Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Per- and polyfluoroalkyl substances (PFAS) and total fluorine in fire station dust

Abstract

Per- and polyfluoroalkyl substances (PFAS) are a class of over 4700 fluorinated compounds used in industry and consumer products. Studies have highlighted the use of aqueous film-forming foams (AFFFs) as an exposure source for firefighters, but little is known about PFAS occurrence inside fire stations, where firefighters spend most of their shifts. In this study, we aimed to characterize PFAS concentrations and sources inside fire stations. We measured 24 PFAS (using LC–MS/MS) and total fluorine (using particle-induced gamma ray emission) in dust from multiple rooms of 15 Massachusetts stations, many of which (60%) no longer use PFAS-containing AFFF at all and the rest of which only use it very rarely. Compared to station living rooms, turnout gear locker rooms had higher dust levels of total fluorine (p < 0.0001) and three PFAS: perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), and perfluorodecanoate (PFDoDA) (p < 0.05). These PFAS were also found on six wipes of station turnout gear. By contrast, the dominant PFAS in living rooms was N-ethyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA), a precursor to perfluorooctane sulfonate (PFOS) that still persists despite phase-outs almost two decades ago. The Σ24 PFAS accounted for less than 2% of fluorine in dust (n = 39), suggesting the potential presence of unknown PFAS. Turnout gear may be an important PFAS source in stations due to intentional additives and/or contamination from firefighting activities.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Concentrations of total fluorine and PFAS in dust by room type in 15 fire stations in Massachusetts.
Fig. 2
Fig. 3: Profiles of PFAS on wipes of turnout gear in a subset of six fire stations in Massachusetts.

References

  1. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2018. https://doi.org/10.1038/s41370-018-0094-1.

  2. OECD. Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs). OECD; 2018. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2018)7&doclanguage=en.

  3. Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL. Polyfluoroalkyl chemicals in the U.S. population: data from the national health and nutrition examination survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000. Environ Health Perspect. 2007;115:1596–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Z, Cousins IT, Scheringer M, Hungerbuehler K. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: status quo, ongoing challenges and possible solutions. Environ Int. 2015;75:172–9.

    Article  CAS  PubMed  Google Scholar 

  5. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 2007;99:366–94.

    Article  CAS  PubMed  Google Scholar 

  6. Rappazzo KM, Coffman E, Hines EP. Exposure to perfluorinated alkyl substances and health outcomes in children: a systematic review of the epidemiologic literature. Int J Environ Res Public Health. 2017;14. https://doi.org/10.3390/ijerph14070691.

  7. Liew Z, Goudarzi H, Oulhote Y. Developmental exposures to perfluoroalkyl substances (PFASs): an update of associated health outcomes. Curr Environ Health Rep. 2018;5:1–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin P-ID, Cardenas A, Hauser R, Gold DR, Kleinman KP, Hivert M-F, et al. Per- and polyfluoroalkyl substances and blood lipid levels in pre-diabetic adults-longitudinal analysis of the diabetes prevention program outcomes study. Environ Int. 2019;129:343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao C, Grandjean P, Valvi D, Nielsen F, Jensen TK, Weihe P, et al. Associations of exposure to perfluoroalkyl substances with thyroid hormone concentrations and birth size. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/clinem/dgz147.

  10. Vieira VM, Hoffman K, Shin H-M, Weinberg JM, Webster TF, Fletcher T. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environ Health Perspect. 2013;121:318–23.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect. 2013;121:1313–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stanifer JW, Stapleton HM, Souma T, Wittmer A, Zhao X, Boulware LE. Perfluorinated chemicals as emerging environmental threats to kidney health: a scoping review. Clin J Am Soc Nephrol. 2018;13:1479–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu X, Guo Z, Krebs KA, Pope RH, Roache NF. Concentrations and trends of perfluorinated chemicals in potential indoor sources from 2007 through 2011 in the US. Chemosphere. 2014;98:51–57.

    Article  CAS  PubMed  Google Scholar 

  14. Tokranov AK, Nishizawa N, Amadei CA, Zenobio JE, Pickard HM, Allen JG, et al. How do we measure poly- and perfluoroalkyl substances (PFASs) at the surface of consumer products? Environ Sci Technol Lett. 2019;6:38–43.

    Article  CAS  PubMed  Google Scholar 

  15. Bečanová J, Melymuk L, Vojta Š, Komprdová K, Klánová J. Screening for perfluoroalkyl acids in consumer products, building materials and wastes. Chemosphere. 2016;164:322–9.

    Article  PubMed  Google Scholar 

  16. Kotthoff M, Muller J, Jurling H, Schlummer M, Fiedler D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ Sci Pollut Res Int. 2015;22:14546–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dauchy X, Boiteux V, Bach C, Rosin C, Munoz JF. Per- and polyfluoroalkyl substances in firefighting foam concentrates and water samples collected near sites impacted by the use of these foams. Chemosphere. 2017;183:53–61.

    Article  CAS  PubMed  Google Scholar 

  18. Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, et al. Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett. 2016;3:344–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Houtz EF, Higgins CP, Field JA, Sedlak DL. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ Sci Technol. 2013;47:8187–95.

    Article  CAS  PubMed  Google Scholar 

  20. Daniels RD, Kubale TL, Yiin JH, Dahm MM, Hales TR, Baris D, et al. Mortality and cancer incidence in a pooled cohort of US firefighters from San Francisco, Chicago and Philadelphia (1950-2009). Occup Environ Med. 2014;71:388–97.

    Article  PubMed  Google Scholar 

  21. Pukkala E, Martinsen JI, Weiderpass E, Kjaerheim K, Lynge E, Tryggvadottir L, et al. Cancer incidence among firefighters: 45 years of follow-up in five Nordic countries. Occup Environ Med. 2014;71:398–404.

    Article  PubMed  Google Scholar 

  22. LeMasters GK, Genaidy AM, Succop P, Deddens J, Sobeih T, Barriera-Viruet H, et al. Cancer risk among firefighters: a review and meta-analysis of 32 studies. J Occup Environ Med. 2006;48:1189–202.

    Article  PubMed  Google Scholar 

  23. Shaw SD, Berger ML, Harris JH, Yun SH, Wu Q, Liao C, et al. Persistent organic pollutants including polychlorinated and polybrominated dibenzo-p-dioxins and dibenzofurans in firefighters from Northern California. Chemosphere. 2013;91:1386–94.

    Article  CAS  PubMed  Google Scholar 

  24. Rotander A, Toms LML, Aylward L, Kay M, Mueller JF. Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF). Environ Int. 2015;82:28–34.

    Article  CAS  PubMed  Google Scholar 

  25. Laitinen JA, Koponen J, Koikkalainen J, Kiviranta H. Firefighters’ exposure to perfluoroalkyl acids and 2-butoxyethanol present in firefighting foams. Toxicol Lett. 2014;231:227–32.

    Article  CAS  PubMed  Google Scholar 

  26. Jin C, Sun Y, Islam A, Qian Y, Ducatman A. Perfluoroalkyl acids including perfluorooctane sulfonate and perfluorohexane sulfonate in firefighters. J Occup Environ Med. 2011;53:324–8.

    Article  CAS  PubMed  Google Scholar 

  27. Barton KE, Starling AP, Higgins CP, McDonough CA, Calafat AM, Adgate JL. Sociodemographic and behavioral determinants of serum concentrations of per- and polyfluoroalkyl substances in a community highly exposed to aqueous film-forming foam contaminants in drinking water. Int J Hyg Environ Health. 2019. https://doi.org/10.1016/j.ijheh.2019.07.012.

  28. Dobraca D, Israel L, McNeel S, Voss R, Wang M, Gajek R, et al. Biomonitoring in California firefighters: Metals and perfluorinated chemicals. J Occup Environ Med. 2015;57:88–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tao L, Kannan K, Aldous KM, Mauer MP, Eadon GA. Biomonitoring of perfluorochemicals in plasma of New York state personnel responding to the world trade center disaster. Environ Sci Technol. 2008;42:3472–8.

    Article  CAS  PubMed  Google Scholar 

  30. Hall SM, Patton S, Petreas M, Zhang S, Phillips AL, Hoffman K, et al. Per- and polyfluoroalkyl substances in dust collected from residential homes and fire stations in North America. Environ Sci Technol. 2020;54:14558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kales SN, Soteriades ES, Christophi CA, Christiani DC. Emergency duties and deaths from heart disease among firefighters in the United States. N Engl J Med. 2007;356:1207–15.

    Article  CAS  PubMed  Google Scholar 

  32. NFPA. NFPA 1851: standard on selection, care, and maintenance of protective ensembles for structural fire fighting and proximity fire fighting. NFPA; 2014. https://catalog.nfpa.org/NFPA-1851-Standard-on-Selection-Care-and-Maintenance-of-Protective-Ensembles-for-Structural-Fire-Fighting-and-Proximity-Fire-Fighting-P1444.aspx#:~:text=US%20every%20year.-,NFPA%201851%2C%20Standard%20on%20Selection%2C%20Care%2C%20and%20Maintenance%20of,maintenance%2C%20contamination%2C%20or%20damage.

  33. Peaslee GF, Wilkinson JT, McGuinness SR, Tighe M, Caterisano N, Lee S, et al. Another pathway for firefighter exposure to per- and polyfluoroalkyl substances: firefighter textiles. Environ Sci Technol Lett. 2020;7:594–9.

    Article  CAS  Google Scholar 

  34. Mayer AC, Fent KW, Bertke S, Horn GP, Smith DL, Kerber S, et al. Firefighter hood contamination: Efficiency of laundering to remove PAHs and FRs. J Occup Environ Hyg. 2019;16:129–40. https://doi.org/10.1080/15459624.2018.1540877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fent KW, Evans DE, Booher D, Pleil JD, Stiegel MA, Horn GP, et al. Volatile organic compounds off-gassing from firefighters’ personal protective equipment ensembles after use. J Occup Environ Hyg. 2015;12:404–14.

    Article  CAS  PubMed  Google Scholar 

  36. Fent KW, Alexander B, Roberts J, Robertson S, Toennis C, Sammons D, et al. Contamination of firefighter personal protective equipment and skin and the effectiveness of decontamination procedures. J Occup Environ Hyg. 2017;14:801–14.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Dewitt JC, Higgins CP, Cousins IT. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ Sci Technol. 2017;51:2508–18.

    Article  CAS  PubMed  Google Scholar 

  38. Rotander A, Kärrman A, Toms LML, Kay M, Mueller JF, Gómez Ramos MJ. Novel fluorinated surfactants tentatively identified in firefighters using liquid chromatography quadrupole time-of-flight tandem mass spectrometry and a case-control approach. Environ Sci Technol. 2015;49:2434–42.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Cousins IT, Scheringer M, Hungerbühler K. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ Int. 2013;60:242–8.

    Article  CAS  PubMed  Google Scholar 

  40. Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, et al. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol. 2017;51:2047–57.

    Article  CAS  PubMed  Google Scholar 

  41. Schaider LA, Balan SA, Blum A, Andrews DQ, Strynar MJ, Dickinson ME, et al. Fluorinated compounds in U.S. fast food packaging. Environ Sci Technol Lett. 2017;4:105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robel AE, Marshall K, Dickinson M, Lunderberg D, Butt C, Peaslee G, et al. Closing the mass balance on fluorine on papers and textiles. Environ Sci Technol. 2017;51:9022–32.

    Article  CAS  PubMed  Google Scholar 

  43. Ritter EE, Dickinson ME, Harron JP, Lunderberg DM, DeYoung PA, Robel AE, et al. PIGE as a screening tool for per- and polyfluorinated substances in papers and textiles. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2017;407:47–54.

    Article  CAS  Google Scholar 

  44. Poothong S, Papadopoulou E, Padilla-Sánchez JA, Thomsen C, Haug LS. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ Int. 2020;134:105244.

    Article  CAS  PubMed  Google Scholar 

  45. Mitro SD, Dodson RE, Singla V, Adamkiewicz G, Elmi AF, Tilly MK, et al. Consumer product chemicals in indoor dust: a quantitative meta-analysis of U.S. studies. Environ Sci Technol. 2016;50:10661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sparer EH, Prendergast D, Apell JN, Eng M, Madeleine R, Wagner GR, et al. Assessment of ambient exposures firefighters encounter while at the fire station: an exploratory study. J Occup Environ Med. 2017;59:1017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fraser AJ, Webster TF, Watkins DJ, Strynar MJ, Kato K, Calafat AM, et al. Polyfluorinated compounds in dust from homes, offices, and vehicles as predictors of concentrations in office workers’ serum. Environ Int. 2013;60:128–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Allen JG, McClean MD, Stapleton HM, Webster TF. Critical factors in assessing exposure to PBDEs via house dust. Environ Int. 2008;34:1085–91.

    Article  CAS  PubMed  Google Scholar 

  49. Stapleton HM, Kelly SM, Allen JG, McClean MD, Webster TF. Measurement of polybrominated diphenyl ethers on hand wipes: estimating exposure from hand-to-mouth contact. Environ Sci Technol. 2008;42:3329–34.

    Article  CAS  PubMed  Google Scholar 

  50. Schultes L, Vestergren R, Volkova K, Westberg E, Jacobson T, Benskin JP. Per- and polyfluoroalkyl substances and fluorine mass balance in cosmetic products from the Swedish market: implications for environmental emissions and human exposure. Environ Sci Process Impacts. 2018;20:1680–90.

    Article  CAS  PubMed  Google Scholar 

  51. Schultes L, Peaslee GF, Brockman JD, Majumdar A, McGuinness SR, Wilkinson JT, et al. Total Fluorine measurements in food packaging: how do current methods perform? Environ Sci Technol Lett. 2019;6:73–78.

    Article  CAS  Google Scholar 

  52. Hu XC, Dassuncao C, Zhang X, Grandjean P, Weihe P, Webster GM, et al. Can profiles of poly- and perfluoroalkyl substances (PFASs) in human serum provide information on major exposure sources? Environ Health. 2018;17:11.

    Article  PubMed  PubMed Central  Google Scholar 

  53. D’eon JC, Mabury SA. Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans? Environ Sci Technol. 2011;45:7974–84.

    Article  PubMed  Google Scholar 

  54. Martin JW, Asher BJ, Beesoon S, Benskin JP, Ross MS. PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure? J Environ Monit. 2010;12:1979–2004.

    Article  CAS  PubMed  Google Scholar 

  55. EPA. 2010/15 PFOA stewardship program: guidance on reporting emissions and product content. 2006. https://www.epa.gov/sites/production/files/2015-10/documents/pfoaguidance.pdf.

  56. Land M, de Wit CA, Bignert A, Cousins IT, Herzke D, Johansson JH, et al. What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review. Environ Evid. 2018;7:4.

    Article  Google Scholar 

  57. Poothong S, Padilla-Sanchez JA, Papadopoulou E, Giovanoulis G, Thomsen C, Haug LS. Hand wipes: a useful tool for assessing human exposure to poly- and perfluoroalkyl substances (PFASs) through hand-to-mouth and dermal contacts. Environ Sci Technol. 2019;53:1985–93.

    Article  CAS  PubMed  Google Scholar 

  58. Janousek RM, Lebertz S, Knepper TP. Previously unidentified sources of perfluoroalkyl and polyfluoroalkyl substances from building materials and industrial fabrics. Environ Sci Process Impacts. 2019. https://doi.org/10.1039/c9em00091g.

  59. Favreau P, Poncioni-Rothlisberger C, Place BJ, Bouchex-Bellomie H, Weber A, Tremp J, et al. Multianalyte profiling of per- and polyfluoroalkyl substances (PFASs) in liquid commercial products. Chemosphere. 2017;171:491–501.

    Article  CAS  PubMed  Google Scholar 

  60. Tokranov AK, Nishizawa N, Amadei CA, Zenobio JE, Pickard HM, Allen JG, et al. How do we measure poly- and perfluoroalkyl substances (PFASs) at the surface of consumer products? Environ Sci Technol Lett. 2018;6:acs.estlett.8b00600.

    Google Scholar 

  61. Herzke D, Olsson E, Posner S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway—a pilot study. Chemosphere. 2012;88:980–7.

    Article  CAS  PubMed  Google Scholar 

  62. Jha SK, Mishra VK, Sharma DK, Damodaran T. Fluoride in the environment and its metabolism in humans. In: Whitacre DM, editor. Reviews of environmental contamination and toxicology. Volume 211. New York, NY: Springer New York; 2011, p. 121–42.

  63. Houtz EF, Sedlak DL. Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. Environ Sci Technol. 2012;46:9342–9.

    Article  CAS  PubMed  Google Scholar 

  64. Karaskova P, Venier M, Melymuk L, Becanova J, Vojta S, Prokes R, et al. Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America. Environ Int. 2016;94:315–24.

    Article  CAS  PubMed  Google Scholar 

  65. Wu Q, Kannan K. Analysis of perfluoroalkyl substances in food, drinking water, and indoor dust from New York State and the assessment of human exposure. Abstr Pap Am Chem Soc. 2015;250.

  66. Goosey E, Harrad S. Perfluoroalkyl compounds in dust from Asian, Australian, European, and North American homes and UK cars, classrooms, and offices. Environ Int. 2011;37:86–92.

    Article  CAS  PubMed  Google Scholar 

  67. Knobeloch L, Imm P, Anderson H. Perfluoroalkyl chemicals in vacuum cleaner dust from 39 Wisconsin homes. Chemosphere. 2012;88:779–83.

    Article  CAS  PubMed  Google Scholar 

  68. Scher DP, Kelly JE, Huset CA, Barry KM, Yingling VL. Does soil track-in contribute to house dust concentrations of perfluoroalkyl acids (PFAAs) in areas affected by soil or water contamination? J Expo Sci Environ Epidemiol. 2019;29:218–26.

    Article  CAS  PubMed  Google Scholar 

  69. Strynar MJ, Lindstrom AB. Perfluorinated compounds in house dust from Ohio and North Carolina, USA. Environ Sci Technol. 2008;42:3751–6.

    Article  CAS  PubMed  Google Scholar 

  70. Giovanoulis G, Nguyen MA, Arwidsson M, Langer S, Vestergren R, Lagerqvist A. Reduction of hazardous chemicals in Swedish preschool dust through article substitution actions. Environ Int. 2019;130:104921.

    Article  CAS  PubMed  Google Scholar 

  71. Winkens K, Giovanoulis G, Koponen J, Vestergren R, Berger U, Karvonen AM, et al. Perfluoroalkyl acids and their precursors in floor dust of children’s bedrooms—implications for indoor exposure. Environ Int. 2018;119:493–502.

    Article  CAS  PubMed  Google Scholar 

  72. Haug LS, Huber S, Becher G, Thomsen C. Characterisation of human exposure pathways to perfluorinated compounds-comparing exposure estimates with biomarkers of exposure. Environ Int. 2011;37:687–93.

    Article  CAS  PubMed  Google Scholar 

  73. Sandford G. Organofluorine chemistry. Philos Trans R Soc Lond Ser A-Math Phys Eng Sci. 2000;358:455–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the fire departments in Massachusetts for their help. We thank Jose Vallarino, Emily LaRotonda, Maya Bliss, Deborah Chan, and Emily Jones for their help in the field. This research was made possible by Grant No. T42 OH008416 from NIOSH, the Rappaport Institute for Greater Boston, NIH Grant P30ES000002, NIEHS P42ES027706 Superfund Research Center, the Last Call Foundation (Boston), and NSF PHY-1713857.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna S. Young.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Young, A.S., Sparer-Fine, E.H., Pickard, H.M. et al. Per- and polyfluoroalkyl substances (PFAS) and total fluorine in fire station dust. J Expo Sci Environ Epidemiol 31, 930–942 (2021). https://doi.org/10.1038/s41370-021-00288-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-021-00288-7

Keywords

  • Emerging Contaminants
  • Endocrine Disruptors
  • Healthy Buildings
  • Perfluorinated Chemicals
  • PFAS
  • Vulnerable Occupations
  • Workplace Exposures
  • Analytical Methods

This article is cited by

Search

Quick links