Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association between urinary paraben concentrations and gestational weight gain during pregnancy

Abstract

Parabens, a group of endocrine-disrupting chemicals, have been associated with obesity in previous studies. However, there is a paucity of literature regarding the effects of paraben exposures on gestational weight gain (GWG), a considerable predictor of obesity risk in both mothers and offspring later in life. The aim of the present study was to evaluate the associations between urinary paraben concentrations and GWG during the three trimesters of pregnancy. We collected urine samples from 613 pregnant women during the first, second, and third trimesters of their pregnancies between 2014 and 2015 in Wuhan, China. The urine concentrations of five parabens, including methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), butylparaben, and benzylparaben, were measured. Gestational weight in each trimester and prepregnancy weight were used to calculate trimester GWG. Linear mixed models were used to evaluate the trimester-specific and overall associations between paraben exposures and GWG rate (trimester GWG divided by the gestational week of the weight measurement, kg/week). We performed stratified analysis to further explore the potential effect modification by prepregnancy BMI. In the trimester-specific association analyses, the first-trimester concentrations MeP, EtP, PrP, and ∑parabens (sum of all five parabens’s molar concentrations) were associated with an increased first-trimester GWG rate, and these associations were stronger than those of the second or third trimesters. The overall association analysis showed that increased trimester GWG rates were associated with the combined effects of exposure to MeP, PrP, or ∑parabens during all three trimesters. Stratified analysis showed that higher paraben exposures were associated with higher trimester GWG rates among overweight/obese women that among normal-weight or underweight women. Our results showed that paraben exposures were positively associated with trimester GWG rate during pregnancy, especially during the first trimester. Replicated research in populations exposed to higher paraben levels is needed in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Błędzka D, Gromadzińska J, Wąsowicz W. Parabens. From environmental studies to human health. Environ Int. 2014;67:27–42.

    Article  PubMed  CAS  Google Scholar 

  2. Nowak K, Ratajczak Wrona W, Górska M, Jabłońska E. Parabens and their effects on the endocrine system. Mol Cell Endocrinol. 2018;474:238–51.

    Article  CAS  PubMed  Google Scholar 

  3. FDA. Food Additives & Ingredients > Food Additive Status List. FDA: Washington DC, USA; 2016.

  4. EU. European Parliament and Council Directive No. 95/2/EC on food additives other than colours and sweeteners. EU: Brussels, BEL; 1995.

  5. Nohynek GJ, Borgert CJ, Dietrich D, Rozman KK. Endocrine disruption: Fact or urban legend? Toxicol Lett. 2013;223:295–305.

    Article  CAS  PubMed  Google Scholar 

  6. Rutkowska A, Rachoń D, Milewicz A, Ruchała M, Bolanowski M, Jędrzejuk D, et al. Polish society of endocrinology position statement on endocrine disrupting chemicals (EDCs). Endokrynol Pol. 2015;66:276–85.

    Article  PubMed  Google Scholar 

  7. Li Y, Xu S, Li Y, Zhang B, Huo W, Zhu Y, et al. Association between urinary parabens and gestational diabetes mellitus across prepregnancy body mass index categories. Environ Res. 2019;170:151–9.

    Article  CAS  PubMed  Google Scholar 

  8. Smarr MM, Sundaram R, Honda M, Kannan K, Louis GMB. Urinary concentrations of parabens and other antimicrobial chemicals and their association with couples’ fecundity. Environ Health Persp. 2017;125:730–6.

    Article  CAS  Google Scholar 

  9. Darbre PD, Aljarrah A, Miller WR, Coldham NG, Sauer MJ, Pope GS. Concentrations of parabens in human breast tumours. J Appl Toxicol. 2004;24:5–13.

    Article  CAS  PubMed  Google Scholar 

  10. Hu P, Chen X, Whitener RJ, Boder ET, Jones JO, Porollo A, et al. Effects of parabens on adipocyte differentiation. Toxicol Sci. 2013;131:56–70.

    Article  CAS  PubMed  Google Scholar 

  11. Hu P, Overby H, Heal E, Wang S, Chen J, Shen C, et al. Methylparaben and butylparaben alter multipotent mesenchymal stem cell fates towards adipocyte lineage. Toxicol Appl Pharm. 2017;329:48–57.

    Article  CAS  Google Scholar 

  12. Taxvig C, Dreisig K, Boberg J, Nellemann C, Schelde AB, Pedersen D, et al. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation. Mol Cell Endocrinol. 2012;361:106–15.

    Article  CAS  PubMed  Google Scholar 

  13. Pereira-Fernandes A, Demaegdt H, Vandermeiren K, Hectors TLM, Jorens PG, Blust R, et al. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect. Plos ONE. 2013;8:e77481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heindel JJ, Newbold R, Schug TT. Endocrine disruptors and obesity. Nat Rev Endocrinol. 2015;11:653.

    Article  CAS  PubMed  Google Scholar 

  15. Walter JR, Perng W, Kleinman KP, Rifas-Shiman SL, Rich-Edwards JW, Oken E. Associations of trimester-specific gestational weight gain with maternal adiposity and systolic blood pressure at 3 and 7 years postpartum. Am J Obstet Gynecol. 2015;212:491–9.

    Article  Google Scholar 

  16. Macdonald-Wallis C, Tilling K, Fraser A, Nelson SM, Lawlor DA. Gestational weight gain as a risk factor for hypertensive disorders of pregnancy. Am J Obstet Gynecol. 2013;209:321–7.

    Article  Google Scholar 

  17. Fraser A, Tilling K, Macdonald-Wallis C, Hughes R, Sattar N, Nelson SM, et al. Associations of gestational weight gain with maternal body mass index, waist circumference, and blood pressure measured 16 y after pregnancy: the Avon Longitudinal Study of Parents and Children (ALSPAC). Am J Clin Nutr. 2011;93:1285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perng W, Gillman MW, Mantzoros CS, Oken E. A prospective study of maternal prenatal weight and offspring cardiometabolic health in midchildhood. Ann Epidemiol. 2014;24:793–800.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Voerman E, Santos S, Patro Golab B, Amiano P, Ballester F, Barros H, et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: An individual participant data meta-analysis. Plos Med. 2019;16:e1002744.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gaillard R, Welten M, Oddy WH, Beilin LJ, Mori TA, Jaddoe V, et al. Associations of maternal prepregnancy body mass index and gestational weight gain with cardio-metabolic risk factors in adolescent offspring: a prospective cohort study. BJOG. 2016;123:207–16.

    Article  CAS  PubMed  Google Scholar 

  21. Moya J, Phillips L, Sanford J, Wooton M, Gregg A, Schuda L. A review of physiological and behavioral changes during pregnancy and lactation: Potential exposure factors and data gaps. J Expo Sci Env Epid. 2014;24:449.

    Article  Google Scholar 

  22. Ashley-Martin J, Dodds L, Arbuckle TE, Morisset A, Fisher M, Bouchard MF, et al. Maternal and NEonatal Levels Of Perfluoroalkyl Substances In Relation To Gestational Weight Gain. Int J Env Res Pub Health. 2016;13:146.

    Article  CAS  Google Scholar 

  23. James-Todd TM, Meeker JD, Huang T, Hauser R, Ferguson KK, Rich-Edwards JW, et al. Pregnancy urinary phthalate metabolite concentrations and gestational diabetes risk factors. Environ Int. 2016;96:118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shapiro GD, Arbuckle TE, Ashley-Martin J, Fraser WD, Fisher M, Bouchard MF, et al. Associations between maternal triclosan concentrations in early pregnancy and gestational diabetes mellitus, impaired glucose tolerance, gestational weight gain and fetal markers of metabolic function. Environ Res. 2018;161:554–61.

    Article  CAS  PubMed  Google Scholar 

  25. Jaacks LM, Boyd Barr D, Sundaram R, Grewal J, Zhang C, Buck Louis GM. Pre-pregnancy maternal exposure to persistent organic pollutants and gestational weight gain: a prospective cohort study. Int J Env Res Pub Health. 2016;13:905.

    Article  CAS  Google Scholar 

  26. Liao J, Yu H, Xia W, Zhang B, Lu B, Cao Z, et al. Exposure to ambient fine particulate matter during pregnancy and gestational weight gain. Environ Int. 2018;119:407–12.

    Article  CAS  PubMed  Google Scholar 

  27. Smith KW, Braun JM, Williams PL, Ehrlich S, Correia KF, Calafat AM, et al. Predictors and variability of urinary paraben concentrations in men and women, including before and during pregnancy. Environ Health Persp. 2012;120:1538–43.

    Article  CAS  Google Scholar 

  28. Chu SY, Callaghan WM, Bish CL, D’Angelo D. Gestational weight gain by body mass index among US women delivering live births, 2004-2005: fueling future obesity. Am J Obstet Gynecol. 2009;200:271.

    PubMed  Google Scholar 

  29. IOM. Weight gain during pregnancy: Reexamining the Guidelines. Kathleen 526MR, Ann LY, editors. Washington, DC: The National Academies Press; 2009.

  30. Zhao H, Li J, Ma X, Huo W, Xu S, Cai Z. Simultaneous determination of bisphenols, benzophenones and parabens in human urine by using UHPLC-TQMS. Chinese Chem Lett. 2018;29:102–6.

    Article  CAS  Google Scholar 

  31. Hornung RW, Reed LD. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg. 1990;5:46–51.

    Article  CAS  Google Scholar 

  32. James WPT, Chunming C, Inoue S. Appropriate Asian body mass indices? Obes Rev. 2002;3:139.

    Article  CAS  PubMed  Google Scholar 

  33. WHO EC. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.

    Article  Google Scholar 

  34. WHO. The Asia-Pacific perspective: redefining obesity and its treatment. Sydney: Health Communications Australia; 2000.

    Google Scholar 

  35. Deurenberg P, Deurenberg-Yap M. Validity of body composition methods across ethnic population groups. Acta Diabetol. 2003;40:S246–9.2003-10-01.

    Article  PubMed  Google Scholar 

  36. Komem D, Salman L, Krispin E, Arbib N, Bardin R, Wiznitzer A, et al. Gestational weight gain and weight loss among women with gestational diabetes mellitus. Diabetes Res Clin Pract. 2018;141:88–97.2018-01-01.

    Article  PubMed  Google Scholar 

  37. Liu J, Gallagher AE, Carta CM, Torres ME, Moran R, Wilcox S. Racial differences in gestational weight gain and pregnancy-related hypertension. Ann Epidemiol. 2014;24:441–7.2014-01-01.

    Article  PubMed  PubMed Central  Google Scholar 

  38. US EPA. Assigning values to non-detected/nonquantified pesticide residues in human health food exposure assessments. Washington DC (US). 2000. http://www.epa.gov/pesticides/trac/science/trac3b012.pdf/.

  39. Hamra G, MacLehose R, Richardson D. Markov Chain Monte Carlo: an introduction for epidemiologists. Int J Epidemiol. 2013;42:627–34.2013-04-05.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shin D, Bianchi L, Chung H, Weatherspoon L, Song WO. Is gestational weight gain associated with diet quality during pregnancy? Matern Child Health J. 2014;18:1433–43.

    Article  PubMed  Google Scholar 

  41. Emily H, Cecily CK, Patrick GW, Fionnuala MM. Prediction of gestational weight gain—a biopsychosocial model. Public Health Nutr. 2015;18:1488–98.

    Article  Google Scholar 

  42. Ferraro ZM, Contador F, Tawfiq A, Adamo KB, Gaudet L. Gestational weight gain and medical outcomes of pregnancy. Obstet Med. 2015;8:133–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kominiarek MA, Peaceman AM. Gestational weight gain. Am J Obstet Gynecol. 2017;217:642–51.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Restall A, Taylor RS, Thompson JMD, Flower D, Dekker GA, Kenny LC, et al. Risk factors for excessive gestational weight gain in a healthy, nulliparous cohort. J Obes. 2014;2014:148391.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Katrine TDR, Hanne F, Jeppe SC, Henriette BK, Anna-Maria A, Steffen H, et al. Current exposure of 200 pregnant Danish women to phthalates, parabens and phenols. Reproduction. 2014;147:443–53.

    Article  Google Scholar 

  46. Philippat C, Mortamais M, Chevrier C, Petit C, Calafat AM, Ye X, et al. Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environ Health Persp. 2012;120:464–70.

    Article  CAS  Google Scholar 

  47. Shirai S, Suzuki Y, Yoshinaga J, Shiraishi H, Mizumoto Y. Urinary excretion of parabens in pregnant Japanese women. Reprod Toxicol. 2013;35:96–101.

    Article  CAS  PubMed  Google Scholar 

  48. Pycke BFG, Geer LA, Dalloul M, Abulafia O, Halden RU. Maternal and fetal exposure to parabens in a multiethnic urban U.S. population. Environ Int. 2015;84:193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Global I. A study of the european cosmetics industry_ final report, Department/Division. Global Insight: Lexington, MA, USA; 2007.

  50. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DRJ, Lee D, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33:378–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bellavia A, Hauser R, Seely EW, Meeker JD, Ferguson KK, McElrath TF, et al. Urinary phthalate metabolite concentrations and maternal weight during early pregnancy. Int J Hyg Environ Health. 2017;220:1347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kolatorova Sosvorova L, Dusková M, Vitku J, Stárka L. Prenatal exposure to bisphenols and parabens and impacts on human physiology. Physiol Res. 2017;66(Supplementum 3):S305-S315.

  53. Kang H, Kyung M, Ko A, Park J, Hwang M, Kwon J, et al. Urinary concentrations of parabens and their association with demographic factors: A population-based cross-sectional study. ENVIRON RES. 2016;146:245–51.2016-01-01.

    Article  CAS  PubMed  Google Scholar 

  54. Bethea TN, Wesselink AK, Weuve J, McClean MD, Hauser R, Williams PL, et al. Correlates of exposure to phenols, parabens, and triclocarban in the Study of Environment, Lifestyle and Fibroids. Journal of exposure science & environmental epidemiology. 2020;30:117-136.

  55. Quirós-Alcalá L, Buckley JP, Boyle M. Parabens and measures of adiposity among adults and children from the U.S. general population: NHANES 2007–2014. Int J Hyg Environ Health. 2018;221:652–60.2018-01-01.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy. Clin Pharmacokinet. 2012;51:365–96.

    Article  CAS  PubMed  Google Scholar 

  57. Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre A, Saladin R, et al. The organization, promoter analysis, and expression of the human PPARγ gene. J Biol Chem. 1997;272:18779–89.

    Article  CAS  PubMed  Google Scholar 

  58. Kodani SD, Overby HB, Morisseau C, Chen J, Zhao L, Hammock BD. Parabens inhibit fatty acid amide hydrolase: a potential role in paraben-enhanced 3T3-L1 adipocyte differentiation. Toxicol Lett. 2016;262:92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang L, Asimakopoulos AG, Kannan K. Accumulation of 19 environmental phenolic and xenobiotic heterocyclic aromatic compounds in human adipose tissue. Environ Int. 2015;78:45–50.

    Article  CAS  PubMed  Google Scholar 

  60. Deierlein AL, Wolff MS, Pajak A, Pinney SM, Windham GC, Galvez MP, et al. Phenol concentrations during childhood and subsequent measures of adiposity among young girls. Am J Epidemiol. 2017;186:581–92.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Koeppe ES, Ferguson KK, Colacino JA, Meeker JD. Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007-2008. Sci Total Environ. 2013;445-446:299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kil DY, Swanson KS. Endocrinology of obesity. Vet Clin North Am: Small Anim Pract. 2010;40:205–19.

    Article  Google Scholar 

  63. Muscogiuri G, Sorice GP, Mezza T, Prioletta A, Lassandro AP, Pirronti T, et al. High-normal TSH values in obesity: Is it insulin resistance or adipose tissue’s guilt? Obesity. 2013;21:101–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91643207, 21437002, and 91743103), the National Key Research and Development Plan of China (2016YFC0206203 and 2016YFC0206700), the Fundamental Research Funds for the Central Universities, Huazhong University of Science and Technology (2015ZDTD047, 2016YXZD043, and 2018KFYXMPT00), and Program for HUST Academic Frontier Youth Team (2018QYTD12, 2018QYTD06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongwei Cai or Wei Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Q., Zhou, Y., Wang, Y. et al. Association between urinary paraben concentrations and gestational weight gain during pregnancy. J Expo Sci Environ Epidemiol 30, 845–855 (2020). https://doi.org/10.1038/s41370-020-0205-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-020-0205-7

Keywords

This article is cited by

Search

Quick links