Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Indoor exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) to Canadian children: the Kingston allergy birth cohort

Abstract

Background

Canadian children are widely exposed to phthalates and polycyclic aromatic hydrocarbons (PAHs) from indoor sources. Both sets of compounds have been implicated in allergic symptoms in children.

Objective

We characterize concentrations of eight phthalates and 12 PAHs in floor dust from the bedrooms of 79 children enrolled in the Kingston Allergy Birth Cohort (KABC).

Method

Floor dust was collected from the bedrooms of 79 children who underwent skin prick testing for common allergens after their first birthday. Data were collected on activities, household, and building characteristics via questionnaire.

Results

Diisononyl phthalate (DiNP) and phenanthrene were the dominant phthalate and PAH with median concentrations of 561 µg/g and 341 ng/g, respectively. Benzyl butyl phthalate (BzBP) and chrysene had the highest variations among all tested homes, ranging from 1–95% to 1–99%, respectively.

Significance

Some phthalates were significantly associated with product and material use such as diethyl phthalate (DEP) with fragranced products and DiNP and DiDP with vinyl materials. Some PAHs were significantly associated with household characteristics, such as benzo[a]pyrene with smoking, and phenanthrene and fluoranthene with the presence of an attached garage. Socioeconomic status (SES) had positive and negative relationships with some concentrations and some explanatory factors. No significant increases in risk of atopy (positive skin prick test) was found as a function of phthalate or PAH dust concentrations.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Concentrations of phthalates (A) in µg/g and polycyclic aromatic hydrocarbons (PAHs) (B) in ng/g in settled dust samples collected from children’s bedrooms (n = 71) in homes selected from Kingston Allergy Birth Cohort.
Fig. 2: Relative abundance of phthalates (A) and dominant PAHs (B) measured in settled dust collected from children’s bedrooms (n = 79) in study homes, ranked by the relative abundance of the dominate phthalate and PAH.
Fig. 3: Exposome globes demonstrating the associations between levels of phthalates (A) on the top, PAHs (B) on the bottom and household and building characteristics.

References

  1. Navaranjan G, Diamond ML, Harris SA, Jantunen L, Bernstein S, Scott JA, et al. Early life exposure to phthalates and the development of childhood asthma among Canadian children. J Expo Sci Environ Epidemiol. 2020;30:70–85.

    CAS  PubMed  Google Scholar 

  2. Haines DA, Saravanabhavan G, Werry K, Khoury C. An overview of human biomonitoring of environmental chemicals in the Canadian Health Measures Survey: 2007–2019. Int J Hyg Environ Health. 2017;220:13–28.

    CAS  PubMed  Google Scholar 

  3. Kubwabo C, Fan X, Rasmussen PE, Wu F, Kosarac I. Expanding the number of phthalates monitored in house dust. Int J Environ Anal Chem. 2016;96:667–81.

    CAS  Google Scholar 

  4. Schettler T, Skakkebæk NE, De Kretser D, Leffers H. Human exposure to phthalates via consumer products. Int J Androl. 2006;29:134–139.

    CAS  PubMed  Google Scholar 

  5. Koniecki D, Wang R, Moody RP, Zhu J. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure. Environ Res. 2011;111:329–36.

    CAS  PubMed  Google Scholar 

  6. Subedi B, Sullivan KD, Dhungana B. Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA. Environ Pollut. 2017;230:701–8.

    CAS  PubMed  Google Scholar 

  7. Environment and Climate Change Canada, Health Canada. State of the Science Report: Medium-Chain Phthalate Esters. 2015.

  8. North ML, Takaro TK, Diamond ML, Ellis AK. Effects of phthalates on the development and expression of allergic disease and asthma. Ann Allergy, Asthma Immunol. 2014;112:496–502.

    CAS  Google Scholar 

  9. Jeon S, Kim KT, Choi K. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature. Sci Total Environ. 2016;547:441–6.

    CAS  PubMed  Google Scholar 

  10. Yang C, Harris SA, Jantunen LM, Kvasnicka J, Nguyen LV, Diamond ML. Phthalates: relationships between air, dust, electronic devices and hands with imlications for exposure. Environ Sci Technol. 2020;54:8186–97.

    CAS  PubMed  Google Scholar 

  11. Hirosawa N, Yano K, Suzuki Y, Sakamoto Y. Endocrine disrupting effect of di-(2-ethylhexyl)phthalate on female rats and proteome analyses of their pituitaries. Proteomics. 2006;6:958–71.

    CAS  PubMed  Google Scholar 

  12. Hwang H-M, Park E-K, Young TM, Hammock BD. Occurrence of endocrine-disrupting chemicals in indoor dust. Sci Total Environ. 2008;404:26–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, Caudill SP, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect. 2004;112:331–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. European Chemicals Bureau. European Union Risk Assessment Report: benzyl butyl phthalate (BBP). 2007. https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/european-union-risk-assessment-report-benzyl-butyl-phthalate-bbp.

  15. European Chemicals Bureau. European Union Risk Assessment Report: Dibutyl Phthalate. 2004. https://echa.europa.eu/documents/10162/04f79b21-0b6d-4e67-91b9-0a70d4ea7500.

  16. European Chemicals Bureau. European Union Risk Assessment Report: Bis(2-ethylhexyl)phthalate (DEHP). Eur Comm - Jt Res Cent Luxemb. 2008;80:588.

    Google Scholar 

  17. Government of Canada. Canada Consumer Product Safety Act: An Act respecting the safety of consumer products. 2010. https://www.canada.ca/en/health-canada/services/consumer-product-safety/legislation-guidelines/acts-regulations/canada-consumer-product-safety-act.html.

  18. Melymuk L, Robson M, Helm PA, Diamond MLPCBs. PBDEs, and PAHs in Toronto air: Spatial and seasonal trends and implications for contaminant transport. Sci Total Environ. 2012;429:272–80.

    CAS  PubMed  Google Scholar 

  19. Rudel RA, Dodson RE, Perovich LJ, Morello-Frosch R, Camann DE, Zuniga MM, et al. Semivolatile endocrine-disrupting compounds in paired indoor and outdoor air in two Northern California communities. Environ Sci Technol. 2010;44:6583–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Graham LA, Noseworthy L, Fugler D, O’leary K, Karman D, Grande C. Contribution of vehicle emissions from an attached garage to residential indoor air pollution levels. J Air Waste Manag Assoc. 2004;54:563–84.

    CAS  PubMed  Google Scholar 

  21. Liu Y, Zhu L, Shen X. Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environ Sci Technol. 2001;35:840–4.

    CAS  PubMed  Google Scholar 

  22. Lv J, Xu R, Wu G, Zhang Q, Li Y, Wang P, et al. Indoor and outdoor air pollution of polycyclic aromatic hydrocarbons (PAHs) in Xuanwei and Fuyuan, China. J Environ Monit. 2009;11:1368–74.

    CAS  PubMed  Google Scholar 

  23. ATSDR. Public Health Statement: Polycyclic Aromatic Hydrocarbons (PAHs). 1995.

  24. Weschler CJ, Nazaroff WW. SVOC exposure indoors: fresh look at dermal pathways. Indoor Air. 2012;22:356–77.

    CAS  PubMed  Google Scholar 

  25. Lao JY, Xie SY, Wu CC, Bao LJ, Tao S, Zeng EY. Importance of dermal absorption of polycyclic aromatic hydrocarbons derived from barbecue fumes. Environ Sci Technol. 2018;52:8330–8.

    CAS  PubMed  Google Scholar 

  26. ATSDR. Toxicity of Polycyclic Aromatic Hydrocarbons (PAHs). 2012.

  27. Miller RL, Garfinkel R, Horton M, Camann D, Perera FP, Whyatt RM, et al. Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest. 2004;126:1071–8.

    CAS  PubMed  Google Scholar 

  28. Jedrychowski W, Galas A, Pac A, Flak E, Camman D, Rauh V, et al. Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. Eur J Epidemiol. 2005;20:775–82.

    CAS  PubMed  Google Scholar 

  29. Government of Canada, Environment Canada, Health Canada. Canadian Environmental Protection Act. Priority Substances List Assessment Report: Polycyclic Aromatic Hydrocarbons. 1994. https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/canadian-environmental-protection-act-priority-substances-list-assessment-report-polycyclic-aromatic-hydrocarbons.html.

  30. Government of Canada. Residential Indoor Air Quality Guidelines. 2018. http://healthycanadians.gc.ca/healthy-living-vie-saine/environment-environnement/air/guidelines-lignes-directrices-eng.php#a1 (accessed 20 Jul. 2020).

  31. Hammel SC, Levasseur JL, Hoffman K, Phillips AL, Lorenzo AM, Calafat AM, et al. Children’s exposure to phthalates and non-phthalate plasticizers in the home: The TESIE study. Environ Int. 2019;132:105061.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sugeng EJ, de Cock M, Leonards PEG, van de Bor M. Toddler behavior, the home environment, and flame retardant exposure. Chemosphere. 2020;252:126588.

    CAS  PubMed  Google Scholar 

  33. Roberts JW, Wallace LA, Camann DE, Dickey P, Gilbert SG, Lewis RG, et al. Monitoring and reducing exposure of infants to pollutants in house dust. Rev Environ Contam Toxicol. 2009;201:1–39.

    CAS  PubMed  Google Scholar 

  34. Gent JF, Kezik JM, Hill ME, Tsai E, Li DW, Leaderer BP. Household mold and dust allergens: Exposure, sensitization and childhood asthma morbidity. Environ Res. 2012;118:86–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bornehag CG, Sundell J, Weschler CJ, Sigsgaard T, Lundgren B, Hasselgren M, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect. 2004;112:1393–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kolarik B, Bornehag CG, Naydenov K, Sundell J, Stavova P, Nielsen OF. The concentrations of phthalates in settled dust in Bulgarian homes in relation to building characteristic and cleaning habits in the family. Atmos Environ. 2008;42:8553–9.

    CAS  Google Scholar 

  37. Bi C, Maestre JP, Li H, Zhang G, Givehchi R, Mahdavi A, et al. Phthalates and organophosphates in settled dust and HVAC filter dust of U.S. low-income homes: Association with season, building characteristics, and childhood asthma. Environ Int. 2018;121:916–30.

    CAS  PubMed  Google Scholar 

  38. Wan Y, Diamond ML, Siegel JA. Elevated concentrations of semivolatile organic compounds in social housing multiunit residential building apartments. Environ Sci Technol Lett. 2020;7:191–7.

    CAS  Google Scholar 

  39. North ML, Brook JR, Lee EY, Omana V, Daniel NM, Steacy LM, et al. The Kingston Allergy Birth Cohort: Exploring parentally reported respiratory outcomes through the lens of the exposome. Ann Allergy, Asthma Immunol. 2017;118:465–73.

    Google Scholar 

  40. Abbasi G, Saini A, Goosey E, Diamond ML. Product screening for sources of halogenated flame retardants in Canadian house and office dust. Sci Total Environ. 2016;545–546:299–307.

    PubMed  Google Scholar 

  41. Saini A, Okeme JO, Goosey E, Diamond ML. Calibration of two passive air samplers for monitoring phthalates and brominated flame-retardants in indoor air. Chemosphere. 2015;137:166–73.

    CAS  PubMed  Google Scholar 

  42. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  43. Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2.

    CAS  PubMed  Google Scholar 

  44. Podlecka D, Gromadzińska J, Mikołajewska K, Fijałkowska B, Stelmach I, Jerzynska J. Longitudinal effect of phthalates exposure on allergic diseases in children. Ann Allergy, Asthma Immunol. 2020;125:84–9.

    CAS  Google Scholar 

  45. Navaranjan G, Diamond ML, Harris SA, Jantunen L, Bernstein S, Scott JA, et al. Early life exposure to phthalates and the development of childhood asthma among Canadian children. Environ Res. 2021;197:110981.

    CAS  PubMed  Google Scholar 

  46. Kim SR, Dominici F, Buckley TJ. Concentrations of vehicle-related air pollutants in an urban parking garage. Environ Res. 2007;105:291–299.

    CAS  PubMed  Google Scholar 

  47. Zhu X, Fan Z, Wu X, Jung KH, Ohman-Strickland P, Bonanno LJ, et al. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution. J Expo Sci Environ Epidemiol. 2011;21:437–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Miguel AH, Kirchstetter TW, Harley RA, Hering SV. On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol. 1998;32:450–5.

    CAS  Google Scholar 

  49. Keyte IJ, Albinet A, Harrison RM. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative compounds measured in road tunnel environments. Sci Total Environ. 2016;566–567:1131–42.

    PubMed  Google Scholar 

  50. United States Consumer Product Safety Commission. Toxicity Review of Di-n-cctyl phthalate (DnOP). 2010. https://www.cpsc.gov/s3fs-public/ToxicityReviewOfDnOP.pdf.

  51. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health. 2007;210:623–34.

    CAS  PubMed  Google Scholar 

  52. Blanchard O, Glorennec P, Mercier F, Bonvallot N, Chevrier C, Ramalho O, et al. Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings. Environ Sci Technol. 2014;48:3959–69.

    CAS  PubMed  Google Scholar 

  53. Mercier F, Gilles E, Saramito G, Glorennec P, Le, Bot B. A multi-residue method for the simultaneous analysis in indoor dust of several classes of semi-volatile organic compounds by pressurized liquid extraction and gas chromatography/tandem mass spectrometry. J Chromatogr A. 2014;1336:101–11.

    CAS  PubMed  Google Scholar 

  54. Luongo G, Östman C. Organophosphate and phthalate esters in settled dust from apartment buildings in Stockholm. Indoor Air. 2016;26:414–25.

    CAS  PubMed  Google Scholar 

  55. Abb M, Heinrich T, Sorkau E, Lorenz W. Phthalates in house dust. Environ Int. 2009;35:965–70.

    CAS  PubMed  Google Scholar 

  56. Ait Bamai Y, Araki A, Kawai T, Tsuboi T, Saito I, Yoshioka E, et al. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings. Sci Total Environ. 2014;468–469:147–57.

    PubMed  Google Scholar 

  57. Langer S, Weschler CJ, Fischer A, Bekö G, Toftum J, Clausen G. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers. Atmos Environ. 2010;44:2294–301.

    CAS  Google Scholar 

  58. Bergh C, Torgrip R, Emenius G, Östman C. Organophosphate and phthalate esters in air and settled dust - a multi-location indoor study. Indoor Air. 2011;21:67–76.

    CAS  PubMed  Google Scholar 

  59. Guo Y, Kannan K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ Sci Technol. 2011;45:3788–94.

    CAS  PubMed  Google Scholar 

  60. Liu K, Kang L, Li A, Zheng J, Wang X, Zhou X, et al. Field investigation on phthalates in settled dust from five different surfaces in residential apartments. Build Environ. 2020;177:106856.

    Google Scholar 

  61. Whitehead T, Metayer C, Gunier RB, Ward MH, Nishioka MG, Buffler P, et al. Determinants of polycyclic aromatic hydrocarbon levels in house dust. J Expo Sci Environ Epidemiol. 2011;21:123–32.

    CAS  PubMed  Google Scholar 

  62. Whitehead TP, Metayer C, Petreas M, Does M, Buffler PA, Rappaport SM. Polycyclic aromatic hydrocarbons in residential dust: Sources of variability. Environ Health Perspect. 2013;121:543–50.

    PubMed  PubMed Central  Google Scholar 

  63. Wang X, Banks APW, He C, Drage DS, Gallen CL, Li Y, et al. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and legacy and current pesticides in indoor environment in Australia – occurrence, sources and exposure risks. Sci Total Environ. 2019;693:133588.

    CAS  PubMed  Google Scholar 

  64. Mannino MR, Orecchio S. Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: extraction, GC-MS analysis, distribution and sources. Atmos Environ. 2008;42:1801–17.

    CAS  Google Scholar 

  65. Maertens RM, Yang X, Zhu J, Gagne RW, Douglas GR, White PA. Mutagenic and carcinogenic hazards of settled house dust I: polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environ Sci Technol. 2008;42:1747–53.

    CAS  PubMed  Google Scholar 

  66. Wang BL, Pang ST, Zhang XL, Li XL, Sun YG, Lu XM, et al. Levels and neurodevelopmental effects of polycyclic aromatic hydrocarbons in settled house dust of urban dwellings on preschool-aged children in Nanjing. China Atmos Pollut Res. 2014;5:292–302.

    CAS  Google Scholar 

  67. Qi H, Li WL, Zhu NZ, Ma WL, Liu LY, Zhang F, et al. Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China. Sci Total Environ. 2014;491–492:100–7.

    PubMed  Google Scholar 

  68. Jaakkola JJK, Knight TL. The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: a systematic review and meta-analysis. Environ Health Perspect. 2008;116:845–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bornehag CG, Lundgren B, Weschler CJ, Sigsgaard T, Hagerhed-Engman L, Sundell J. Phthalates in indoor dust and their association with building characteristics. Environ Health Perspect. 2005;113:1399–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Demirtepe H, Melymuk L, Diamond ML, Bajard L, Vojta Š, Prokeš R, et al. Linking past uses of legacy SVOCs with today’s indoor levels and human exposure. Environ Int. 2019;127:653–63.

    CAS  PubMed  Google Scholar 

  71. Haines SR, Adams RI, Boor BE, Bruton TA, Downey J, Ferro AR, et al. Ten questions concerning the implications of carpet on indoor chemistry and microbiology. Build Environ. 2020;170:106589.

    Google Scholar 

  72. Wilke O, Jann O, Brödner D. VOC- and SVOC-emissions from adhesives, floor coverings and complete floor structures. Indoor Air. 2004;14:98–107.

    PubMed  Google Scholar 

  73. Bekö G, Weschler CJ, Langer S, Callesen M, Toftum J, Clausen G. Children’s phthalate intakes and resultant cumulative exposures estimated from urine compared with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers. PLoS One. 2013;8:e62442.

    PubMed  PubMed Central  Google Scholar 

  74. Langer S, Bekö G, Weschler CJ, Brive LM, Toftum J, Callesen M, et al. Phthalate metabolites in urine samples from Danish children and correlations with phthalates in dust samples from their homes and daycare centers. Int J Hyg Environ Health. 2014;217:78–87.

    CAS  PubMed  Google Scholar 

  75. Neal MS, Zhu J, Foster WG. Quantification of benzo[a]pyrene and other PAHs in the serum and follicular fluid of smokers versus non-smokers. Reprod Toxicol. 2008;25:100–6.

    CAS  PubMed  Google Scholar 

  76. Choi H, Harrison R, Komulainen H, Delgado-Saborit JM Polycyclic Aromatic Hydrocarbons. In: WHO Guidelines for Indoor Air Quality: Selected Pollutants. Geneva: World Health Organization, 2010, pp 289–346.

  77. Choi H, Spengler J. Source attribution of personal exposure to airborne polycyclic aromatic hydrocarbon mixture using concurrent personal, indoor, and outdoor measurements. Environ Int. 2014;63:173–81.

    CAS  PubMed  Google Scholar 

  78. Chen Y, Du W, Shen G, Zhuo S, Zhu X, Shen H, et al. Household air pollution and personal exposure to nitrated and oxygenated polycyclic aromatics (PAHs) in rural households: Influence of household cooking energies. Indoor Air. 2017;27:169–78.

    CAS  PubMed  Google Scholar 

  79. Gao J, Jian Y, Cao C, Chen L, Zhang X. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking. Atmos Environ. 2015;120:191–199.

    CAS  Google Scholar 

  80. Ott WR, Siegmann HC. Using multiple continuous fine particle monitors to characterize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in-transit settings. Atmos Environ. 2006;40:821–43.

    CAS  Google Scholar 

  81. Orecchio S. Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmos Environ. 2011;45:1888–95.

    CAS  Google Scholar 

  82. Yang CR, Lin TC, Chang FH. Particle size distribution and PAH concentrations of incense smoke in a combustion chamber. Environ Pollut. 2007;145:606–15.

    CAS  PubMed  Google Scholar 

  83. White AJ, Teitelbaum SL, Stellman SD, Beyea J, Steck SE, Mordukhovich I, et al. Indoor air pollution exposure from use of indoor stoves and fireplaces in association with breast cancer: a case-control study. Environ Heal. 2014;13:1–12.

    Google Scholar 

  84. Gustafson P, Östman C, Sällsten G. Indoor levels of polycyclic aromatic hydrocarbons in homes with or without wood burning for heating. Environ Sci Technol. 2008;42:5074–80.

    CAS  PubMed  Google Scholar 

  85. Moreau-Guigon E, Alliot F, Gaspéri J, Blanchard M, Teil M-JJ, Mandin C, et al. Seasonal fate and gas/particle partitioning of semi-volatile organic compounds in indoor and outdoor air. Atmos Environ. 2016;147:423–33.

    CAS  Google Scholar 

  86. Schnelle-Kreis J, Jänsch T, Wolf K, Gebefügi I, Kettrup A. The effect of wind direction on the observed size distribution of particle adsorbed polycyclic aromatic hydrocarbons on an inner city sampling site. J Environ Monit. 1999;1:357–60.

    CAS  PubMed  Google Scholar 

  87. Kim KH, Lee SB, Woo D, Bae GN. Influence of wind direction and speed on the transport of particle-bound PAHs in a roadway environment. Atmos Pollut Res. 2015;6:1024–34.

    Google Scholar 

  88. Robinson L, Miller R. The impact of bisphenol A and phthalates on allergy, asthma, and immune function: a review of latest findings. Curr Environ Heal Rep. 2015;2:379–87.

    CAS  Google Scholar 

  89. European Commission concludes DINP and DIDP safe for use in consumer applications. Addit Polym. 2014;2014:11.

  90. Oksel C, Custovic A. Development of allergic sensitization and its relevance to paediatric asthma. Curr Opin Allergy Clin Immunol. 2018;18:109–16.

    PubMed  Google Scholar 

  91. Kolarik B, Naydenov K, Larsson M, Bornehag CG, Sundell J. The association between phthalates in dust and allergic diseases among Bulgarian children. Environ Health Perspect. 2008;116:98–103.

    CAS  PubMed  Google Scholar 

  92. Li MC, Chen CH, Guo YL. Phthalate esters and childhood asthma: a systematic review and congener-specific meta-analysis. Environ Pollut. 2017;229:655–60.

    CAS  PubMed  Google Scholar 

  93. Liu H, Xu C, Jiang ZY, Gu A. Association of polycyclic aromatic hydrocarbons and asthma among children 6-19 years: NHANES 2001–2008 and NHANES 2011–2012. Respir Med. 2016;110:20–27.

    PubMed  Google Scholar 

  94. Jung KH, Yan B, Moors K, Chillrud SN, Perzanowski MS, Whyatt RM, et al. Repeated exposure to polycyclic aromatic hydrocarbons and asthma: effect of seroatopy. Ann Allergy, Asthma Immunol. 2012;109:249–54.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank all the families who were involved in this study, and the physicians and midwives, and nurses at Kingston Health Sciences Center – Kingston General Hospital Site. The authors acknowledge the help from the Diamond Environmental Research Group and Building Engineering Research Group at University of Toronto, and from Queen’s University.

Funding

This research was funded by a CIHR Catalyst grant (201304CEN), the Allergy, Genes, and Environment Network (AllerGen NCE, 12ASI3), and the Natural Sciences and Engineering Research Council of Canada (NSERC, RGPIN-2014-06698, RGPAS 429679-12 and RGPIN-2017-06654), and a University of Toronto Fellowship to YW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam L. Diamond.

Ethics declarations

Conflict of interest

AKE declares the following disclosures not related to the current publication: AKE has participated in advisory boards for ALK Abello, AstraZeneca, Aralez, Bausch Health, Circassia Ltd, GlaxoSmithKline, Johnson & Johnson, Merck, Mylan, Novartis, Pediapharm and Pfizer, has been a speaker for ALK, Aralez, AstraZeneca, Boerhinger-Ingelheim, CACME, Meda, Mylan, Merck, Novartis, Pediapharm, Pfizer, The ACADEMY, and Takeda. Her institution has received research grants from Bayer LLC, Circassia Ltd, Green Cross Pharmaceuticals, GlaxoSmithKline, Sun Pharma, Merck, Novartis, Pfizer, Regeneron and Sanofi. She has also served as an independent consultant to Allergy Therapeutics, Bayer LLC, Ora Inc. and Regeneron in the past. MLN is currently an employee of Novartis Pharmaceuticals Canada, her employment having started subsequent to the completion of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., North, M.L., Navaranjan, G. et al. Indoor exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) to Canadian children: the Kingston allergy birth cohort. J Expo Sci Environ Epidemiol 32, 69–81 (2022). https://doi.org/10.1038/s41370-021-00310-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-021-00310-y

Keywords

  • Floor dust
  • phthalates
  • PAH
  • socioeconomic status
  • exposome globe
  • allergic response

Search

Quick links