Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Can respirator face masks in a developing country reduce exposure to ambient particulate matter?

Abstract

Respirator face masks (RFMs) as a personal-level intervention is increasingly being utilized to reduce ambient particulate matter (PM) exposure, globally. We tested the effectiveness of 50 commercially available ones in reducing the exposure of ambient particle number concentrations (PNC), PM10, PM2.5, and PM1 (PM ≤ 10, 2.5, and 1 μm in diameter, respectively) in a traffic-affected urban site in Tehran. To examine the efficiency of RFMs, we applied a specific experimental setup including vacuum pumps, dummy heads, connecting tubes, glass chambers, and GRIMM Aerosol Spectrometer to measure all metrics after dummy heads. The average effectiveness of RFMs was in the range of 0.7–83.5%, 3.5–68.1%, 0.8–46.1%, and 0.4–32.2% in reducing ambient PNC, PM10, PM2.5, and PM1, respectively. Considering all metrics, the highest effectiveness was observed always for Biomask, followed by 3 M 9332, due to their well-designed physical characteristics (e.g., adjustable nose clip for any face/nose shape, and size, soft inner material in the nose panel to provide a secure seal against leakage, adjustable or elasticated straps/ear loops to better adjust on any face). Biomask reduced ambient PM10 with a mean value of 94.6 μg m−3 (minimum–maximum: 51.7–100.3 μg m−3), whereas it filtered on average just 29.0 μg m−3 (25.7–43.5 μg m−3) of ambient PM2.5 and 18.2 μg m−3 (14.7–21.8 μg m−3) of PM1. A fuzzy analytical hierarchy process to find the most important design-related factors of RFMs affecting their effectiveness, which showed the exhalation valve and its diaphragm (20.4%), nose clip (19.7%), and cheek flaps (18.6%) are ranked as the main design-related variables. The fuzzy technique for order preference by similarity to ideal solution indicated that Biomask and 3M 9332 had scores of 1 and 0.97, the highest scores compared with other RFMs. This study provides crucial evidence-based results to elucidate the effectiveness and design-related factors of RFMs in real-environmental circumstances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brook RD, Newby DE, Rajagopalan S. The global threat of outdoor ambient air pollution to cardiovascular health: time for intervention. JAMA Cardiol. 2017;2:353–4.

    Article  PubMed  Google Scholar 

  2. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525:367.

    Article  CAS  PubMed  Google Scholar 

  3. Hadley MB, Vedanthan R, Fuster V. Air pollution and cardiovascular disease: a window of opportunity. Nat Rev Cardiol. 2018;15:193.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA, et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci USA. 2018;115:9592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72:2054–70.

    Article  CAS  PubMed  Google Scholar 

  6. Hadley MB, Baumgartner J, Vedanthan R. Developing a clinical approach to air pollution and cardiovascular health. Circulation. 2018;137:725–42.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, et al. The Lancet Commission on pollution and health. Lancet. 2018;391:462–512.

    Article  PubMed  Google Scholar 

  8. Apte JS, Brauer M, Cohen AJ, Ezzati M, Pope III CA. Ambient PM2. 5 reduces global and regional life expectancy. Environ Sci Technol Lett. 2018;5:546–51.

    Article  CAS  Google Scholar 

  9. Fantke P, McKone TE, Tainio M, Jolliet O, Apte JS, Stylianou K, et al. Global effect factors for exposure to fine particulate matter. Environ Sci Technol. 2019;53:6855–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. West JJ, Cohen A, Dentener F, Brunekreef B, Zhu T, Armstrong B, et al. What we breathe impacts our health: improving understanding of the link between air pollution and health. Environ Sci Technol. 2016:50:4895–904.

    Article  CAS  PubMed  Google Scholar 

  11. Barzeghar V, Sarbakhsh P, Hassanvand MS, Faridi S, Gholampour A. Long-term trend of ambient air PM10, PM2.5, and O3 and their health effects in Tabriz city, Iran, during 2006–17. Sustain Cities Soc. 2020;54:101988.

    Article  Google Scholar 

  12. Shamsipour M, Hassanvand MS, Gohari K, Yunesian M, Fotouhi A, Naddafi K, et al. National and sub-national exposure to ambient fine particulate matter (PM2. 5) and its attributable burden of disease in Iran from 1990 to 2016. Environ Pollut. 2019;255:113173.

    Article  CAS  PubMed  Google Scholar 

  13. Laumbach R, Meng Q, Kipen H. What can individuals do to reduce personal health risks from air pollution? J Thorac Dis. 2015;7:96.

    PubMed  PubMed Central  Google Scholar 

  14. Langrish JP, Li X, Wang S, Lee MM, Barnes GD, Miller MR, et al. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ Health Perspect. 2012;120:367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Cai J, Chen R, Zhao Z, Ying Z, Wang L, et al. Particulate matter exposure and stress hormone levels: a randomized, double-blind, crossover trial of air purification. Circulation. 2017;136:618–27.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Li L, Gao W, Wang Y, Yao X. Interventions to reduce individual exposure of elderly individuals and children to haze: a review. J Thorac Dis. 2016;8:E62.

    PubMed  PubMed Central  Google Scholar 

  17. Shakya KM, Noyes A, Kallin R, Peltier RE. Evaluating the efficacy of cloth facemasks in reducing particulate matter exposure. J Expo Sci Environ Epidemiol. 2017;27:352.

    Article  CAS  PubMed  Google Scholar 

  18. Peck R, Grinshpun S, Yermakov M, Rao M, Kim J, Reponen T. Efficiency of portable HEPA air purifiers against traffic related combustion particles. Build Environ. 2016;98:21–29.

    Article  Google Scholar 

  19. Cherrie JW, Apsley A, Cowie H, Steinle S, Mueller W, Lin C, et al. Effectiveness of face masks used to protect Beijing residents against particulate air pollution. Occup Environ Med. 2018;75:446–52.

    Article  PubMed  Google Scholar 

  20. Steinle S, Sleeuwenhoek A, Mueller W, Horwell CJ, Apsley A, Davis A, et al. The effectiveness of respiratory protection worn by communities to protect from volcanic ash inhalation. Part II: Total inward leakage tests. Int J Hyg Environ Health. 2018;221:977–84.

    Article  PubMed  Google Scholar 

  21. Mueller W, Horwell CJ, Apsley A, Steinle S, McPherson S, Cherrie JW, et al. The effectiveness of respiratory protection worn by communities to protect from volcanic ash inhalation. Part I: Filtration efficiency tests. Int J Hyg Environ Health. 2018;221:967–76.

    Article  PubMed  Google Scholar 

  22. Chen R, Zhao A, Chen H, Zhao Z, Cai J, Wang C, et al. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers. J Am Coll Cardiol. 2015;65:2279–87.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Giles LV, Barn P, Künzli N, Romieu I, Mittleman MA, van Eeden S, et al. From good intentions to proven interventions: effectiveness of actions to reduce the health impacts of air pollution. Environ Health Perspect. 2010;119:29–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Morishita M, Adar SD, D’Souza J, Ziemba RA, Bard RL, Spino C, et al. Effect of portable air filtration systems on personal exposure to fine particulate matter and blood pressure among residents in a low-income senior facility: a randomized clinical trial. JAMA Intern Med. 2018;178:1350–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barrett JR. Air pollution intervention: study links use of face masks to improved cardiovascular outcomes. Natl Inst Environ Health Sci. 2012;120:a122.

    Google Scholar 

  26. Langrish JP, Mills NL, Chan JK, Leseman DL, Aitken RJ, Fokkens PH, et al. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part Fibre Toxicol. 2009;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Mu Q. Air pollution and defensive expenditures: evidence from particulate-filtering facemasks. J Environ Econ Manag. 2017;92:517–36.

    Article  Google Scholar 

  28. Shi J, Lin Z, Chen R, Wang C, Yang C, Cai J, et al. Cardiovascular benefits of wearing particulate-filtering respirators: a randomized crossover trial. Environ Health Perspect. 2016;125:175–80.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Patel D, Shibata T, Wilson J, Maidin A. Challenges in evaluating PM concentration levels, commuting exposure, and mask efficacy in reducing PM exposure in growing, urban communities in a developing country. Sci Total Environ. 2016;543:416–24.

    Article  CAS  PubMed  Google Scholar 

  30. van Dorn A. Clearing the air: do facemasks protect health? Lancet Respir Med. 2017;5:555–6.

    Article  PubMed  Google Scholar 

  31. Cheng Z, Luo L, Wang S, Wang Y, Sharma S, Shimadera H, et al. Status and characteristics of ambient PM2. 5 pollution in global megacities. Environ Int. 2016;89:212–21.

    Article  PubMed  CAS  Google Scholar 

  32. Pacitto A, Amato F, Salmatonidis A, Moreno T, Alastuey A, Reche C, et al. Effectiveness of commercial face masks to reduce personal PM exposure. Sci Total Environ. 2019;650:1582–90.

    Article  CAS  PubMed  Google Scholar 

  33. Morishita M, Wang L, Speth K, Zhou N, Bard RL, Li F, et al. Acute blood pressure and cardiovascular effects of near-roadway exposures with and without N95 respirators. Am J Hypertens. 2019;32:1054–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Faridi S, Shamsipour M, Krzyzanowski M, Künzli N, Amini H, Azimi F, et al. Long-term trends and health impact of PM 2.5 and O3 in Tehran, Iran, 2006–2015. Environ Int. 2018;114:37–49.

    Article  CAS  PubMed  Google Scholar 

  35. Faridi S, Niazi S, Yousefian F, Azimi F, Pasalari H, Momeniha F, et al. Spatial homogeneity and heterogeneity of ambient air pollutants in Tehran. Sci Total Environ. 2019;697:123–34.

    Article  CAS  Google Scholar 

  36. Faridi S, Niazi S, Shamsipour M, Hassanvand MS. Comments on:” Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran”. Environ Res. 2019;174:122.

    Article  CAS  PubMed  Google Scholar 

  37. Bayat R, Ashrafi K, Motlagh MS, Hassanvand MS, Daroudi R, Fink G, et al. Health impact and related cost of ambient air pollution in Tehran. Environ Res. 2019;176:108547.

    Article  CAS  PubMed  Google Scholar 

  38. Yousefian F, Faridi S, Azimi F, Aghaei M, Shamsipour M, Yaghmaeian K, et al. Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017. Sci Rep. 2020;10:1–11.

    Article  CAS  Google Scholar 

  39. Huang W, Morawska L. Face masks could raise pollution risks. Nature. 2019;574:29–30.

    Article  CAS  PubMed  Google Scholar 

  40. Jung H, Kim J, Lee S, Lee J, Kim J, Tsai P, et al. Comparison of filtration efficiency and pressure drop in anti-yellow sand masks, quarantine masks, medical masks, general masks, and handkerchiefs. Aerosol Air Qual Res. 2014;14:991–1002.

    Article  Google Scholar 

  41. Bard RL, Ijaz MK, Zhang JJ, Li Y, Bai C, Yang Y, et al. Interventions to reduce personal exposures to air pollution: a primer for health care providers. Glob heart. 2019;14:47.

    Article  PubMed  Google Scholar 

  42. Horwell C, Ferdiwijaya D, Wahyudi T, Dominelli L. Use of respiratory protection in Yogyakarta during the 2014 eruption of Kelud, Indonesia: community and agency perspectives. J Volcanol Geotherm Res. 2017;382:92–102.

    Article  CAS  Google Scholar 

  43. Rengasamy S, Zhuang Z, Niezgoda G, Walbert G, Lawrence R, Boutin B, et al. A comparison of total inward leakage measured using sodium chloride (NaCl) and corn oil aerosol methods for air-purifying respirators. J Occup Environ Hyg. 2018;15:616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guan T, Hu S, Han Y, Wang R, Zhu Q, Hu Y, et al. The effects of facemasks on airway inflammation and endothelial dysfunction in healthy young adults: a double-blind, randomized, controlled crossover study. Part Fibre Toxicol. 2018;15:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rengasamy S, Walbert GF, Newcomb WE, Faulkner K, Rengasamy MM, Brannen JJ, et al. Total inward leakage measurement of particulates for N95 filtering facepiece respirators—a comparison study. Ann Occup Hyg. 2013;58:206–16.

    PubMed  Google Scholar 

  46. Rengasamy S, Eimer BC. Total inward leakage of nanoparticles through filtering facepiece respirators. Ann Occup Hyg. 2011;55:253–63.

    CAS  PubMed  Google Scholar 

  47. Kelkar U, Gogate B, Kurpad S, Gogate P, Deshpande M. How effective are face masks in operation theatre? A time frame analysis and recommendations. Int J Infect Control 2013;9.

  48. Shaffer RE, Rengasamy S. Respiratory protection against airborne nanoparticles: a review. J Nanopart Res. 2009;11:1661.

    Article  CAS  Google Scholar 

  49. Kang M. Assessment of NIOSH-approved N95 filter performance against varying conditions. 2011. https://ir.uiowa.edu/etd/2722/.

  50. Rengasamy S, Shaffer R, Williams B, Smit S. A comparison of facemask and respirator filtration test methods. J Occup Environ Hyg. 2017;14:92–103.

    Article  PubMed  Google Scholar 

  51. Lai A, Poon C, Cheung A. Effectiveness of facemasks to reduce exposure hazards for airborne infections among general populations. J R Soc Interface. 2011;9:938–48.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li J, Chen H, Li X, Wang M, Zhang X, Cao J, et al. Differing toxicity of ambient particulate matter (PM) in global cities. Atmos Environ. 2019;212:305–15.

    Article  CAS  Google Scholar 

  53. Amato F. Non-exhaust emissions: an urban air quality problem for public health; impact and mitigation measures. (Academic Press; 2018).

  54. Yousefian F, Mahvi AH, Yunesian M, Hassanvand MS, Kashani H, Amini H. Long-term exposure to ambient air pollution and autism spectrum disorder in children: a case-control study in Tehran, Iran. Sci total Environ. 2018;643:1216–22.

    Article  CAS  PubMed  Google Scholar 

  55. Chen G, Morawska L, Zhang W, Li S, Cao W, Ren H, et al. Spatiotemporal variation of PM1 pollution in China. Atmos Environ. 2018;178:198–205.

    Article  CAS  Google Scholar 

  56. Hassanvand MS, Naddafi K, Faridi S, Arhami M, Nabizadeh R, Sowlat MH, et al. Indoor/outdoor relationships of PM10, PM2. 5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmos Environ. 2014;82:375–82.

    Article  CAS  Google Scholar 

  57. Meng X, Ma Y, Chen R, Zhou Z, Chen B, Kan H. Size-fractionated particle number concentrations and daily mortality in a Chinese city. Environ Health Perspect. 2013;121:1174–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F, et al. Characterization of PAHs and metals in indoor/outdoor PM10/PM2. 5/PM1 in a retirement home and a school dormitory. Sci Total Environ. 2015;527:100–10.

    Article  PubMed  CAS  Google Scholar 

  59. Hassanvand MS, Naddafi K, Kashani H, Faridi S, Kunzli N, Nabizadeh R, et al. Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. Environ Pollut. 2017;223:695–704.

    Article  CAS  PubMed  Google Scholar 

  60. Vallero DA. Fundamentals of air pollution. (Academic press; 2014).

  61. Moya J, Phillips L, Schuda L, Wood P, Diaz A, Lee R, et al. Exposure factors handbook 2011 edn (Final Report). US Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011.

  62. Gumus AT. Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP and TOPSIS methodology. Exp Syst Appl. 2009;36:4067–74.

    Article  Google Scholar 

  63. Sun C-C. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Exp Syst Appl. 2010;37:7745–54.

    Article  Google Scholar 

  64. Borza S, Inta M, Serbu R, Marza B. Multi-criteria analysis of pollution caused by auto traffic in a geographical area limited to applicability for an eco-economy environment. Sustainability. 2018;10:4240.

    Article  Google Scholar 

  65. Yao B-g, Wang Y-x, Ye X-y, Zhang F, Peng Y-l. Impact of structural features on dynamic breathing resistance of healthcare face mask. Sci Total Environ. 2019;689:743–53.

    Article  CAS  PubMed  Google Scholar 

  66. Mahdavi A, Bahloul A, Haghighat F, Ostiguy C. Contribution of breathing frequency and inhalation flow rate on performance of N95 filtering facepiece respirators. Ann Occup Hyg. 2013;58:195–205.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Iran National Science Foundation (INSF) (grant number: 97011909). The authors are also grateful to Institute for Environmental Research (IER), Tehran Heart Center (THC), and the Exceptional Talents Development Center at Tehran University of Medical Sciences. It should be noted that the use of any brand names in the current study in no way endorses the use of its RFM and other products. This article is the first part of a randomized crossover trial entitled “Evaluating performance of face masks in reducing ambient particulate matter exposure and their wearing on acute cardiovascular effects” with registration number “IRCT20181214041961N1”, in Tehran megacity and its results will be used in the next article. We sincerely acknowledge Sadegh Niazi, PhD candidate at Queensland University of Technology, for his assistance in the revision of our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SF, MSH, and KN provided the idea for this work and designed the method. SF, MSH, and SHN performed the experiments. SF and RNN contributed to the data analysis. SF prepared all figures and tables, and wrote the main manuscript. SS, MH, MT, MY, and MSH revised the manuscript.

Corresponding authors

Correspondence to Mohammad Sadegh Hassanvand or Kazem Naddafi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faridi, S., Nodehi, R.N., Sadeghian, S. et al. Can respirator face masks in a developing country reduce exposure to ambient particulate matter?. J Expo Sci Environ Epidemiol 30, 606–617 (2020). https://doi.org/10.1038/s41370-020-0222-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-020-0222-6

Keywords

This article is cited by

Search

Quick links