Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metal-mixtures in toenails of children living near an active industrial facility in Los Angeles County, California

Abstract

Background

Children residing in communities near metalworking industries are vulnerable to multiple toxic metal exposures. Understanding biomarkers of exposure to multiple toxic metals is important to characterize cumulative burden and to distinguish potential exposure sources in such environmental justice neighborhoods impacted by industrial operations. Exposure to metal mixtures has not been well-characterized among children residing in the United States, and is understudied in communities of color.

Methods

In this study we used toenail clippings, a noninvasive biomarker, to assess exposure to arsenic (As), cadmium (Cd), mercury (Hg), manganese (Mn), lead (Pb), antimony (Sb), selenium (Se), and vanadium (V). We used nonnegative matrix factorization (NMF) to identify “source” signatures and patterns of exposure among predominantly working class Latinx children residing near an industrial corridor in Southeast Los Angeles County. Additionally, we investigated the association between participant demographic, spatial, and dietary characteristics with identified metal signatures.

Results

Through NMF, we identified three groupings (source factors) for the metal concentrations in children’s toenails. A grouping composed of Sb, Pb, As, and Cd, was identified as a potential industrial source factor, reflective of known airborne elemental emissions in the industrial corridor. We further identified a manganese source factor primarily composed of Mn, and a potential dietary source factor driven by Se and Hg. We observed differences in the industrial source factor by age of participants, while the dietary source factor varied by neighborhood.

Conclusion

Utilizing an unsupervised dimension reduction technique (NMF), we identified a “source signature” of contamination in toenail samples from children living near metalworking industry. Investigating patterns and sources of exposures in cumulatively burdened communities is necessary to identify appropriate public health interventions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Map of study area.
Fig. 2: NMF analysis results.

References

  1. 1.

    Boer TJ, Pastor MJ, Sadd JL, Snyder LD. Is there environmental racism? The demographics of hazardous waste in Los Angeles County. Soc Sci Q. 1997;78:793–810.

    Google Scholar 

  2. 2.

    Bearer CF. Environmental health hazards: How Children Are Different from Adults. Crit Issues Child Youths. 1995;5:11–26.

    CAS  Google Scholar 

  3. 3.

    Landrigan PJ. Children’s environmental health: a brief history. Acad Pediatr. 2016;16:1–9.

    PubMed  Google Scholar 

  4. 4.

    Kimbrough DE, Suffet IH. Off-site forensic determination of airborne elemental emissions by multi-media analysis: a case study at two secondary lead smelters. Environ Sci Technol. 1995;29:2217–21.

    CAS  PubMed  Google Scholar 

  5. 5.

    Rabano ES, Castillo NT, Torre KJ, Solomon PA. Speciation oF Arsenic in Ambient Aerosols Collected in Los Angeles. J Air Pollut Control Assoc. 1989;39:76–80.

    CAS  Google Scholar 

  6. 6.

    Calderón-Garcidueñas L, Serrano-Sierra A, Torres-Jardón R, Zhu H, Yuan Y, Smith D, et al. The impact of environmental metals in young urbanites’ brains. Exp Toxicol Pathol. 2013;65:503–11.

    PubMed  Google Scholar 

  7. 7.

    Rodrigues JLG, Bandeira MJ, Araújo CFS, dos Santos NR, Anjos ALS, Koin NL, et al. Manganese and lead levels in settled dust in elementary schools are correlated with biomarkers of exposure in school-aged children. Environ Pollut. 2018;236:1004–13.

    CAS  PubMed  Google Scholar 

  8. 8.

    Butler L, Gennings C, Peli M, Borgese L, Placidi D, Zimmerman N, et al. Assessing the contributions of metals in environmental media to exposure biomarkers in a region of ferroalloy industry. J Expo Sci Environ Epidemiol. 2019;29:674–87.

    CAS  PubMed  Google Scholar 

  9. 9.

    Di Ciaula A, Gentilini P, Diella G, Lopuzzo M, Ridolfi R. Biomonitoring of metals in children living in an urban area and close to waste incinerators. Int J Environ Res Public Health. 2020;17:1919.

    PubMed Central  Google Scholar 

  10. 10.

    Sanders AP, Miller SK, Nguyen V, Kotch JB, Fry RC. Toxic metal levels in children residing in a smelting craft village in Vietnam: a pilot biomonitoring study. BMC Public Health. 2014;14:1–8.

    Google Scholar 

  11. 11.

    Haynes EN, Ryan P, Chen A, Brown D, Roda S, Kuhnell P, et al. Assessment of personal exposure to manganese in children living near a ferromanganese refinery Erin. Sci Total Environ. 2012;427–428:19–25.

    PubMed  Google Scholar 

  12. 12.

    Landrigan PJ, Baker EL. Exposure of children to heavy metals from smelters: epidemiology and toxic consequences. Environ Res. 1981;25:204–24.

    CAS  PubMed  Google Scholar 

  13. 13.

    Mandić-Rajčević S, Bulat Z, Matović V, Popević M, Lepić M, Mandić B, et al. Environmental and take-home lead exposure in children living in the vicinity of a lead battery smelter in Serbia. Environ Res. 2018;167:725–34.

    PubMed  Google Scholar 

  14. 14.

    Sullivan M. Reducing lead in air and preventing childhood exposure near lead smelters: learning from the U.S. experience. NEW Solut A J Environ Occup Heal Policy. 2015;25:78–101.

    Google Scholar 

  15. 15.

    Fujimori T, Eguchi A, Agusa T, Tue NM, Suzuki G, Takahashi S, et al. Lead contamination in surface soil on roads from used lead–acid battery recycling in Dong Mai, Northern Vietnam. J Mater Cycles Waste Manag. 2016;18:599–607.

    CAS  Google Scholar 

  16. 16.

    Zahran S, Mielke HW, Weiler S, Gonzales CR. Nonlinear associations between blood lead in children, age of child, and quantity of soil lead in metropolitan New Orleans. Sci Total Environ. 2011;409:1211–8.

    CAS  PubMed  Google Scholar 

  17. 17.

    Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res Environ Sci Pollut Res. 2016;23:8244–59.

    CAS  Google Scholar 

  18. 18.

    Gilbert-Diamond D, Emond JA, Baker ER, Korrick SA, Karagas MR. Relation between in utero arsenic exposure and birth outcomes in a cohort of mothers and their newborns from New Hampshire. Environ Health Perspect. 2016;124:1299–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Farzan SF, Li Z, Korrick SA, Spiegelman D, Enelow R, Nadeau K, et al. Infant infections and respiratory symptoms in relation to in utero arsenic exposure in a U.S. cohort. Environ Health Perspect. 2016;124:840–7.

    CAS  PubMed  Google Scholar 

  20. 20.

    Farzan SF, Gossai A, Chen Y, Chasan-Taber L, Baker E, Karagas M. Maternal arsenic exposure and gestational diabetes and glucose intolerance in the New Hampshire birth cohort study. Environ Heal. 2016;15:1–8.

    Google Scholar 

  21. 21.

    Farzan SF, Chen Y, Wu F, Jiang J, Liu M, Baker E, et al. Blood pressure changes in relation to arsenic exposure in a U.S. pregnancy cohort. Environ Health Perspect. 2015;123:999–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Levin R, Brown MJ, Kashtock ME, Jacobs DE, Whelan EA, Rodman J, et al. Lead exposures in U.S. children, 2008: implications for prevention. Environ Health Perspect. 2008;116:1285–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Jusko TA, Henderson CR, Lanphear BP, Cory-Slechta DA, Parsons PJ, Canfield RL. Blood lead concentration <10 μg/dL and child intelligence at 6 years of age. Environ Health Perspect. 2008;116:243–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Takser L, Lafond J, Bouchard M, St-Amour G, Mergler D. Manganese levels during pregnancy and at birth: relation to environmental factors and smoking in a Southwest Quebec population. Environ Res. 2004;95:119–25.

    CAS  PubMed  Google Scholar 

  25. 25.

    Ciesielski T, Weuve J, Bellinger DC, Schwartz J, Lanphear B, Wright RO. Cadmium exposure and neurodevelopmental outcomes in U.S. children. Environ Health Perspect. 2012;120:758–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci. 2010;118:586–601.

    CAS  PubMed  Google Scholar 

  27. 27.

    Lin X, Gu Y, Zhou Q, Mao G, Zou B, Zhao J. Combined toxicity of heavy metal mixtures in liver cells. J Appl Toxicol. 2016;36:1163–72.

    CAS  PubMed  Google Scholar 

  28. 28.

    Lou J, Jin L, Wu N, Tan Y, Song Y, Gao M, et al. DNA damage and oxidative stress in human B lymphoblastoid cells after combined exposure to hexavalent chromium and nickel compounds. Food Chem Toxicol. 2013;55:533–40.

  29. 29.

    Cobbina SJ, Chen Y, Zhou Z, Wu X, Zhao T, Zhang Z. et al. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J Hazard Mater. 2015;294:109–20.

    CAS  PubMed  Google Scholar 

  30. 30.

    Doherty BT, Romano ME, Gui J, Punshon T, Jackson BP, Karagas MR, et al. Periconceptional and prenatal exposure to metal mixtures in relation to behavioral development at 3 years of age. Environ Epidemiol. 2020;4:e0106.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kim Y, Kim BN, Hong YC, Shin MS, Yoo HJ, Kim JW, et al. Co-exposure to environmental lead and manganese affects the intelligence of school-aged children. Neurotoxicology. 2009;30:564–71.

    CAS  PubMed  Google Scholar 

  32. 32.

    Menezes-Filho JA, Carvalho CF, Rodrigues JLG, Araújo CFS, Dos Santos NR, Lima CS, et al. Environmental co-exposure to lead and manganese and intellectual deficit in school-aged children. Int J Environ Res Public Health. 2018;15:1–13.

    Google Scholar 

  33. 33.

    Claus Henn B, Schnaas L, Ettinger AS, Schwartz J, Lamadrid-Figueroa H, Hernández-Avila M, et al. Associations of early childhood manganese and lead coexposure with neurodevelopment. Environ Health Perspect. 2012;120:126–31.

    PubMed  Google Scholar 

  34. 34.

    Claus Henn B, Coull BA, Wright RO. Chemical MIxtures and Children’s Health. Curr Opin Pediatr. 2014;26:223–9.

    CAS  PubMed  Google Scholar 

  35. 35.

    Signes-Pastor AJ, Doherty BT, Romano ME, Gleason KM, Gui J, Baker E, et al. Prenatal exposure to metal mixture and sex-specific birth outcomes in the New Hampshire Birth Cohort Study. Environ Epidemiol. 2019;3:e068.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Cushing L, Faust J, August LM, Cendak R, Wieland W, Alexeeff G. Racial/ethnic disparities in cumulative environmental health impacts in California: evidence from a statewide environmental justice screening tool (CalEnviroScreen 1.1). Am J Public Health. 2015;105:2341–8.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Mikati I, Benson AF, Luben TJ, Sacks JD, Richmond-Bryant J. Disparities in distribution of particulate matter emission sources by race and poverty status. Am J Public Health. 2018;108:480–5.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    O’Rourke D, Macey GP. Community environmental policing: assessing new strategies of public participation in environmental regulation. J Policy Anal Manag. 2003;22:383–414.

    Google Scholar 

  39. 39.

    Shamasunder B, Morello-Frosch R. Scientific contestations over “toxic trespass”: health and regulatory implications of chemical biomonitoring. J Environ Stud Sci. 2016;6:556–68.

    Google Scholar 

  40. 40.

    Office of Environmental Health Hazard Assessment. California Communities Environmental Health Screening Tool, Version 3.0 (CalEnviroScreen 3.0). 2018;2–5. https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30.

  41. 41.

    TRI Program | U.S. EPA. Toxics Release Inventory. 2019. https://www.epa.gov/toxics-release-inventory-tri-program.

  42. 42.

    Davis M. Sunshine and the open shop: Ford and Darwin in 1920S Los Angeles. Antipode 1997;29:356–82.

    Google Scholar 

  43. 43.

    The Los Angeles Building a Regional Voice for Environmental Justice Collaborative. Building a Regional Voice for Environmental Justice. 2004.https://www.cbecal.org/wp-content/uploads/2012/05/Building-a-Regional-Voice.pdf

  44. 44.

    Morello-Frosch R, Pastor MJ, Porras C, Sadd J. Environmental Justice and Regional Inequality in Southern California: Implications for Future Research. Environ Health Perspect. 2002;110:149–54.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Valdez J. Quemetco battery recycling plant agrees to pay $ 600, 000 for emissions violations. San Gabriel Val Trib. 2020;1–3. https://www.sgvtribune.com/2020/05/08/quemetco-battery-recycling-plant-pays-600000-for-emissions-violations/

  46. 46.

    Centers for Disease Control and Prevention. BMI Percentile Calculator for Child and Teen. 2020;1–2. https://www.cdc.gov/healthyweight/bmi/calculator.html.

  47. 47.

    Longnecker MP, Stampfer MJ, Stephen Morris J, Spate V, Baskett C, Mason M, et al. A 1-y trial of the effect of high-selenium bread on selenium concentrations in blood and toenails. Am J Clin Nutr. 1993;57:408–13.

    CAS  PubMed  Google Scholar 

  48. 48.

    Garland M, Morris JS, Rosner BA, Stampfer MJ, Spate VL, Baskett CJ, et al. Toenail trace element levels as biomarkers: reproducibility over a 6-year period. Cancer Epidemiol Biomark Prev. 1993;2:493–7.

    CAS  Google Scholar 

  49. 49.

    Karagas MR, Tosteson TD, Blum J, Klaue B, Weiss JE, Stannard V, et al. Measurement oF Low Levels of Arsenic Exposure: A Comparison of Water and Toenail Concentrations. Am J Epidemiol. 2000;152:84–90.

    CAS  PubMed  Google Scholar 

  50. 50.

    Davis MA, Li Z, Gilbert-Diamond D, Mackenzie TA, Cottingham KL, Jackson BP, et al. Infant toenails as a biomarker of in utero arsenic exposure. J Expo Sci Environ Epidemiol. 2014;24:467–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Signes-Pastor AJ, Bouchard MF, Baker E, Jackson BP, Karagas MR. Toenail manganese as biomarker of drinking water exposure: a reliability study from a US pregnancy cohort. J Expo Sci Environ Epidemiol. 2019;29:648–54.

    CAS  PubMed  Google Scholar 

  52. 52.

    Hornung RW, Reed LD. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg Taylor Francis Group. 1990;5:46–51.

    CAS  Google Scholar 

  53. 53.

    National Oceanic and Athmospheric Administrtion (NOAA). National Centers for Environmental Information. Clim. Data Online Clim. Data. 2020. https://www.ncdc.noaa.gov/cdo-web/

  54. 54.

    Béchaux C, Zetlaoui M, Tressou J, Leblanc JC, Héraud F, Crépet A. Identification of pesticide mixtures and connection between combined exposure and diet. Food Chem Toxicol. 2013;59:191–8.

    PubMed  Google Scholar 

  55. 55.

    Traoré T, Béchaux C, Sirot V, Crépet A. To which chemical mixtures is the French population exposed? Mixture identification from the second French Total Diet Study. Food Chem Toxicol. 2016;98:179–88.

    PubMed  Google Scholar 

  56. 56.

    Levin-Schwartz Y, Gennings C, Claus Henn B, Coull BA, Placidi D, Lucchini R, et al. Multi-media biomarkers: integrating information to improve lead exposure assessment. Environ Res. 2020;183:109148.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010;11:1–9.

  58. 58.

    Joliffe I. Principal components analysis, Second Edition. Springer Ser. Stat. Springer New York; 2002.

  59. 59.

    Kaiser HF. The varimax criterion for analytic rotation in factor analysis. Psychometrika. 1958;23:187–200.

    Google Scholar 

  60. 60.

    Sanchez TR, Slavkovich V, LoIacono N, van Geen A, Ellis T, Chillrud SN, et al. Urinary metals and metal mixtures in Bangladesh: exploring environmental sources in the Health Effects of Arsenic Longitudinal Study (HEALS). Environ Int. 2018;121:852–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Pang Y, Peng RD, Jones MR, Francesconi KA, Goessler W, Howard BV, et al. Metal mixtures in urban and rural populations in the US: The Multi-Ethnic Study of Atherosclerosis and the Strong Heart Study. Environ Res. 2016;147:356–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Calafat AM, Ye X, Valentin-Blasini L, Li Z, Mortensen ME, Wong L-Y. Co-exposure to non-persistent organic chemicals among American pre-school aged children: A pilot study. Int J Hyg Env Heal. 2017;220:55.63

  63. 63.

    U.S. EPA. Child-Specific Exposure Factors Handbook (2008, Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-06/096F, 2008. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=199243.

  64. 64.

    Wohl AR, Dominguez A, Flessel P. Evaluation of lead levels in children living near a Los Angeles County battery recycling facility. Environ Health Perspect. 1996;104:314–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Zhu Y, Li Z, Pang Y, Huo W, Li N, Li Z, et al. Association between chronic exposure to tobacco smoke and accumulation of toxic metals in hair among pregnant women. Biol Trace Elem Res. 2018;185:302–10.

    CAS  PubMed  Google Scholar 

  66. 66.

    South Coast AQMD. Facility Information Detal web tool (F.I.N.D.). 2020. https://xappprod.aqmd.gov/find/

  67. 67.

    Lesch SM, Jeske DR, Saurez J. Final Report: Statistical Modeling and Analysis Results for the Topsoil Lead Contamination Study (Quemetco Project). 2006.https://collaboratory.ucr.edu/sites/g/files/rcwecm2761/files/2019-04/Final_Report_dan.pdf

  68. 68.

    Wilhelm M, Lombeck I, Ohnesorge FK. Cadmium, copper, lead and zinc concentrations in hair and toenails of young children and family members: a follow-up study. Sci Total Environ. 1994;141:275–80.

    CAS  PubMed  Google Scholar 

  69. 69.

    Thornton I, Davies DJA, Watt JM, Quinn MJ. Lead exposure in Young Children from Dust and Soil in the United Kingdom. Environ Health Perspect. 1990;89:55–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Los Angeles County Department of Public Health. Living near quemetco Community Outreach and Survey Results. 2019.http://www.publichealth.lacounty.gov/eh/quemetco/

  71. 71.

    Coelho P, Costa S, Silva S, Walter A, Ranville J, Sousa ACA, et al. Metal(Loid) levels in biological matrices from human populations exposed to mining contamination-panasqueira mine (Portugal). J Toxicol Environ Heal Part A. 2012;75:893–908.

    CAS  Google Scholar 

  72. 72.

    Coelho P, Costa S, Costa C, Silva S, Walter A, Ranville J, et al. Biomonitoring of several toxic metal(loid)s in different biological matrices from environmentally and occupationally exposed populations from Panasqueira mine area, Portugal. Environ Geochem Health. 2014;36:255–69.

    CAS  PubMed  Google Scholar 

  73. 73.

    Ntihabose R, Surette C, Foucher D, Clarisse O, Bouchard MF. Assessment of saliva, hair and toenails as biomarkers of low level exposure to manganese from drinking water in children. Neurotoxicology. 2018;64:126–33.

    CAS  PubMed  Google Scholar 

  74. 74.

    Chanpiwat P, Himeno S, Sthiannopkao S. Arsenic and other metals’ presence in biomarkers of cambodians in arsenic contaminated areas. Int J Environ Res Public Health. 2015;12:14285–300.

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Emmanuelle B, Virginie M, Fabienne S, Isabelle I, Martine P-G, Bernard L, et al. Selenium exposure in subjects living in areas with high selenium concentrated drinking water: Results of a French integrated exposure assessment survey. Environ Int. 2012;40:155–61.

    CAS  PubMed  Google Scholar 

  76. 76.

    Ndilila W, Callan AC, McGregor LA, Kalin RM, Hinwood AL. Environmental and toenail metals concentrations in copper mining and non mining communities in Zambia. Int J Hyg Environ Health. 2014;217:62–9.

    CAS  PubMed  Google Scholar 

  77. 77.

    Rodrigues EG, Kile M, Dobson C, Amarasiriwardena C, Quamruzzaman Q, Rahman M, et al. Maternal-infant biomarkers of prenatal exposure to arsenic and manganese. J Expo Sci Environ Epidemiol. 2015;25:639–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Reis AP, Costa S, Santos I, Patinha C, Noack Y, Wragg J, et al. Investigating relationships between biomarkers of exposure and environmental copper and manganese levels in house dusts from a Portuguese industrial city. Environ Geochem Health. 2015;37:725–44.

    CAS  PubMed  Google Scholar 

  79. 79.

    Ward EJ, Edmondson DA, Nour MM, Snyder S, Rosenthal FS, Dydak U, et al. Manganese: a sensitive and specific biomarker of exposure to manganese in career welders. Ann Work Expo Heal. 2018;62:101–11.

    CAS  Google Scholar 

  80. 80.

    SGVWC. San Gabriel Valley Water Company Consumer Confidense Report. 2019. http://www.sgvwater.com

  81. 81.

    Department of Toxic Substances. Notice of Amended Provisional Inspection Violation Scores and 2019 Facility Violations Scoring Procedure Score. 2019.https://dtsc.ca.gov/violations-scoring-procedure

  82. 82.

    Gutiérrez-González E, García-Esquinas E, de Larrea-Baz NF, Salcedo-Bellido I, Navas-Acien A, Lope V, et al. Toenails as biomarker of exposure to essential trace metals: a review. Environ Res. 2019;179:108787.

    PubMed  Google Scholar 

  83. 83.

    Garland M, Morris JS, Stampfer MJ, Colditz GA, Spate VL, Baskett CK, et al. Prospective study of toenail selenium levels and cancer among women. J Natl Cancer Inst. 1995;87:497–505.

    CAS  PubMed  Google Scholar 

  84. 84.

    Baskett CK, Spate VL, Morris JS, Anderson HD, Mason MM, Reams CL, et al. Investigation of the appearance of supplemental enriched Se-76 using the human nail as a dietary monitor. J Radioanal Nucl Chem Artic. 1995;195:97–108.

    CAS  Google Scholar 

  85. 85.

    Baskett CK, Morris JS, Spate VL, Mason MM, Cheng TP, Nichols TA, et al. The effect of an enriched selenium-76 supplement on dietary monitors and glutathione peroxidase activity. J Radioanal Nucl Chem. 1998;236:39–45.

    CAS  Google Scholar 

  86. 86.

    Brockman JD, Guthrie JM, Morris JS, Davis J, Madsen R, Robertson JD. Analysis of the toenail as a biomonitor of supranutritional intake of Zn, Cu, and Mg. J Radioanal Nucl Chem. 2009;279:405–10.

    CAS  Google Scholar 

  87. 87.

    Ovaskainen ML, Virtamo J, Alfthan G, Haukka J, Pietinen P, Taylor PR, et al. Toenail selenium as an indicator of selenium intake among middle-aged men in an area with low soil selenium. Am J Clin Nutr. 1993;57:662–5.

    CAS  PubMed  Google Scholar 

  88. 88.

    Guthrie JM, Brockman JD, Morris JS, Robertson JD. The “One Source” cohort—Evaluating the suitability of the human toenail as a manganese biomonitor. J Radioanal Nucl Chem. 2008;276:41–7.

    CAS  Google Scholar 

  89. 89.

    Satia JA, King IB, Morris JS, Stratton K, White E. Toenail and plasma levels as biomarkers of selenium exposure. Ann Epidemiol. 2006;16:53–8.

    PubMed  Google Scholar 

  90. 90.

    Rees JR, Sturup S, Chen C, Folt C, Karagas MR. Toenail mercury and dietary fish consumption. J Expo Sci Environ Epidemiol. 2007;17:25–30.

    CAS  PubMed  Google Scholar 

  91. 91.

    Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, et al. Evidence on the Human Health Effects of Low-Level Methylmercury Exposure. Environ Health Perspect. 2012;120:799–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Alfthan GV. Toenail mercury concentration as a biomarker of methylmercury exposure. Biomarkers. 1997;2:233–8.

    CAS  PubMed  Google Scholar 

  93. 93.

    Mozaffarian D. Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions. Int J Environ Res Public Health. 2009;6:1894–916.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Park K, Seo E. Association betweeN Toenail Mercury and Metabolic Syndrome Is Modified by Selenium. Nutrients 2016;8:424.

    PubMed Central  Google Scholar 

  95. 95.

    Schade GW, Roest G. Source apportionment of non-methane hydrocarbons, NOx and H2S data from a central monitoring station in the Eagle Ford shale, Texas. Elem Sci Anth. 2018;6:1–33.

  96. 96.

    Kalia V, Walker DI, Krasnodemski KM, Jones DP, Gary W, Kioumourtzoglou M. Unsupervised dimensionality reduction for exposome research. Curr Opin Environ Sci Heal. 2020;15:32–8.

    Google Scholar 

  97. 97.

    Rabbi MF, Pizzolato C, Lloyd DG, Carty CP, Devaprakash D, Diamond LE. Non-negative matrix factorisation is the most appropriate method for extraction of muscle synergies in walking and running. Sci Rep. 2020;10:1–11.

    Google Scholar 

  98. 98.

    Das KP, Hapuwitharana JC, Fowler J, Young SS. Non-negative matrix factorization: A useful method for two-way life tables. J Stat Manag Syst. 2020;24:481–498.

  99. 99.

    Gibson EA, Goldsmith J, Kioumourtzoglou MA. Complex Mixtures, Complex Analyses: an Emphasis on Interpretable Results. Curr Environ Health Rep. 2019;6:53–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Slotnick MJ, Nriagu JO, Johnson MM, Linder AM, Savoie KL, Jamil HJ, et al. Profiles of Trace Elements in Toenails of Arab-Americans in the Detroit Area, Michigan. Biol Trace Elem Res. 2005;107:113–26.

    CAS  PubMed  Google Scholar 

  101. 101.

    Wasserman GA, Liu X, LoIacono NJ, Kline J, Factor-Litvak P, Van Geen A, et al. A cross-sectional study of well water arsenic and child IQ in Maine schoolchildren. Environ Heal. 2014;13:1–10.

    Google Scholar 

  102. 102.

    Loh MM, Sugeng A, Lothrop N, Klimecki W, Cox M, Wilkinson ST, et al. Multimedia exposures to arsenic and lead for children near an inactive mine tailings and smelter site. Environ Res. 2016;146:331–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Dantzer J, Ryan P, Yolton K, Parsons PJ, Palmer CD, Cecil K, et al. A comparison of blood and toenails as biomarkers of children’s exposure to lead and their correlation with cognitive function. Sci Total Environ. 2020;700:134519.

    CAS  PubMed  Google Scholar 

  104. 104.

    Rodrigues JLG, Araújo CFS, dos Santos NR, Bandeira MJ, Anjos ALS, Carvalho CF, et al. Airborne manganese exposure and neurobehavior in school-aged children living near a ferro-manganese alloy plant. Environ Res. 2018;167:66–77.

    CAS  PubMed  Google Scholar 

  105. 105.

    Morello-Frosch R, Jesdale BM. Separate and Unequal: Residential Segregation and Estimated Cancer Risks Associated with Ambient Air Toxics in U.S. Metropolitan Areas. Environ Health Perspect. 2006;114:386–93.

    CAS  PubMed  Google Scholar 

  106. 106.

    Morello-Frosch R, Pastor MJ, Sadd J, Porras C, Prichard M. Citizens, science and data judo: leveraging secondary data analysis to build a community-academic collaborative for environmental justice in Southern California. Methods community-based Particip Res Heal. San Francisco, CA: Jossey-Bass; 2005. p. 371–93.

  107. 107.

    Shepard PM, Northridge ME, Prakash S, Stover G. Preface: Advancing environmental justice through community-based participatory research. Environ Health Perspect. 2002;110:139–40.

    PubMed Central  Google Scholar 

  108. 108.

    Wing S. Whose epidemiology, whose health? Int J Heal Serv. 1998;28:241–52.

  109. 109.

    Wing S, Horton RA, Muhammad N, Grant GR, Tajik M, Thu K. Integrating epidemiology, education, and organizing for environmental justice: community health effects of industrial hog operations. Am J Public Health. 2008;98:1390–7.

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Diawara MM, Shrestha S, Carsella J, Farmer S. Smelting remains a public health risk nearly a century later: a case study in Pueblo, Colorado, USA. Int J Environ Res Public Health. 2018;15:1–15.

    Google Scholar 

  111. 111.

    Johnston JE, Franklin M, Roh H, Austin C, Arora M. Lead and arsenic in shed deciduous teeth of children living near a lead-acid battery smelter. Environ Sci Technol. 2019;53:6000–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Balazs CL, Morello-Frosch R. The three rs: how community-based participatory research strengthens the rigor, relevance, and reach of science. Environ Justice. 2013;6:9–16.

    Google Scholar 

  113. 113.

    Sadd JL, Pastor M, Morello-Frosch R, Scoggins J, Jesdale B. Playing it safe: assessing cumulative impact and social vulnerability through an environmental justice screening method in the South Coast Air Basin, California. Int J Environ Res Public Health. 2011;8:1441–59.

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Johnston J, Cushing L. Chemical exposures, health, and environmental justice in communities living on the fenceline of industry. Curr Environ Heal Reportseports. 2020;7:48–57.

    CAS  Google Scholar 

  115. 115.

    Johnston JE, Hricko A. Industrial lead poisoning in Los Angeles: anatomy of a public health failure. Environ Justice. 2017;10:162–7.

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Freudenburg WR. Privileged access, privileged accounts: Toward a socially structured theory of resources and discourses. Soc Forces. 2005;84:89–114.

  117. 117.

    Dietrich M, Huling J, Krekeler MPS. Metal pollution investigation of Goldman Park, Middletown Ohio: Evidence for steel and coal pollution in a high child use setting. Sci Total Environ. 2018;618:1350–62.

  118. 118.

    Morello-Frosch R, Pastor M, Sadd J. Environmental justice and southern California’s “RISKSCAPE” The distribution of air toxics exposures and health risks among diverse communities. Urban Aff Rev. 2001;36:551–78.

    Google Scholar 

  119. 119.

    Signes-Pastor AJ, Gutiérrez-González E, García-Villarino M, Rodríguez-Cabrera FD, López-Moreno JJ, Varea-Jiménez E, et al. Toenails as a biomarker of exposure to arsenic: a review. Environ Res. 2021;195:110286. https://www.sciencedirect.com/science/article/abs/pii/S001393512031183X?via%3Dihub.

  120. 120.

    Nguyen VK, Kahana A, Heidt J, Polemi K, Kvasnicka J, Jolliet O, et al. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999–2014. Environ Int. 2020;137:105496.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank our study participants, our community partners, Dayane Duenas Barahona and all volunteers that supported our study staff for assistance with this study. Our deepest gratitude to the Dartmouth Trace Element Core Facility at Dartmouth College in Hanover, NH, which was established by grants from the National Institute of Health (NIH) and National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program (P42ES007373) and the Norris Cotton Cancer Center at Dartmouth Hitchcock Medical Center.

Funding

Southern California Clinical and Translational Science Institute pilot grant pilot grant, NIEHS Southern California Environmental Health Centers (P30ES007048) pilot funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jill E. Johnston.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Horne, Y.O., Farzan, S.F. & Johnston, J.E. Metal-mixtures in toenails of children living near an active industrial facility in Los Angeles County, California. J Expo Sci Environ Epidemiol 31, 427–441 (2021). https://doi.org/10.1038/s41370-021-00330-8

Download citation

Keywords

  • Metal-mixtures
  • Environmental justice
  • Children’s health
  • Biomonitoring

Search

Quick links