Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On the distribution of low-cost PM2.5 sensors in the US: demographic and air quality associations



Low-cost sensors have the potential to democratize air pollution information and supplement regulatory networks. However, differentials in access to these sensors could exacerbate existing inequalities in the ability of different communities to respond to the threat of air pollution.


Our goal was to analyze patterns of deployments of a commonly used low-cost sensor, as a function of demographics and pollutant concentrations.


We used Wilcoxon rank sum tests to assess differences between socioeconomic characteristics and PM2.5 concentrations of locations with low-cost sensors and those with regulatory monitors. We used Kolomogorov–Smirnov tests to examine how representative census tracts with sensors were of the United States. We analyzed predictors of the presence, and number of, sensors in a tract using regressions.


Census tracts with low-cost sensors were higher income more White and more educated than the US as a whole and than tracts with regulatory monitors. For all states except for California they are in locations with lower annual-average PM2.5 concentrations than regulatory monitors. The existing presence of a regulatory monitor, the percentage of people living above the poverty line and PM2.5 concentrations were associated with the presence of low-cost sensors in a tract.


Strategies to improve access to low-cost sensors in less-privileged communities are needed to democratize air pollution data.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maps showing the distributions of PurpleAir and EPA mointors.
Fig. 2


  1. US EPANAAQS Table .

  2. Sullivan DM, Krupnick A. Using Satellite Data to Fill the Gaps in the US Air Pollution Monitoring Network. Resour Future Work Pap. 2018;18–21.

  3. Watson JG, Chow JC, DuBois D, Green M, Frank N. Guidance for the network design and optimum site exposure for PM2. 5 and PM10 (No. PB-99-157513/XAB; EPA-454/R-99/022). Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC (United States); Nevada Univ. System, Desert Research Inst., Reno, NV (United States); National Oceanic and Atmospheric Administration, Las Vegas, NV (United States). 1997.

  4. Grainger C, Schreiber A, Chang W. Do regulators strategically avoid pollution hotspots when siting monitors? Evidence from remote sensing of air pollution. University of Wisconsin. 2018. unpublished manuscript.

  5. Grainger C, Schreiber A. Discrimination in ambient air pollution monitoring? AEA Pap Proc. 2019;109:277–82.

    Article  Google Scholar 

  6. Muller NZ, Ruud PA. What forces dictate the design of pollution monitoring networks? Environ Model Assess. 2018;23:1–14.

    Article  Google Scholar 

  7. Zou E. Unwatched pollution: the effect of intermittent monitoring on air quality. 2018.

  8. Williams R, Kilaru V, Snyder E, Kaufman A, Dye T, Rutter A, et al. Air Sensor Guidebook. Washington, DC.: US Environmental Protection Agency; 2014. EPA/600/R-14/159 (NTIS PB2015-100610).

  9. Snyder EG, Watkins TH, Solomon PA, Thoma ED, Williams RW, Hagler GSW, et al. The changing paradigm of air pollution monitoring. Environ Sci Technol. 2013;47:11369–77.

    Article  CAS  PubMed  Google Scholar 

  10. deSouza P, Nthusi V, Klopp JM, Shaw BE, Ho WO, Saffell J, et al. A Nairobi experiment in using low cost air quality monitors. Clean Air J Tydskr Vir Skoon Lug. 2017;27:12–42.

    Google Scholar 

  11. deSouza P, Anjomshoaa A, Duarte F, Kahn R, Kumar P, Ratti C. Air quality monitoring using mobile low-cost sensors mounted on trash-trucks: methods development and lessons learned. Sustain Cities Soc. 2020;60:102239.

    Article  Google Scholar 

  12. deSouza P, Kahn RA, Limbacher JA, Marais EA, Duarte F, Ratti C. Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications. Atmos Meas Tech. 2020;13:5319–34.

  13. Castell N, Dauge FR, Schneider P, Vogt M, Lerner U, Fishbain B, et al. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ Int. 2017;99:293–302.

    Article  CAS  PubMed  Google Scholar 

  14. Clements AL, Griswold WG, Rs A, Johnston JE, Herting MM, Thorson J, et al. Low-cost air quality monitoring tools: from research to practice (a workshop summary). Sensors. 2017;17:2478.

    Article  PubMed Central  Google Scholar 

  15. Kumar P, Morawska L, Martani C, Biskos G, Neophytou M, Di Sabatino S, et al. The rise of low-cost sensing for managing air pollution in cities. Environ Int. 2015;75:199–205.

    Article  PubMed  Google Scholar 

  16. Morawska L, Thai PK, Liu X, Asumadu-Sakyi A, Ayoko G, Bartonova A, et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ Int. 2018;116:286–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McKercher GR, Salmond JA, Vanos JK. Characteristics and applications of small, portable gaseous air pollution monitors. Environ Pollut. 2017;223:102–10.

    Article  CAS  PubMed  Google Scholar 

  18. O’Rourke D, Macey GP. Community environmental policing: Assessing new strategies of public participation in environmental regulation. J Policy Anal Manag. 2003;22:383–414.

    Article  Google Scholar 

  19. Williams R, Duvall R, Kilaru V, Hagler G, Hassinger L, Benedict K, et al. Deliberating performance targets workshop: potential paths for emerging PM2.5 and O3 air sensor progress. Atmos Environ X. 2019;2:100031.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. English PB, Richardson MJ, Garzón-Galvis C. From crowdsourcing to extreme citizen science: participatory research for environmental health. Annu Rev Public Health. 2018;39:335–50.

    Article  CAS  PubMed  Google Scholar 

  21. Community Air Protection Program | California Air Resources Board. Accessed 12 Oct 2020.

  22. Austen K. Environmental science: pollution patrol. Nat N. 2015;517:136.

    Article  CAS  Google Scholar 

  23. Hubbell BJ, Kaufman A, Rivers L, Schulte K, Hagler G, Clougherty J, et al. Understanding social and behavioral drivers and impacts of air quality sensor use. Sci Total Environ. 2018;621:886–94.

    Article  CAS  PubMed  Google Scholar 

  24. Ottinger G. Buckets of resistance: standards and the effectiveness of citizen science. Sci Technol Hum Values. 2010;35:244–70.

    Article  Google Scholar 

  25. Allen BL. Uneasy alchemy: citizens and experts in Louisiana’s chemical corridor disputes. MIT Press: Cambridge MA; 2003.

  26. Bell ML, Ebisu K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect. 2012;120:1699–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miranda ML, Edwards SE, Keating MH, Paul CJ. Making the environmental justice grade: the relative burden of air pollution exposure in the United States. Int J Environ Res. Public Health. 2011;8:1755–71.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sayahi T, Kaufman D, Becnel T, Kaur K, Butterfield AE, Collingwood S, et al. Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environ Pollut. 2019;255:113131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. PurpleAir PA-II. Accessed 27 Jun 2020.

  30. Kelly KE, Whitaker J, Petty A, Widmer C, Dybwad A, Sleeth D, et al. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ Pollut. 2017;221:491–500.

    Article  CAS  PubMed  Google Scholar 

  31. Badura M, Batog P, Drzeniecka-Osiadacz A, Modzel P. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. Vol. 2018, Journal of Sensors. Hindawi; 2018. Accessed 27 Sep 2020. p. e5096540.

  32. Liu X, Jayaratne R, Thai P, Kuhn T, Zing I, Christensen B, et al. Low-cost sensors as an alternative for long-term air quality monitoring. Environ Res. 2020;185:109438.

    Article  CAS  PubMed  Google Scholar 

  33. Glenn EH, ACS.R, An R Package for Neighborhood-Level Data from the U.S. Census. Rochester, NY: Social Science Research Network; 2011. Accessed 27 Jun 2020. Report No.: ID 2171390.

  34. Auchincloss Amy H, Diez Roux Ana V, Timothy Dvonch J, Brown Patrick L, Barr Graham R, Daviglus Martha L. et al. Associations between recent exposure to ambient fine particulate matter and blood pressure in the multi-ethnic study of atherosclerosis (MESA). Environ Health Perspect. 2008;116:486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Donkelaar A, Martin RV, Li C, Burnett RT. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Environ Sci Technol. 2019;53:2595–611.

  36. Team RC, others. R: A language and environment for statistical computing. Vienna, Austria; 2013.

  37. Gupta P, Doraiswamy P, Levy R, Pikelnaya O, Maibach J, Feenstra B, et al. Impact of California fires on local and regional air quality: the role of a low-cost sensor network and satellite observations. GeoHealth. 2018;2:172–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bi J, Wildani A, Chang HH, Liu Y. Incorporating low-cost sensor measurements into high-resolution PM2.5 modeling at a large spatial scale. Environ Sci Technol. 2020;54:2152–62.

    Article  CAS  PubMed  Google Scholar 

Download references


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors are grateful to Mariana Arcaya and R. Subramanian for several useful discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Priyanka deSouza.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

deSouza, P., Kinney, P.L. On the distribution of low-cost PM2.5 sensors in the US: demographic and air quality associations. J Expo Sci Environ Epidemiol 31, 514–524 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


This article is cited by


Quick links