
may involve the ACE2 receptor, the molecular target for the

Journal of Exposure Science & Environmental Epidemiology (2021) 31:797 - 803

virus. Elevated concentrations of ambient nitrogen dioxide
(NO2) and PM2.5 result in over-expression of the ACE2 receptor
in respiratory epithelial cells, possibly increasing the pathogeni-
city of the virus (ref. [32]). It is unclear whether this mechanism
requires long- or short-term exposure to air pollution, or
whether in vivo effects might differ from in vitro effects (ref.
[33]). However, in vitro studies suggest that relatively short
exposure to PM2.5 may induce cellular changes and inflamma-
tion (ref. [33, 34]).

Our data did not support a same-day association between the
SARS-CoV-2 test positivity rate and PM2.5, and further investiga-
tion revealed that the positivity rate was most strongly associated
with PM2.5 concentrations two to 6 days prior. Thus, our results
are consistent with a relatively short-term, cumulative effect of
wildfire PM2.5 exposure on the incidence of COVID-19, possibly
mediated by cellular changes and increased infectivity due to PM
particles acting as vectors of spread. Other non-biological factors
may also play a role: use of air quality monitoring applications is
pervasive and encourages people to stay indoors during bad air
events, which could enhance the spread of SARS-CoV-2 in indoor
public places like restaurants and schools. Conversely, they could
also limit the spread of SARS-CoV-2 if public places are mandated
to be closed and people are forced to take shelter from the smoke
in their own homes. Thus, it is possible that the influence of
wildfire smoke on the spread of SARS-CoV-2 depends strongly on
human behavior and public policy decisions, like the decision to
resume in-person classes. The Washoe County School District
implemented a hybrid system of in-person and virtual classes for
middle schoolers and high schoolers (students aged 11-18 years),
where students attended in-person classes every other day, while
elementary schoolers (students aged 5-11 years) continued
attending in-person classes every day. However, it is not likely
that the reopening of school is an important confounder in our
study since the increases in the positivity rate attributed to PM2.5
were temporary surges, rather than a sustained increase as might
be expected when students and teachers are perpetually in
contact.

Although this study only evaluated positivity rates, it is
reasonable to assume that the excess cases due to wildfire
PM2.5 resulted in excess mortality. Wildfire smoke has previously
been associated with increased all-cause mortality (ref. [35, 36]),
and an association between this season’s smoke episode and
mortality was observed in Washington state (ref. [37]). However, it
is beyond the scope of this study to evaluate the number of
COVID-19 deaths attributable to PM2.5.
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This study also limited itself to examining exposure to PM2.5,
even though wildfire smoke consists of many other potentially
harmful compounds, such as coarse PM, carbon monoxide, volatile
organic compounds, ozone, and nitrogen oxides. It is possible that
some of the associations we observed between PM2.5 and the
SARS-CoV-2 test positivity rate could be attributed to these other
compounds. Although such confounding would be largely
irrelevant from a public policy standpoint, it may have implica-
tions for understanding the mechanism behind the increased rate
of infections.

In addition, our study has important limitations with regard to
our ability to quantify exposure to PM2.5. While four air quality
monitors are quite sufficient for estimating outdoor air quality, we
were unable to account for variations in individual exposure that
may be due to occupation, recreation, or income. Thus, using our
method of estimating exposure could result in different estimates
of the effect between our study population and other populations
who have different occupations, recreational habits, or social
statuses.

Reno likely presents a better opportunity to study the
association of wildfire smoke with COVID-19 incidence than some
of the localities that were directly threatened by wildfires, since
Reno was not subject to evacuations that would have prevented
exposure to smoke. Reno was also exposed to higher concentra-
tions of PM2.5 for longer periods of time than other nearby
metropolitan areas. According to the EPA, Reno experienced
43 days of elevated PM2.5 (above 12 ug/m?3) since 1 Aug 2020,
while the San Francisco Bay Area in California experienced only
26 days of elevated PM2.5.

Current recommendations from the centers for disease control
and prevention (CDC) with regards to wildfire smoke during the
pandemic recognize the possibility that wildfire smoke may
exacerbate the risk of SARS-CoV-2 infection. However, the EPA
does not currently provide specific recommendations for wildfire
smoke protection during the pandemic. Overall, the recommen-
dations are to stay inside, use air cleaners, and wear N95 (or P100)
respirators. Some of these recommendations may not be helpful
during a pandemic that requires social distancing and limits the
availability of personal protective equipment (ref. [21]).

Even with the possibility of COVID-19 vaccines becoming widely
available during the first half of 2021, this year’s wildfire season
may co-occur with an ongoing pandemic. Thus, our findings
should help shape regional policies that seek to manage the
combined threats of wildfires and the pandemic. These policies
might include lowering the recommended healthy limit for PM2.5
in cities with a high prevalence of SARS-CoV-2, establishing “clean
air” shelters that maintain social distancing, and allocating
sufficient quantities of appropriate respirators to areas at high
risk for wildfires.
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