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Abstract
Ecuador presents a unique case study for evaluating personal air pollution exposure in a middle-income country where a
clean cooking fuel has been available at low cost for several decades. We measured personal PM2.5 exposure, stove use, and
participant location during a 48-h monitoring period for 157 rural and peri-urban households in coastal and Andean Ecuador.
While nearly all households owned a liquefied petroleum gas (LPG) stove and used it as their primary cooking fuel, one-
quarter of households utilized firewood as a secondary fuel and 10% used induction stoves secondary to LPG. Stove use
monitoring demonstrated clear within- and across-meal fuel stacking patterns. Firewood-owning participants had higher
distributions of 48-h and 10-min PM2.5 exposure as compared with primary LPG and induction stove users, and this effect
became more pronounced with firewood use during monitoring.Accounting for within-subject clustering, contemporaneous
firewood stove use was associated with 101 μg/m3 higher 10-min PM2.5 exposure (95% CI: 94–108 μg/m3). LPG and
induction cooking events were largely not associated with contemporaneous PM2.5 exposure. Our results suggest that
firewood use is associated with average and short-term personal air pollution exposure above the WHO interim-I guideline,
even when LPG is the primary cooking fuel.

Keywords Clean cooking ● Fine particulate matter ● Air pollution ● Personal exposure

Introduction

Exposure to household air pollution (HAP) from the inef-
ficient combustion of biomass fuels is a leading health risk,
contributing to an estimated 1.8 million premature deaths
each year [1]. Large-scale transitions to cleaner cooking
promise substantial health [2, 3], environmental [4], climate
[5, 6], and gender empowerment benefits [7–9]. While

recent efforts to mitigate this burden of disease have
focused on promoting clean cooking fuels, these remain
prohibitively expensive or inaccessible in many rural parts
of low- and middle-income countries where the impacts of
traditional biomass cooking are greatest [10, 11]. As a
result, examples of widespread long-term clean cooking
fuel use in disadvantaged populations of low- or middle-
income countries are rare, and associated HAP reduction
and attendant health benefits are poorly characterized.

Ecuador is a unique case study where two overlapping
nationwide clean cooking fuel subsidy programs have made
clean cooking options accessible to most of the population
[12]. Now, more than 90% of Ecuadorian households cook
with clean fuels—primarily liquefied petroleum gas (LPG)—
instead of firewood and kerosene, which were the dominant
household cooking fuels through the 1980s.

In previous work surveying more than 1000 households
in rural and peri-urban Andean and coastal Ecuador, we
have shown that LPG is nearly universal as the primary
household cooking fuel [12, 13]. Still, approximately half of
rural households and two-fifths of peri-urban respondents
continue to use firewood. We have also previously found
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limited induction stove ownership and use, though up to
20% of households owned an induction stove in some study
communities. The implication of these persistent cooking
fuel stacking patterns for personal air pollution exposure is
unknown.

The primary goal of the present study is to estimate the
personal PM2.5 exposure of primary cooks in rural and peri-
urban households in coastal and Andean Ecuador, as well as
their use of different cooking fuels. We deploy well-
validated instruments to estimate average 48-h and 10-min
personal PM2.5 exposure and measure all household
use of cooking fuels during a 48-h monitoring period in
117 rural and 40 peri-urban households. We also con-
tinuously monitored traditional firewood stove use for
several months in eight households to assess long-term
cooking patterns. While the levels of firewood (26%) and
induction stove (10%) ownership in the 157 households
participating in this study are lower than those observed in
our prior studies, we believe the exposure data of the
populations to be representative.

We make several contributions to the academic literature
and policy discussions on the promotion of clean cooking
fuels. We assess PM2.5 exposure and stove use patterns in a
middle-income country with a well-developed LPG market
supported by decades of consumer subsidies that cover 90%
of the cost of cylinder refills. Most households in our study
regions pay between 2.50 and 3.50 USD for a 15-kg cylinder
refill. In addition, we assess PM2.5 exposure among peri-
urban and rural households using induction stoves, a pro-
mising but understudied clean cooking option. We build on
previous cooking-related studies that have shown the mul-
tiple factors that may affect personal air pollution exposure,
including stove use and time-use patterns [14–20]. However,
few previous studies have combined time-resolved sensor
data that may be able to disentangle the impact of simulta-
neous use of various stoves and fuels on personal air pol-
lution exposure. We also offer a comprehensive discussion
of the successes and limitations of our deployments,
including a thorough investigation of wearing compliance.

Methods

Previously, we administered 808 energy access and
use surveys in peri-urban and rural households across four
provinces of Ecuador between September 2018 and January
2019. Of these households, we enrolled 160 to participate in
this study (N= 2 households were lost due to data collec-
tion errors). Sample size was determined by time and
budget, given the exploratory nature of this study. Data
collection took place between January and March 2019
in Alajuela, Manabí (rural), San Mateo, Esmeraldas (peri-
urban), La Merced, Pichincha (rural), and Cayambe,

Pichincha (rural) (Fig. S1). All analyses in this study were
carried using R version 3.6.0, with code available upon
request [21].

Participant recruitment

The study team approached local leaders to invite partici-
pating families and representatives from other households to
a discussion of the present study to familiarize participants
with field workers and project goals. Local guides aided in-
field logistics and helped build trust with participating
households. Participants were primary cooks over 18 years
of age who were available for the 48-h monitoring period.

Estimating personal exposure to fine particulate
matter

We deployed two lightweight, wearable sensors to estimate
the primary cook’s personal exposure to PM2.5 during the
48-h monitoring period. All study participants wore the
PATS+ (EME Systems; Berkeley, CA, USA) affixed to a
vest at the shoulder and a 20% sub-sample also wore a co-
located Ultrasonic Personal Aerosol Sampler (UPAS;
Access Sensor Technologies; Fort Collins, CO, USA)
(configuration shown in Fig. S2). In addition, 10% of
households wore two PATS+ devices for intra-device
calibration; the two co-located PATS+ estimates were
averaged in analysis. The PATS+ is a light-scattering
device that records time-resolved PM2.5 concentrations and
has a three-axis accelerometer that provides a binary mea-
sure of motion for each data point recorded [22].

The UPAS device is a gravimetric filter-based instrument
for estimating personal PM2.5 exposure [23]. Filters
were weighed before and after deployment at Columbia
University using methods established in previous studies
[24–26]. We deployed two “field blanks” per study area
(N= 8). Field blanks were treated as all other filters,
including being taken out of their cassette and loaded into
the UPAS, but with no air drawn through the device. The
average difference between pre- and post-weights for field
blanks (Mean ± SD: 0.0046 ± 0.0014 g) was subtracted from
all filter weights (Mean ± SD: 0.0600 ± 0.0367 g) prior to
analysis. In doing so, we aim to estimate the amount of
contamination due to filter handling, rather than from air
pollution exposure. The PATS+ and UPAS have been
laboratory validated and field tested in similar studies pre-
viously [22, 27–30].

Optical sensors for estimating PM2.5 concentrations can
be subject to bias due to a variety of factors, including
varying particle size distributions, particle composition, and
high-frequency vibrations of the device [31]. We co-located
UPAS devices to correct PATS+ estimates in a three-step
process. First, where devices had been co-located, we
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divided the mean PM2.5 concentration estimated from the
PATS+ by the paired UPAS-derived estimate over the same
time period. Fig. S3 compares estimates from co-located
devices in a scatter plot and a Bland–Altman plot. On aver-
age, the PATS+ overestimated mean 48-h PM2.5 exposure by
9.7 μg/m3 (95% CI: 0.5–19.0 μg/m3) as compared with the
UPAS-derived estimates. Second, we averaged all correction
factors within a community, estimating a community-level
correction factor (Mean ± SD: 1.25 ± 0.07). Finally, we divi-
ded all PATS+ estimates by the community-level correction
factor to obtain final personal PM2.5 exposure estimates.
Community-level correction factors improved agreement
between the PATS+ and UPAS estimates (Fig. S4).

We used the UPAS-derived estimate for 48-h PM2.5

exposure for one household with PATS+ information lost
due to data entry error.

Capturing the use of stoves and fuels

We deployed three types of stove use monitors (SUMs) to
accommodate LPG, traditional wood-burning, and induc-
tion stoves. First, we deployed iButton temperature data
loggers (Maxim Integrated DS1921G; San Jose, CA, USA)
in the corner of each LPG burner (Fig. S5). These
commonly-used coin-sized devices record temperature
every 120 s [22, 32]. Second, since cooking on firewood
stoves reaches temperatures in excess of the iButton’s
maximum threshold of 85 °C, we deployed thermocouple
data loggers (Lascar EL-USB-TC; Whiteparish, Wiltshire,
United Kingdom) that extend a heat-resistant probe (rated
up to 482 °C) to the combustion zone from a data logger
and record temperature every 120 s. Third, since induction
stoves do not have a traditional heating element, we utilized
current-voltage loggers that record changes in the current
passing through the power cord every 60 s (Supco LOGiT
LCV; Allenwood, NJ, USA).

We additionally piloted the use of a thermocouple system
with extended battery life and data storage capacity in eight
households for five continuous months on firewood-burning
stoves (Geocene Dots; Vallejo, CA, USA).

Identifying cooking events

Our strategy for identifying cooking events primarily seeks to
capture active combustion. Stove use was estimated using
SUMSarizer (Version 2.0), an open-source R package
developed to detect stove use from temperature time series
data [33]. Using the “fire finder” function, stove use was
estimated using a multi-step algorithm based on changes in
temperature. First, we labeled all temperatures greater than
38 °C as cooking events—a threshold rarely exceeded without
a cooking-specific steep temperature increase in our study
sample. Long runs (100 data points or either 100 or 200min

depending on device sampling frequency) with negative
slopes were marked as not cooking. Times with highly
positive slopes (80% of temperature differences at least a
doubling in temperature over 100 data points) were marked as
cooking and those with highly negative slopes are marked not
cooking. To improve continuity, we established a minimum
length of time for “not cooking” events (30min) and a
minimum length of time for cooking events (5 min).

After using the fire finder function, firewood stove data
were reviewed visually. Modifications based on visual
inspection were few and fell into two groups: (1) The
removal of short cooking events erroneously defined due to
increases in temperature at the beginning or end of the time
series, potentially due to handling of the thermocouple, and
(2) Event coding for files where temperature values were
offset tens of degrees negatively due to programming errors
during device launch.

Assessing participant location

We placed a GPS watch (Suunto Ambit3 Vertical; Vantaa,
Finland) into a hidden inside pocket of the participant’s
monitoring vest. Points within a 30 m geofence of the
home’s centroid were marked as “in the home.” Larger
geofences were considered, but not utilized because they
appeared to capture activities outside the house (Fig. S6).

We placed a Bluetooth receiver (Berkeley Air Bluetooth
Beacon Logger; Berkeley, CA, USA) near one of the parti-
cipant’s stove in 20% of households (the same as those
receiving the UPAS device). If the participant had multiple
stoves, we prioritized placement based on research interest:
(1) firewood, (2) induction, and (3) LPG. A Bluetooth beacon
in the monitoring vest generated signal when near the beacon.
We estimated participants’ presence “in the kitchen” based on
the RSSI signal strength, which is a continuous number that
ranged between −40 and −100 in our study, where −40 was
the beacon and receiver touching and−100 was ~50 feet with
no interferences like walls or people.

Although Bluetooth beacons have been increasingly
utilized in cooking-related studies in recent years [34–38],
there is no universal method for estimating distance using
signal strength due to device- and environment-specific
variabilities. Resource constraints did not allow for in-field
calibration that can aid in classifying signal strength into
proximity zones [34]. We processed signals with statistical
and smoothing algorithms to remove signal noise and
capture deviations due to participant’s movement, as in
other contexts (described in Supporting Information).

Analytical approach

All data from the multiple sensors were integrated to better
understand the associations between PM2.5 exposure and
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cooking fuel. We aggregated 60-s sensor data to 120 s
intervals to synchronize with SUMs data.

Fine particulate matter exposure

We characterize the distribution of 48-h average PM2.5

exposures by community and then 10-min averages by hour
of day. Next, we discuss differences in mean 48-h exposures
and 10-min average exposures by primary cooking fuel (LPG,
firewood, or induction) and by ownership of a firewood stove.
The distribution of exposure—including peaks—is valuable
for understanding the nature of exposures (e.g., types of
sources) and health risks. We use Kolmogorov–Smirnov tests
to assess whether the empirical distribution functions of
exposures are different by fuel stack.

Stove use

We characterize the timing of stove use by hour of the day
(percent of all measurements during this time showing a
stove is in use) and day of the week (percent of all house-
holds with measurements from the given day of the week
showing use of the stove). We then estimate total stove use
during the 48-h monitoring period and the duration of
cooking events by stove type. Finally, we use long-term
SUMs monitoring of firewood stoves to assess cooking
patterns over several months and compare to observed use
in the 48-h periods.

Attributing exposure to contemporaneous events

We carried out a series of mixed effects regression models
to attribute changes in personal PM2.5 exposure to con-
temporaneous conditions like detected stove use and parti-
cipant location. We utilized 10-min averaged PM2.5

exposure as the outcome of interest and binary explanatory
variables—LPG stove in use, firewood stove in use,
induction stove in use, participant wearing the vest (PATS+
motion sensor), participant in the household (GPS sensor),
and participant in the kitchen (Bluetooth beacon)—in sim-
ple linear regressions with dummy variables for participant
to account for within-subject clustering over time (Eq. 1).
Here, we utilize only data from daytime hours (6 am–10
pm) to improve attribution between events and exposure by
removing consistently low nighttime exposures (at or below
the limit of detectability of around 10 μg/m3).

Average10minute PM2:5exposurei;j ¼ β0 þ β1 � Event Occursi;j

þ β2 � Participant IDi þ εi;j

ð1Þ

In Eq. 1, the outcome is average 10-min PM2.5 exposure
for participant i and observation j (every 2min), β0 represents

the intercept, β1 is the coefficient of interest (the mean dif-
ference in 10-min PM2.5 exposure associated with an event
occurring as compared with not occurring), Event Occursi,j is
a binary variable indicating if the event of interest occurred in
the prior 10min j for participant i, β2 is the coefficient asso-
ciated with each Participant IDi dummy variable that control
for within-subject clustering over time, and εi,j is the error
term associated with each observation for each participant.

We expand on these single-event models by assessing
the co-occurrence of LPG and firewood cooking events and
including an interaction term (Eq. 2). To best assess the
contribution of cooking events to exposure, we further
limited daytime hours’ measurements to observations where
motion was detected in the prior 10 min (the temporal unit
of interest).

Average 10minute PM2:5exposurei;j ¼ β0 þ β1 � LPGUsei;j

þ β2 � Firewood Usei;j
þ β3 � LPGUsei;j � Firewood Usei;j
þ β4 � Participant IDi þ εi;j

ð2Þ
As in Eq. 1, the outcome in Eq. 2 is average 10-min PM2.5

exposure for participant i and observation j (every 2 min). In
Eq. 2, rather than a single variable for an event occurring, we
include binary variables for LPG Usej and Firewood Usej and
an interaction term for the two for each observation j for each
participant i to account for the co-occurrence of cooking
events. Eq. 2 controls for within-subject clustering using
dummy variables for Participant IDi and error associated with
each observation εi,j as in Eq. 1. By including an interaction
term, we can estimate the association between LPG stove use
alone, firewood stove use alone, and simultaneous use of LPG
and firewood stoves.

We note that while our primary definition of cooking
events from stove use monitors most directly seeks to
capture active combustion, in attributing exposure to con-
temporaneous events we utilize any event that occurred in
the prior 10 min. We intend to capture non-cooking
moments that still emit relevant pollutants while avoiding
erroneously including substantial non-cooking, non-
emitting moments by using a moving 10-min window. It
is plausible that we underestimate the contribution of
cooking events to exposure as a result of this approach. Fig.
S10 shares temperature time series and cooking event
detection data from five firewood stoves, demonstrating the
extent to which our stove use detection criteria captures
stove die-off for firewood stoves.

Estimating wearing compliance and personal air
pollution exposure

We computed a binary variable of whether the device had
been worn in the prior 10 min. We then investigated the
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association between compliance and personal PM2.5

exposure using scatterplots, regression models, and by
comparing subsets of higher and lower compliance among
48-h and 24-h averages (methods described in full in the
Supporting Information). Given the similarity between
these two datasets (presented in “Wearing compliance and
personal PM2.5 exposure” section), our main results utilize
the full data.

Ethical considerations

Survey data were collected and managed using REDCap
software hosted at Universidad San Francisco de Quito38.
This study was reviewed and approved prior to initiation of
the research by the Institutional Review Boards at the
Columbia University Medical Center and the Bio-Ethics
Committee at the Universidad de San Francisco de Quito.
All participants provided informed consent using RED-
Cap’s e-signature feature. Paper copies with investigator
contact information were left with participants. Participants
were compensated with dish towels (~5 USD in value) after
the monitoring period.

Results

All but five of 158 participants had an LPG stove. LPG
was the primary cooking fuel for 92% of households
(Table 1). In comparison, 41 (26%) households owned a
traditional firewood stove and 17 (10%) households
had an induction stove. These stoves were rarely the
household’s primary cooking option (Firewood: N= 8;
Induction: N= 9). Most households with traditional fire-
wood stoves used them in outdoor kitchens—often only
enclosed on one or two sides—adjacent to the household
(representative photograph shown in Fig. S7). Almost all
primary cooks were women (95%) and most were between
33 and 54 years of age. Households had on average 4.8 ±
2.4 members.

Deployment summary: successes and limitations

We obtained 157 48-h PM2.5 exposure estimates from the
PATS+, co-located successfully with the UPAS in 33
households (Table 2). Most PATS+ deployments reached
48-h of runtime, with few gaps in data. However, only 40%
of UPAS devices reached 48-h due to unexpectedly insuf-
ficient battery life.

Stove use monitor deployments achieved expected run
times and high data completeness (Table 2). We obtained
575 iButton 48-h time series from LPG stoves. Fig. S8
summarizes the correlations between individual iButtons
placed on different burners of the same stove, ranging

between 0.31 and 0.38. Fig. S9 displays a time series of co-
deployed iButton stove use monitors from a representative
household. These figures illustrate the potential for stove
use events to be missed if only one burner is monitored. In

Table 1 Characteristics of the participants and study households.

Mean (SD) or
N (%)

Range Observations

Primary cook characteristics

Age, Mean (SD) 44.37 (15.50) 18–84 158

Household Position, N (%) 158

Head of household 72 (46%)

Partner of head of household 64 (41%)

Parent of head of household 11 (7%)

Child of head of household 7 (4%)

Other 4 (3%)

Education level completed,
N (%)

158

No formal primary education
completed

33 (21%)

Primary 45 (28%)

Part of secondary 22 (14%)

Secondary 46 (29%)

Greater than secondary 12 (8%)

Civil Status, N (%) 158

Single 43 (27%)

Married 97 (61%)

Divorced 6 (4%)

Widowed 12 8%)

Literate, N (%) 131 (83%) 157

Household characteristics

Household size, Mean (SD) 158

Adults (>17 years) 2.97 (1.62) 1–10

Children (5–17 years) 1.41 (1.39) 0–8

Infants (<5 years) 0.47 (0.63) 0–3

Household head education 158

No formal education
completed

30 (19%)

Primary 66 (42%)

Part of secondary 20 (13%)

Secondary 29 (18%)

Greater than secondary 13 (8%)

Household Decision
Maker, N (%)

158

Woman 37 (21.0%)

Man 18 (10.2%)

Joint Woman and Man 103 (61.8%)

Stoves Owned, N (%) 158

Gas 153 (96%)

Induction 17 (10%)

Firewood 41 (26%)

Meals Cooked per day,
Mean (SD)

2.89 (0.59) 1–6 158

Daily Cooking Time, N (%) 157

<1 h 8 (5%)

1–2 h 41 (26%)

2–3 h 82 (52%)

>3 h 26 (16%)

Long-standing LPG subsidies, cooking fuel stacking, and personal exposure to air pollution in rural and. . . 711
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this study, deploying one iButton per stove may have
missed between 35 and 45% of cooking events. In addition,
we obtained 40 complete 48-h temperature time series from
firewood stoves, five months of continuous data from 8
Geocene Dots from firewood stoves, and data from 16
households’ induction stoves.

GPS watches recorded only 10% of the number of data
points anticipated and only one deployment obtained more
than 90% of expected data (Table 2). Deployments were
limited both by shorter-than-expected run times (issues with
battery) and long, variable gaps between data points. Data
points also had error when participants were inside house-
holds, “jumping” up to 10 m between measurements.
Bluetooth beacons successfully recorded consistent data as
anticipated; however, signal noise was ubiquitous leading to
difficulty in interpreting data. We report these data as a
cautionary note for future research that rely on similar
approaches.

Personal air pollution exposure

Mean 48-h PM2.5 exposure for most participants was below
the WHO interim-I guideline of 35 μg/m3 (N= 137; 87%).
Still, there was heterogeneity in exposures within and across
communities (Fig. 1). The highest 1-h mean exposures
occurred in the early morning (6 am–10 am) and the eve-
ning (5 pm–8 pm), with their 75th percentile at ~20 μg/m3.

Table S1 presents descriptive statistics for mean 48-h
personal PM2.5 exposures for all fuel stacking combinations.
Cooks primarily using induction had an average 48-h PM2.5

exposure of 20.3 ± 13.8 μg/m3, which was similar to pri-
mary LPG users (22.4 ± 43.2 μg/m3) (Fig. 2a). Primary
firewood users had higher average 48-h PM2.5 exposures
than primary LPG users (50.8 ± 53.4 μg/m3). However, only
8 participants reported using firewood to meet most of their
cooking needs. Average 48-h PM2.5 exposure was 23.6 ±
27.5 μg/m3 among households that used firewood as a

Fig. 1 Distribution of personal PM2.5 exposures. a The distribution
of average personal PM2.5 exposure during 48-h monitoring periods,
by study community (Alajuela N= 40; San Mateo N= 38; Ayora N=
12; Cangahua N= 28; and La Merced N= 40). Partially transparent
points show each mean personal 48-h PM2.5 exposure estimate within
a study community, with violin plots showing the density distribution
of estimates, boxplots showing the median and interquartile range of
estimates, and red dots and labels showing community means. The
WHO annual guideline is shown in a solid line and the interim-I
guideline is shown in a dotted line. The minimum level of detection
was variable across communities due to community-level correction
factors which shifted minimums down from the PATS+ level of

detection of 10 μg/m3. b Shows the distribution of average 10-min
PM2.5 exposure within each hour of the day in boxplots (formed by the
25th percentile, 50th percentile median, and 75th percentiles) extended
by whiskers (10th percentile and 90th percentile). Red dots show the
mean exposure for each hour. The participant in La Merced with
average 48-h PM2.5 exposure of 492 μg/m3 experienced a high short-
term exposure of >10,000 μg/m3 in the evening, potentially due to a
cooking event or burning mosquito coils (both reported to occur
approximately at this time); this peak exposure also explains the ele-
vated average exposure during 21:00–22:00 h in b. These data points
have not been downward corrected because they are plausible.
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secondary fuel (N= 33; 21% of the total study sample; 80%
of firewood users) (Fig. 2c). This exposure was not sig-
nificantly different from exposure among cooks that did not
have a firewood stove (21.9 ± 45.3 μg/m3; P= 0.32).

While ownership of a firewood stove is useful for esti-
mating exposure based on an easily-collectible data point,
assessing firewood stove use facilitates a more direct esti-
mate of the association between solid fuel combustion and
air pollution exposure. Average 48-h PM2.5 exposure was
40.4 ± 43.1 μg/m3 for households that used their firewood
stoves for at least 30 min during the monitoring period
(N= 23). Firewood stove owners not using their stoves
during the monitoring period (N= 18) had lower exposures
(14.2 ± 7.9 μg/m3) (Welch Two-Sample t-test: P= 0.02).
Overall, Fig. S11 shows that participants using their fire-
wood stove for more than 30 min during the 48-h mon-
itoring period had higher distributions of average 48-h
PM2.5 exposure and 10-min PM2.5 exposures than non-users
(Two-Sample Kolmogorov–Smirnov Tests: P= 0.002; P <
0.001). In addition, there was a positive, but not statistically
significant, association between minutes of firewood stove
use and personal air pollution exposure among firewood
stove owners (Fig. S12).

Primary firewood users experienced elevated short-term
exposures significantly more frequently than those primarily
using a clean cooking fuel (Fig. 2b). For example, primary
firewood users experienced 10-min average PM2.5 exposures
greater than 35 μg/m3 for 19% of the daytime monitoring
period (vs. 10% for primary LPG; primary induction: 9%) and
above 50 μg/m3 for 16% of the daytime (vs. LPG: 6%;
Induction: 6%). Two-Sample Kolmogorov–Smirnov tests
confirm that the overall distribution of 10-min exposures for

primary LPG users were significantly different from primary
firewood users (P < 0.001).

Firewood stove owners and non-firewood-stove owners
had more similar distributions of short-term PM2.5 exposure
(Fig. 2d). Still, households with a firewood stove experi-
enced 10-min average exposures greater than 35 μg/m3

somewhat more frequently than those without a firewood
stove (10% compared with 6%).

Stoves used during the monitoring period

LPG stoves were used throughout the day and each day of
the week by most households (Fig. 3a and b). In compar-
ison, firewood stoves were mostly used in the afternoon and
evening. Among owners, firewood stoves were used by
about 50% of households each day. Although induction
stoves were used less overall than LPG stoves, they were
used during all meal times and days of the week.

On average, households used their LPG stoves for 200 ±
116 min in the 48-h monitoring period compared 446 ± 595
min for firewood stoves and 114 ± 107 min for induction
stoves. There was substantial variation in the distributions
of stove use by fuel type (Fig. 3c). For example, while about
half of households made limited or no use of their firewood
stoves during the monitoring period, a few households used
their firewood stoves much more than most households used
their LPG stoves.

Firewood stove cooking events were longer than LPG or
induction stove cooking events (Fig. 3d). On average,
firewood cooking events were 256 ± 329 min long, though
the median was somewhat lower (153 min; IQR: 61–277).
The durations of induction and LPG cooking events were

Fig. 2 Cumulative distribution
of personal PM2.5 exposure by
cooking fuel groups. a Average
48-h personal PM2.5 exposures
among primary cooking fuel
groups (firewood, N= 8;
induction, N= 9; LPG, N=
141). b Each 10-min moving
average PM2.5 exposure during
daytime hours (6 am–10 pm)
during the 48-h period by
primary cooking fuel group.
c and d replicate a and b but by
ownership of a traditional
firewood stove (has firewood,
N= 41; no firewood, N= 117).
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similar in distribution (Induction median (IQR): 34 min
(15–69); LPG median (IQR): 26 min (12–54)).

Long-term firewood stove monitoring (duration range:
108–210 days) shows similar use patterns to 48-h mon-
itoring in the same households (Fig. S13). Four of the eight
households showed sparing use (once per month), two
showed more frequent use (once per week), and two
showed zero use.

Multiple stove use

Figs. S14 and S15 show stove use patterns over the mon-
itoring period for an average household with (1) both LPG
and a firewood stove and (2) both LPG and an induction
stove, respectively. These time series exemplify two modes
of fuel stacking. In the first, different stoves and fuels are
used during different cooking events. In the second, mul-
tiple stoves and fuels complement each other and are used
during the same cooking event.

Overall, among households stacking LPG and firewood,
the LPG stove was used in 35% of hours where the fire-
wood stove was used. Stove stacking was even more pre-
valent for households owning LPG and induction: LPG

stoves were used in 65% of hours that an induction stove
was used.

Still, LPG was often used to cook entire meals on its own
in both fuel stacking scenarios. In firewood and LPG
stacking scenarios, firewood was used during about 16% of
hours when the LPG stove was in use. When induction and
LPG were owned together, induction was used during 26%
of the hours LPG was in use.

Attributing exposure to contemporaneous events

Figure 4 assesses the contribution of each fuel to personal
exposures by comparing the distribution of exposures when
each fuel was in use to the distribution when it was not in
use. Similarly, we assess the contribution of wearing com-
pliance (wearing vs not wearing) and location (in kitchen
vs. not in kitchen; at home vs. not at home). We use Eq. 1 to
estimate the difference in 10-min average PM2.5 exposure
for each comparison.

Contemporaneous firewood cooking was associated with
101 μg/m3 higher 10-min PM2.5 exposure (95% CI: 94–108
μg/m3 higher). LPG cooking events were not associated with
10-min PM2.5 exposure (1.2 μg/m

3 higher; 95% CI: 4.0 μg/m3
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Fig. 3 Characterizing detected stove use by hour of the day, day of
the week, and total minutes used during the study period. a Lines
connect estimates of the fraction of minutes during each hour that the
designated stove was in use throughout the monitoring period. b Lines
connect estimates of the fraction of minutes in each day of the week
where the stove was in use. c Cumulative distribution function

showing the fraction of participants with the overall number of
detected minutes of cooking during the 48-h monitoring period.
d Cumulative distribution function showing the distribution of the
duration of discrete cooking events by fuel type. Axis has been log-
transformed due to clustering at low values.
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lower–6.5 μg/m3 higher). Induction cooking events were not
associated with 10-min PM2.5 exposure (4.4 μg/m3 lower,
95% CI: 10.1 μg/m3 lower—1.3 μg/m3 higher).

When the PATS+ recorded that the device was in
motion—when we assume that it was being worn and cap-
turing personal exposure most effectively—10-min PM2.5

exposure was 27.4 μg/m3 higher (95% CI: 22.9–31.9 μg/m3).
Exposure was not different when the GPS watch location
suggested that the participant was home. Somewhat surpris-
ingly given the expectation that kitchen area concentrations
would be higher than elsewhere, 10-min PM2.5 exposure
was not associated with the participating being in the kitchen
(3.1 μg/m3 lower, 95% CI: 7.6 lower—1.4 μg/m3 higher).

The contribution of concurrent firewood and LPG cooking
events to exposure

The preceding analysis does not account for simultaneous
use of multiple fuels. In our data, however, households
often used multiple stoves during a single meal. We
estimate 121 μg/m3 higher 10-min average PM2.5 exposure
(95% CI: 97–145 μg/m3) when the firewood stove was
in use but the LPG stove was not. When both stoves
are in use, we estimate a somewhat smaller increase
in exposure (74 μg/m3; 95% CI: 52–141 μg/m3)
(Fig. S16). LPG stove use on its own was not significantly
associated with increased 10-min average PM2.5 exposure

Fig. 4 Association between contemporaneous characteristics and
personal PM2.5 exposure during waking hours (6 am–10 pm). a–f
Gardner–Altman plots designed to show the distribution and mean
difference between two groups [60, 61]. The left side violin plots of
the distribution of average 10-min personal PM2.5 exposure and box-
plots (boxes show 25th percentile, 50th percentile as a white line, and
75th percentile). The right sides show the mean difference and 95%
confidence intervals between the two distributions, accounting for
within-subject clustering over time (Eq. 1). Both y-axes are

logarithmic to account for the right-skewed distribution of personal
exposures. Right side y-axes for the mean difference are centered and
relabeled around 0 (mean for the event not occurring) but follow the
same units as the left side. Points above 150 μg/m3 contribute to the
plots and estimations, but are not shown. Flat bottoms on violin plots
are from the lower limit of detection, which varied from community to
community as described in “Estimating personal exposure to fine
particulate matter” section.
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in this model (2.3 μg/m3 lower; 95% CI: 19 μg/m3 lower—
23 μg/m3 higher).

Wearing compliance and personal PM2.5 exposure

Using the PATS+ accelerometer-derived measure of
motion, we estimate that participants wore their vests for
12% of daytime hours. Wearing peaked during the middle
of the day and again in the evening (Fig. S17), suggesting
that participants wore their vests particularly for cooking
meals. Compliance was significantly positively correlated
with detected LPG stove use (r= 0.24), induction stove use
(r= 0.22), and firewood stove use (r= 0.14) (Fig. S18).
Furthermore, participants wore their vests for 40% of
observations with detected cooking events. Compliance
did not vary significantly based on primary cooking fuel,
firewood stove ownership, or induction stove ownership
(Fig. S19).

We assessed the association between wearing com-
pliance and personal PM2.5 exposure in three data subsets
(Fig. S20). We observed no association between average
48-h wearing compliance and PM2.5 exposure or between
average daytime wearing compliance and daytime PM2.5

exposure. In addition, there was no significant association
between wearing compliance and PM2.5 exposure when the
full monitoring period was divided into two daytime
averages. Accounting for within-subject clustering, in this
24-h daytime subset, we observe no significant association
between a 10% increase in wearing compliance and mean
24-h PM2.5 exposure (9 μg/m3 higher; 95% CI: 21 μg/m3

lower—39 μg/m3 higher).
Personal PM2.5 exposure was not significantly different

across households above and below 30% daytime 24-h
compliance. Those with compliance below 30% (N= 282
observations) had mean personal 24-h daytime PM2.5

exposure of 27.8 ± 80.6 μg/m3 (median (IQR): 15.1 μg/m3

(10.3–25.9 μg/m3)). In comparison, participants with com-
pliance above 30% (N= 28 observations) had mean per-
sonal 24-h daytime PM2.5 exposure of 28.9 ± 28.4 μg/m3

(median (IQR): 17.4 μg/m3 (14.1–30.1 μg/m3)).
Fig. S21 shows similar distributions of average 48-h

PM2.5 exposure by common cooking fuel use categories—
(1) LPG as the primary cooking fuel and (2) ownership of a
firewood stove—between a subset of participants with
greater than 10% of samples detecting motion (about 6 h)
and the full sample. Fig. S22 replicates these results using
24-h samples.

Discussion

We used a diverse and comprehensive set of sensors to
estimate personal PM2.5 exposure and assess stove use in

peri-urban and rural Ecuador in a 48-h period. To our
knowledge, this is the first study of its kind in Ecuador.
Ecuador’s decades-long investment in LPG subsidies pro-
vides a rare opportunity to assess the PM2.5 exposure and
risk implications of abundant, low-cost LPG.

We found that 87% of average 48-h personal PM2.5

exposures fell below the WHO interim-I guideline (35 μg/m3),
though only 23% are below the full air quality guideline
(10 μg/m3) [39]. Nevertheless, persistent firewood use con-
tinues to affect PM2.5 exposure. The distributions of average
and short-term personal PM2.5 exposures were significantly
higher among households using firewood stoves than those
that exclusively used clean cooking fuels, but few households
exceeded the WHO Interim-I standard.

Average personal PM2.5 exposure among primary cooks
using LPG as their primary cooking fuel and firewood as a
secondary option was 24 ± 27 μg/m3. Over the 48-h period
we estimate that these primary cooks experienced short-
term exposures above 35 μg/m3 for an average of 8.6 h
(18% of the time). Furthermore, by aligning time-resolved
data from stove use monitors and personal PM2.5 exposure
sensors we estimate that cooking with firewood leads to an
increase of between 100 and 120 μg/m3 in 10-min average
PM2.5 exposure. Continued firewood stove use and long
firewood cooking events may significantly contribute to
high PM2.5 exposures.

We observed that firewood stoves were used pre-
dominately for lunch and dinner and that cooking events
using firewood stoves were longer than LPG or induction
stove cooking events. These results can likely be explained
in two not mutually exclusive ways. First, firewood stoves
have a significantly longer starting period of time where the
fire must build compared with the instantaneous heating of
LPG and induction stoves. In addition, the fire may persist
beyond the cooking period. Second, firewood stoves are
used for more energy-intensive meals. These results have
been suggested elsewhere [40–43], including in our own
questionnaire-based results [13]. Understanding motivations
for continued firewood use and its attendant health risks
is valuable for promoting the exclusive use of clean
cooking fuels.

Limitations

Personal PM2.5 exposure is the gold standard for estimating
health risks from air pollution because it integrates expo-
sures over time and space [17]. However, accurately esti-
mating personal PM2.5 exposure relies on precise
instruments and consistent wearing compliance [44, 45].
Our use of co-located UPAS devices to correct PATS+
measurements is a common strategy used in similar studies
[46–48]; however, recent research has suggested that this
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approach is subject to variability in correction factors across
deployments [49].

In addition, low wearing compliance can bias estimates
of personal exposure [50], though the direction of the bias
may depend on context. Compliance has been empirically
assessed in previous studies using accelerometers
[18, 19, 51–55], GPS loggers [18], pedometers [56], and
wearable cameras [18, 51]. In many cases, a quantitative
threshold is applied and data that do not meet the threshold
are removed [18, 19, 56]. In others, compliance is not
analyzed or methods for assessment are unclear [51, 54].
Raw compliance data and its association with personal air
pollution exposure has rarely been presented in full [44, 45],
as we do here.

We observed similarities in data between our “high”
wearing compliance data (>30% daytime wearing) and
across fuel types. Still, low levels of wearing compliance
are a limitation and suggest that our results presented may
underestimate mean personal PM2.5 exposure because
unworn monitors might miss cooking events, which we
believe were the primary reasons for high peak exposures.
We aimed to achieve high wearing compliance through
announced but unscheduled drop-ins with study participants
during the monitoring period, group- and individual-level
explanations of the importance of compliance for the study,
and the commitment to return after data analysis to present
and explain group- and individual-level results. Future
studies might consider additional strategies for increasing
compliance, perhaps including incentives.

In addition, the study’s cross-sectional study design has
limited capacity to estimate annual air pollution exposure
due to potential variations during the year. Such seasonality
could be due to differences in fuel use patterns, meteorol-
ogy, or behavioral shifts.

Our study design and sensor deployment strategy were
consistent with the goal of attributing exposure to cooking
events. However, while a strength of this study is the
implementation of these multiple sensors, there were some
issues in deployment. Notably, the GPS watch deployments
did not collect data at the expected frequency or with high
precision. Further validation of GPS watches to monitor
participant location in rural areas is needed. We additionally
deployed Bluetooth proximity beacons in a smaller subset
of households to complement the GPS watches and further
validate the beacons as a strategy for attributing exposure to
cooking events. While the Bluetooth beacons have aided in
exposure attribution in similar contexts previously [34, 35],
we did not observe a robust association between cooking
events, the beacon capturing participant presence in the
kitchen, and personal PM2.5 exposure in our deployments.
Additional refinement in the methods used to deploy
Bluetooth beacons and protocols for converting signals to
proximity is warranted.

While an ideal study would have included ambient and
kitchen area air pollution monitoring beyond personal
monitoring, due to budgetary constraints, we relied on
personal exposure monitoring to characterize the exposure
of individual primary cooks. Still, attributing exposure to
cooking events may also be enhanced by deploying air
pollution exposure monitors in the kitchen and those that
capture ambient air pollution. Kitchen area monitors alone
usually overestimate personal exposure due to time-activity
patterns [17], but in combination with time-resolved per-
sonal exposure monitors may provide insights into area
concentrations resulting from cooking events [35]. Ambient
air pollution monitors can establish baseline exposures and
potentially capture the influence of community-level air
pollution, including those from nearby cooking events [57].

A strength of this study was the inclusion of a subset of
households receiving long-term firewood stove use monitor-
ing. We observed similar cooking patterns between seven of
the eight households in the long-term and 48-h monitoring
periods, suggesting limited bias due to being observed (the
“Hawthorne Effect”), which has been observed in similar
studies [58, 59]. Future studies can further explore the benefits
of long-term monitoring as a tool to confirm the validity of
short-term stove use monitoring data or to extrapolate short-
term monitoring to better estimate health risks.

Conclusions

We use a holistic approach to integrate multiple sensors to
assess personal PM2.5 exposure and stove use in a setting
where low-cost LPG has been accessible for decades. Sig-
nificant LPG subsidies have facilitated a nationwide tran-
sition to clean fuels dominating throughout peri-urban and
rural coastal and Andean Ecuador. We observe that most
participants experienced personal PM2.5 exposure below the
health-based WHO interim-I guideline of 35 μg/m3. Still,
our results suggest that secondary firewood use is associated
with average and short-term personal air pollution exposure
above this interim-I guideline. These findings speak to the
potential for substantial fuel subsidies to accelerate the
transition to clean cooking fuels to lower air pollution
exposure elsewhere. Future studies using multiple sensors
can offer valuable insight into source contributions of PM2.5

and exposure risks for populations stacking cooking fuels.
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