Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Demographic predictors of urinary arsenic in a low-income predominantly Hispanic pregnancy cohort in Los Angeles

Abstract

Background

Arsenic (As) is a contaminant of top public health concern, due to its range of detrimental health effects. Arsenic exposure has not been well-characterized among the US Hispanic populations and has been particularly understudied in this population during pregnancy.

Methods

As part of the MADRES ongoing pregnancy cohort of predominantly lower-income, Hispanic women in Los Angeles, CA, we examined levels of maternal first trimester urinary As, including total As and As metabolites (inorganic (iAs), monomethylated (MMA) and dimethylated As (DMA)), in relation to participant demographics, lifestyle characteristics, and rice/seafood consumption, to identify factors that may influence As exposure and its metabolites during pregnancy (N = 241).

Results

Total As concentrations ranged from low to high (0.8–506.2 μg/L, mean: 9.0 μg/L, SD: 32.9) in our study population. Foreign-born Hispanic women had 8.6% higher %DMA (95% CI: 3.3%, 13.9%) and −7.7% lower %iAs (95% CI: −12.6%, −2.9%) than non-Hispanic women. A similar trend was observed for US-born Hispanic women. In addition, maternal age was associated with 0.4% higher %iAs (95% CI: 0.1%, 0.6%) and 0.4% lower %DMA (95% CI: −0.7%, −0.1%) per year, which may indicate poor As methylation capacity.

Conclusion

Individual factors may predict As exposure and metabolism in pregnancy, and in turn, greater risk of adverse health effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farzan SF, Karagas MR, Chen Y. In utero and early life arsenic exposure in relation to long-term health and disease. Toxicol Appl Pharmacol. 2013;272:384–90.

  2. Landrigan PJ. Children’s environmental health: a brief history. Acad Pediatr. 2016;16:1–9.

    PubMed  Google Scholar 

  3. Heindel JJ, Skalla LA, Joubert BR, Dilworth CH, Gray KA. Review of developmental origins of health and disease publications in environmental epidemiology. Reprod Toxicol. 2017;68:34–48.

    CAS  PubMed  Google Scholar 

  4. Ettinger AS, Zota AR, Amarasiriwardena CJ, Hopkins MR, Schwartz J, Hu H, et al. Maternal arsenic exposure and impaired glucose tolerance during pregnancy. Environ Health Perspect. 2009;117:1059–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Farzan SF, Chen Y, Wu F, Jiang J, Liu M, Baker E, et al. Blood pressure changes in relation to arsenic exposure in a U.S. Pregnancy Cohort. Environ Health Perspect. 2015;123:999–1006.

  6. Fleisch AF, Gold DR, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I, et al. Air pollution exposure and abnormal glucose tolerance during pregnancy: the Project Viva cohort. Environ Health Perspect. 2014;122:378–83.

    PubMed  PubMed Central  Google Scholar 

  7. Lee PC, Talbott EO, Roberts JM, Catov JM, Bilonick RA, Stone RA, et al. Ambient air pollution exposure and blood pressure changes during pregnancy. Environ Res. 2012;117:46–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Robledo CA, Mendola P, Yeung E, Mannisto T, Sundaram R, Liu D, et al. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus. Environ Res. 2015;137:316–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, Silva PMDe. Arsenic and human health effects: a review. Environ Toxicol Pharm. 2015;40:828–46.

    Google Scholar 

  10. Rodriguez-Barranco M, Lacasana M, Aguilar-Garduno C, Alguacil J, Gil F, Gonzalez-Alzaga B, et al. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis. Sci Total Environ. 2013;454-455:562–77.

    CAS  PubMed  Google Scholar 

  11. Agency for Toxic Substances and Disease. Toxicological profile for arsenic. Atlanta, GA: US Department of Health and Human Services; 2007.

  12. Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T, Karagas MR. Rice consumption and urinary arsenic concentrations in U.S. children. Environ Health Perspect. 2012;120:1418–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ, et al. Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci USA. 2011;108:20656–60.

    CAS  PubMed  Google Scholar 

  14. Jackson BP, Taylor VF, Karagas MR, Punshon T, Cottingham KL. Arsenic, organic foods, and brown rice syrup. Environ Health Perspect. 2012;120:623–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. National Research Council. Critical aspects of EPA’s IRIS assessment of inorganic arsenic: interim report. Washington, D.C.: National Research Council; 2014.

  16. Durand C, Sauthier N, Schwoebel V. Assessment of exposure to soils contaminated with lead, cadmium, and arsenic near a zinc smelter, Cassiopee Study, France, 2008. Environ Monit Assess. 2015;187:352.

    PubMed  PubMed Central  Google Scholar 

  17. Kafaei R, Tahmasbi R, Ravanipour M, Vakilabadi DR, Ahmadi M, Omrani A, et al. Urinary arsenic, cadmium, manganese, nickel, and vanadium levels of schoolchildren in the vicinity of the industrialised area of Asaluyeh, Iran. Environ Sci Pollut Res Int. 2017;24:23498–507.

    CAS  PubMed  Google Scholar 

  18. Anderton DL, Anderson AB, Oakes JM, Fraser MR. Environmental equity: the demographics of dumping. Demography. 1994;31:229–48.

    CAS  PubMed  Google Scholar 

  19. Carter-Pokras O, Zambrana RE, Poppell CF, Logie LA, Guerrero-Preston R. The environmental health of Latino children. J Pediatr Health Care. 2007;21:307–14.

    PubMed  PubMed Central  Google Scholar 

  20. Hipp JR, Lakon CM. Social disparities in health: disproportionate toxicity proximity in minority communities over a decade. Health Place. 2010;16:674–83.

    PubMed  Google Scholar 

  21. Bell ML, Ebisu K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect. 2012;120:1699–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Office of Environmental Health Hazard Assessment California Environmental Protection Agency. Analysis of race/ethnicity, age, and CalEnviroScreen 3.0 Scores. Sacramento, CA: Office of Environmental Health Hazard Assessment California Environmental Protection Agency; 2018.

  23. Cushing L, Faust J, August LM, Cendak R, Wieland W, Alexeeff G. Racial/Ethnic disparities in cumulative environmental health impacts in California: evidence from a statewide environmental justice screening tool (CalEnviroScreen 1.1). Am J Public Health. 2015;105:2341–8.

    PubMed  PubMed Central  Google Scholar 

  24. Ceballos RM, Knerr S, Scott MA, Hohl SD, Malen RC, Vilchis H, et al. Latino beliefs about biomedical research participation: a qualitative study on the U.S.-Mexico border. J Empir Res Hum Res Ethics. 2014;9:10–21.

    PubMed  PubMed Central  Google Scholar 

  25. Velasco-Mondragon E, Jimenez A, Palladino-Davis AG, Davis D, Escamilla-Cejudo JA. Hispanic health in the USA: a scoping review of the literature. Public Health Rev. 2016;37:31.

    PubMed  PubMed Central  Google Scholar 

  26. Caldwell KL, Jones RL, Verdon CP, Jarrett JM, Caudill SP, Osterloh JD. Levels of urinary total and speciated arsenic in the US population: National Health and Nutrition Examination Survey 2003-2004. J Expo Sci Environ Epidemiol. 2009;19:59–68.

    CAS  PubMed  Google Scholar 

  27. Paschal DC, Ting BG, Morrow JC, Pirkle JL, Jackson RJ, Sampson EJ, et al. Trace metals in urine of United States residents: reference range concentrations. Environ Res. 1998;76:53–9.

    CAS  PubMed  Google Scholar 

  28. Shim YK, Lewin MD, Ruiz P, Eichner JE, Mumtaz MM. Prevalence and associated demographic characteristics of exposure to multiple metals and their species in human populations: The United States NHANES, 2007-2012. J Toxicol Environ Health A. 2017;80:502–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rivera-Nunez Z, Meliker JR, Meeker JD, Slotnick MJ, Nriagu JO. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water. J Expo Sci Environ Epidemiol. 2012;22:182–90.

    CAS  PubMed  Google Scholar 

  30. Awata H, Linder S, Mitchell LE, Delclos GL. Biomarker levels of toxic metals among Asian populations in the United States: NHANES 2011-2012. Environ Health Perspect. 2017;125:306–13.

    CAS  PubMed  Google Scholar 

  31. Cleland B, Tsuchiya A, Kalman DA, Dills R, Burbacher TM, White JW, et al. Arsenic exposure within the Korean community (United States) based on dietary behavior and arsenic levels in hair, urine, air, and water. Environ Health Perspect. 2009;117:632–8.

    CAS  PubMed  Google Scholar 

  32. Jones MR, Tellez-Plaza M, Vaidya D, Grau-Perez M, Post WS, Kaufman JD, et al. Ethnic, geographic and dietary differences in arsenic exposure in the multi-ethnic study of atherosclerosis (MESA). J Expo Sci Environ Epidemiol. 2019;29:310–22.

    CAS  PubMed  Google Scholar 

  33. Watanabe T, Hirano S. Metabolism of arsenic and its toxicological relevance. Arch Toxicol. 2013;87:969–79.

    CAS  PubMed  Google Scholar 

  34. Bastain TM, Chavez T, Habre R, Girguis MS, Grubbs B, Toledo-Corral C, et al. Study Design, Protocol and Profile of the Maternal And Developmental Risks from Environmental and Social Stressors (MADRES) Pregnancy Cohort: a prospective cohort study in predominantly low-income hispanic women in urban Los Angeles. BMC Pregnancy Childbirth. 2019;19:189.

    PubMed  PubMed Central  Google Scholar 

  35. Centers for Disease Control and Prevention. Body mass index (BMI). Centers for Disease Control and Prevention; 2018. https://www.cdc.gov/healthyweight/assessing/bmi/.

  36. Le XC, Lu XF, Ma MS, Cullen WR, Aposhian HV, Zheng BS. Speciation of key arsenic metabolic intermediates in human urine. Anal Chem. 2000;72:5172–7.

    CAS  PubMed  Google Scholar 

  37. Wei HY, Brockhoff-Schwegel CA, Creed JT. A comparison of urinary arsenic speciation via direct nebulization and on-line photo-oxidation-hydride generation with IC separation and ICP-MS detection. J Anal At Spectrom. 2001;16:12–19.

    CAS  Google Scholar 

  38. Larsen EH, Pritzl G, Hansen SH. Speciation of 8 arsenic compounds in human urine by high-performance liquid-chromatography with inductively-coupled plasma-mass spectrometric detection using antimonate for internal chromatographic standardization. J Anal At Spectrom. 1993;8:557–63.

    CAS  Google Scholar 

  39. Tseng CH. A review on environmental factors regulating arsenic methylation in humans. Toxicol Appl Pharm. 2009;235:338–50.

    CAS  Google Scholar 

  40. Boeniger MF, Lowry LK, Rosenberg J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J. 1993;54:615–27.

    CAS  PubMed  Google Scholar 

  41. Gardner RM, Nermell B, Kippler M, Grander M, Li L, Ekstrom EC, et al. Arsenic methylation efficiency increases during the first trimester of pregnancy independent of folate status. Reprod Toxicol. 2011;31:210–8.

    CAS  PubMed  Google Scholar 

  42. Fox J, Weisberg S. An R companion to applied regression. 3rd ed. Thousand Oaks, California: Sage Publications, Inc.; 2019.

    Google Scholar 

  43. Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

  44. Farzan SF, Gossai A, Chen Y, Chasan-Taber L, Baker E, Karagas M. Maternal arsenic exposure and gestational diabetes and glucose intolerance in the New Hampshire birth cohort study. Environ Health. 2016;15:106.

    PubMed  PubMed Central  Google Scholar 

  45. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, et al. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol. 2011;31:95–107.

    CAS  PubMed  Google Scholar 

  46. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013;121:295–302.

    PubMed  PubMed Central  Google Scholar 

  47. Farzan SF, Brickley EB, Li Z, Gilbert-Diamond D, Gossai A, Chen Y, et al. Maternal and infant inflammatory markers in relation to prenatal arsenic exposure in a U.S. pregnancy cohort. Environ Res. 2017;156:426–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brender JD, Suarez L, Felkner M, Gilani Z, Stinchcomb D, Moody K, et al. Maternal exposure to arsenic, cadmium, lead, and mercury and neural tube defects in offspring. Environ Res. 2006;101:132–9.

    CAS  PubMed  Google Scholar 

  49. Osorio-Yanez C, Gelaye B, Enquobahrie DA, Qiu C, Williams MA. Dietary intake and urinary metals among pregnant women in the Pacific Northwest. Environ Pollut. 2018;236:680–8.

    CAS  PubMed  Google Scholar 

  50. Ettinger AS, Arbuckle TE, Fisher M, Liang CL, Davis K, Cirtiu CM, et al. Arsenic levels among pregnant women and newborns in Canada: Results from the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort. Environ Res. 2017;153:8–16.

    CAS  PubMed  Google Scholar 

  51. Kuo CC, Howard BV, Umans JG, Gribble MO, Best LG, Francesconi KA, et al. Arsenic Exposure, arsenic metabolism, and incident diabetes in the strong heart study. Diabetes Care. 2015;38:620–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Spratlen MJ, Grau-Perez M, Best LG, Yracheta J, Lazo M, Vaidya D, et al. The association of arsenic exposure and arsenic metabolism with the metabolic syndrome and its individual components: prospective evidence from the Strong Heart Family Study. Am J Epidemiol. 2018;187:1598–1612.

    PubMed  PubMed Central  Google Scholar 

  53. Steinmaus C, Moore LE, Shipp M, Kalman D, Rey OA, Biggs ML, et al. Genetic polymorphisms in MTHFR 677 and 1298, GSTM1 and T1, and metabolism of arsenic. J Toxicol Environ Health A. 2007;70:159–70.

    CAS  PubMed  Google Scholar 

  54. Engstrom K, Vahter M, Mlakar SJ, Concha G, Nermell B, Raqib R, et al. Polymorphisms in arsenic(+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism. Environ Health Perspect. 2011;119:182–8.

    PubMed  Google Scholar 

  55. Schlebusch CM, Gattepaille LM, Engstrom K, Vahter M, Jakobsson M, Broberg K. Human adaptation to arsenic-rich environments. Mol Biol Evol. 2015;32:1544–55.

    CAS  PubMed  Google Scholar 

  56. Gamble MV, Liu X, Ahsan H, Pilsner JR, Ilievski V, Slavkovich V, et al. Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid-supplementation trial in Bangladesh. Am J Clin Nutr. 2006;84:1093–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Heck JE, Gamble MV, Chen Y, Graziano JH, Slavkovich V, Parvez F, et al. Consumption of folate-related nutrients and metabolism of arsenic in Bangladesh. Am J Clin Nutr. 2007;85:1367–74.

    CAS  PubMed  Google Scholar 

  58. Howe CG, Li Z, Zens MS, Palys T, Chen Y, Channon JY, et al. Dietary B vitamin intake is associated with lower urinary monomethyl arsenic and oxidative stress marker 15-F2t-Isoprostane among New Hampshire adults. J Nutr. 2017;147:2289–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kurzius-Spencer M, da Silva V, Thomson CA, Hartz V, Hsu CH, Burgess JL, et al. Nutrients in one-carbon metabolism and urinary arsenic methylation in the National Health and Nutrition Examination Survey (NHANES) 2003-2004. Sci Total Environ. 2017;607–608:381–90.

    PubMed  Google Scholar 

  60. deCastro BR, Caldwell KL, Jones RL, Blount BC, Pan Y, Ward C, et al. Dietary sources of methylated arsenic species in urine of the United States population, NHANES 2003-2010. PLoS ONE. 2014;9:e108098.

    PubMed  PubMed Central  Google Scholar 

  61. Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E. Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ Res. 2011;111:110–8.

    CAS  PubMed  Google Scholar 

  62. Signes-Pastor AJ, Vioque J, Navarrete-Munoz EM, Carey M, Garcia de la Hera M, Sunyer J, et al. Concentrations of urinary arsenic species in relation to rice and seafood consumption among children living in Spain. Environ Res. 2017;159:69–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lewin A, Arbuckle TE, Fisher M, Liang CL, Marro L, Davis K, et al. Univariate predictors of maternal concentrations of environmental chemicals: the MIREC study. Int J Hyg Environ Health. 2017;220:77–85.

    CAS  PubMed  Google Scholar 

  64. Adams SV, Barrick B, Christopher EP, Shafer MM, Song X, Vilchis H, et al. Urinary heavy metals in Hispanics 40-85 years old in Dona Ana County, New Mexico. Arch Environ Occup Health. 2016;71:338–46.

    CAS  PubMed  Google Scholar 

  65. Hudgens EE, Drobna Z, He B, Le XC, Styblo M, Rogers J, et al. Biological and behavioral factors modify urinary arsenic metabolic profiles in a U.S. population. Environ Health. 2016;15:62.

    PubMed  PubMed Central  Google Scholar 

  66. Broberg K, Ahmed S, Engstrom K, Hossain MB, Jurkovic Mlakar S, Bottai M, et al. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J Dev Orig Health Dis. 2014;5:288–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hall M, Gamble M, Slavkovich V, Liu X, Levy D, Cheng Z, et al. Determinants of arsenic metabolism: blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs. Environ Health Perspect. 2007;115:1503–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hopenhayn C, Huang B, Christian J, Peralta C, Ferreccio C, Atallah R, et al. Profile of urinary arsenic metabolites during pregnancy. Environ Health Perspect. 2003;111:1888–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Laine JE, Bailey KA, Rubio-Andrade M, Olshan AF, Smeester L, Drobna Z, et al. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect. 2015;123:186–92.

    PubMed  Google Scholar 

  70. Lewis RC, Meeker JD, Basu N, Gauthier AM, Cantoral A, Mercado-Garcia A, et al. Urinary metal concentrations among mothers and children in a Mexico City birth cohort study. Int J Hyg Environ Health. 2018;221:609–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Farzan SF, Li Z, Korrick SA, Spiegelman D, Enelow R, Nadeau K, et al. Infant infections and respiratory symptoms in relation to in utero arsenic exposure in a U.S. cohort. Environ Health Perspect. 2016;124:840–7.

    CAS  PubMed  Google Scholar 

  72. Nadeau KC, Li Z, Farzan S, Koestler D, Robbins D, Fei DL, et al. In utero arsenic exposure and fetal immune repertoire in a US pregnancy cohort. Clin Immunol. 2014;155:188–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilbert-Diamond D, Emond JA, Baker ER, Korrick SA, Karagas MR. Relation between in utero arsenic exposure and birth outcomes in a cohort of mothers and their newborns from New Hampshire. Environ Health Perspect. 2016;124:1299–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Signes-Pastor AJ, Carey M, Vioque J, Navarrete-Munoz EM, Rodriguez-Dehli C, Tardon A, et al. Urinary arsenic speciation in children and pregnant women from Spain. Expo Health. 2017;9:105–11.

    CAS  PubMed  Google Scholar 

  75. Forns J, Fort M, Casas M, Caceres A, Guxens M, Gascon M, et al. Exposure to metals during pregnancy and neuropsychological development at the age of 4 years. Neurotoxicology. 2014;40:16–22.

    CAS  PubMed  Google Scholar 

  76. Fort M, Cosin-Tomas M, Grimalt JO, Querol X, Casas M, Sunyer J. Assessment of exposure to trace metals in a cohort of pregnant women from an urban center by urine analysis in the first and third trimesters of pregnancy. Environ Sci Pollut Res Int. 2014;21:9234–41.

    CAS  PubMed  Google Scholar 

  77. Los Angeles Department of Water and Power. L.A drinking water quality report. 2018. Los Angeles, CA: Los Angeles Department of Water and Power; 2020. https://dpw.lacounty.gov/wwd/web/YourWater/AnnualWaterQualityReports.aspx.

  78. Mantha M, Yeary E, Trent J, Creed PA, Kubachka K, Hanley T, et al. Estimating inorganic arsenic exposure from U.S. rice and total water intakes. Environ Health Perspect. 2017;125:057005.

    PubMed  PubMed Central  Google Scholar 

  79. Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P. Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003-2004 NHANES data. Environ Health Perspect. 2010;118:345–50.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the MADRES participants, our community clinic partners, and our study staff for their many contributions to this work. Thank you to the Arizona Laboratory for Emerging Contaminants (ALEC) at the University of Arizona, Tucson, AZ, which performed the urinary metals analyses.

Funding

Funding for this study was provided by NIH grants P50 ES026086, and 4UH3OD023287-03 and an EPA grant 83615801-0. Dr. Farzan is supported by a NIEHS Pathway to Independence Grant (R00 ES024144) and a USC Provost’s Fellowship. Dr. Howe is supported by a NIEHS Pathway to Independence Award (K99 ES030400). The funding agencies that supported this work had no role in the planning, design, or execution of this study, nor any role in data analysis or manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohreh F. Farzan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All participants provided written informed consent upon enrollment.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzan, S.F., Howe, C.G., Chavez, T.A. et al. Demographic predictors of urinary arsenic in a low-income predominantly Hispanic pregnancy cohort in Los Angeles. J Expo Sci Environ Epidemiol 31, 94–107 (2021). https://doi.org/10.1038/s41370-020-0251-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-020-0251-1

Keywords

This article is cited by

Search

Quick links