Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bench approaches to study the detrimental cutaneous impact of tropospheric ozone


Being exposed to ground-level ozone (O3), as it is often the case in polluted cities, is known to have a detrimental impact on skin. O3 induces antioxidant depletion and lipid peroxidation in the upper skin layers and this effect has repercussions on deeper cellular layers, triggering a cascade of cellular stress and inflammatory responses. Repetitive exposure to high levels of O3 may lead to chronic damages of the cutaneous tissue, cause premature skin aging and aggravate skin diseases such as contact dermatitis and urticaria. This review paper debates about the most relevant experimental approaches that must be considered to gather deeper insights about the complex biological processes that are activated when the skin is exposed to O3. Having a better understanding of O3 effects on skin barrier properties and stress responses could help the whole dermato-cosmetic industry to design innovative protective solutions and develop specific cosmetic regime to protect the skin of every citizen, especially those living in areas where exposure to high levels of O3 is of concern to human health.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Example of an O3 exposure experimental set-up.
Fig. 2: Skin tissue models used to assess the effects of O3 on skin.


  1. 1.

    Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta. 2006;1758:2080–95.

  2. 2.

    Kolarsick PAJ, Kolarsick MA, Goodwin C. Anatomy and Physiology of the Skin. J Dermatol Nurses Assoc. 2011;3:203–13.

    Google Scholar 

  3. 3.

    Steven AC, Steinert PM. Protein composition of cornified cell envelopes of epidermal keratinocytes. J Cell Sci. 1994;700:693–700.

    Google Scholar 

  4. 4.

    Pouillot A, Dayan N, Polla AS, Polla LL, Polla BS. The stratum corneum: a double paradox. J Cosmet Dermatol. 2008;7:143–8.

    PubMed  Google Scholar 

  5. 5.

    McDaniel D, Farris P, Valacchi G. Atmospheric skin aging-Contributors and inhibitors. J Cosmet Dermatol. 2018;17:124–37.

    PubMed  Google Scholar 

  6. 6.

    Thiele JJ, Traber MG, Polefka TG, Cross CE, Packer L. Ozone-Exposure Depletes Vitamin E and Induces Lipid Peroxidation in Murine Stratum Corneum. J Investig Dermatol. 1997;108:753–7.

    CAS  PubMed  Google Scholar 

  7. 7.

    Fuks KB, Woodby B, Valacchi G. Skin damage by tropospheric ozone. Der Hautarzt. 2019;70:163–8.

    CAS  Google Scholar 

  8. 8.

    Valacchi G, Fortino V, Bocci V. The dual action of ozone on the skin. Br J Dermatol. 2005;153:1096–100.

    CAS  PubMed  Google Scholar 

  9. 9.

    Mustafa MG. Biochemical basis of ozone toxicity. Free Radic Biol Med. 1990;9:245–65.

    CAS  PubMed  Google Scholar 

  10. 10.

    EEA. Air quality 2018 - EEA report 12 2018. 2018

  11. 11.

    Boleti E, Hueglin C, Takahama S. Trends of surface maximum ozone concentrations in Switzerland based on meteorological adjustment for the period 1990–2014. Atmos Environ. 2019;213:326–36.

    CAS  Google Scholar 

  12. 12.

    Feng Z, Hu E, Wang X, Jiang L, Liu X. Ground-level O3 pollution and its impacts on food crops in China: a review. Environ Pollut. 2015;199:42–8.

    CAS  PubMed  Google Scholar 

  13. 13.

    Bocci V. Physical-chemical properties of ozone – natural production of ozone: the toxicology of ozone. In: Springer Science & Business Media, editors. OZONE A new medical drug. Dordrecht: Springer Netherlands; 2010. p. 1–4.

  14. 14.

    Cross CE, Valacchi G, Schock B, Wilson M, Weber S, Eiserich J et al. Environmental oxidant pollutant effects on biologic systems: a focus on micronutrient antioxidant-oxidant interactions. Am J Respir Crit Care Med. 2002;166.

  15. 15.

    European Environmental Agency. European Environmental Agency. (2019). Air quality in Europe — 2019 report — EEA Report No 10/2019 (Issue 10). Air quality in Europe — 2019 report — EEA Report No 10/2019. 2019

  16. 16.

    Tang G, Li X, Wang Y, Xin J, Ren X. Surface ozone trend details and interpretations in Beijing, 2001–2006. Atmos Chem Phys. 2009;9:8813–23.

    CAS  Google Scholar 

  17. 17.

    Han S, Zhang M, Zhao C, Lu X, Ran L, Han M, et al. Differences in ozone photochemical characteristics between the megacity Tianjin and its rural surroundings. Atmos Environ. 2013;79:209–16.

    CAS  Google Scholar 

  18. 18.

    Sticozzi C, Valacchi G. Effect of Ozone on Cutaneous Tissues. In: SpringerReference. Berlin/Heidelberg: Springer-Verlag; 2011. p. 918–22.

    Google Scholar 

  19. 19.

    Simone Reuter BBA. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2011;49:1603–16.

    Google Scholar 

  20. 20.

    Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Investig Dermatol. 2006;126:2565–75.

    CAS  PubMed  Google Scholar 

  21. 21.

    Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev. 2015;21:16–29.

    CAS  PubMed  Google Scholar 

  22. 22.

    Venza M, Visalli M, Beninati C, De Gaetano GV, Teti D, Venza I. Cellular Mechanisms of Oxidative Stress and Action in Melanoma. Oxid Med Cell Longev. 2015;2015:1–11.

    Google Scholar 

  23. 23.

    Zhou Q, Mrowietz U, Rostami-Yazdi M. Oxidative stress in the pathogenesis of psoriasis. Free Radic Biol Med. 2009;47:891–905.

    CAS  PubMed  Google Scholar 

  24. 24.

    Ji H, Li X-K. Oxidative Stress in Atopic Dermatitis. Oxid Med Cell Longev. 2016;2016:1–8.

    Google Scholar 

  25. 25.

    Fuks KB, Hüls A, Sugiri D, Altug H, Vierkötter A, Abramson MJ, et al. Tropospheric ozone and skin aging: results from two German cohort studies. Environ Int. 2019;124:139–44.

    CAS  PubMed  Google Scholar 

  26. 26.

    Xu F, Yan S, Wu M, Li F, Xu X, Song W, et al. Ambient ozone pollution as a risk factor for skin disorders. Br J Dermatol. 2011;165:224–5.

    CAS  PubMed  Google Scholar 

  27. 27.

    Pryor WA, Squadrito GL, Friedman M. A new mechanism for the toxicity of ozone. Toxicol Lett. 1995;82–83:287–93.

    PubMed  Google Scholar 

  28. 28.

    Valacchi G, Sticozzi C, Pecorelli A, Cervellati F, Cervellati C, Maioli E. Cutaneous responses to environmental stressors. Ann N Y Acad Sci. 2012;1271:75–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Pryor WA, Squadrito GL, Friedman M. The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products. Free Radic Biol Med. 1995;19:935–41.

    CAS  PubMed  Google Scholar 

  30. 30.

    Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol. 2011; 2011.

  31. 31.

    Valacchi G, Weber SU, Luu C, Cross CE, Packer L. Ozone potentiates vitamin E depletion by ultraviolet radiation in the murine stratum corneum. FEBS Lett. 2000;466:165–8.

    CAS  PubMed  Google Scholar 

  32. 32.

    Thiele JJ, Traber MG, Tsang K, Cross CE, Packer L. In vivo exposure to ozone depletes vitamins C and E and induces lipid peroxidation in epidermal layers of murine skin. Free Radic Biol Med. 1997;23:385–91.

    CAS  PubMed  Google Scholar 

  33. 33.

    Afaq F, Zaid MA, Pelle E, Khan N, Syed DN, Matsui MS, et al. Aryl hydrocarbon receptor is an ozone sensor in human skin. J Investig Dermatol. 2009;129:2396–403.

    CAS  PubMed  Google Scholar 

  34. 34.

    Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv Rev. 2014;69–70:81–102.

    PubMed  Google Scholar 

  35. 35.

    Dellambra E. Non-animal models in dermatological research. ALTEX. 2018;36:177–202.

    PubMed  Google Scholar 

  36. 36.

    Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering - In vivo and in vitro applications. Adv Drug Deliv Rev. 2011;63:352–66.

    CAS  PubMed  Google Scholar 

  37. 37.

    Poumay Y, Coquette A. Modelling the human epidermis in vitro: tools for basic and applied research. Arch Dermatol Res. 2007;298:361–9.

    PubMed  Google Scholar 

  38. 38.

    Kandárová H, Liebsch M, Schmidt E, Genschow E, Traue D, Spielmann H, et al. Assessment of the Skin Irritation Potential of Chemicals by Using the SkinEthic Reconstructed Human Epidermal Model and the Common Skin Irritation Protocol Evaluated in the ECVAM Skin Irritation Validation Study. Alter Lab Anim. 2006;34:393–406.

    Google Scholar 

  39. 39.

    Kandárová H, Liebsch M, Gerner I, Schmidt E, Genschow E, Traue D, et al. The EpiDerm Test Protocol for the Upcoming ECVAM Validation Study on In Vitro Skin Irritation Tests — An Assessment of the Performance of the Optimised Test. Alter Lab Anim. 2005;33:351–67.

    Google Scholar 

  40. 40.

    Alépée N, Grandidier MH, Cotovio J. Sub-categorisation of skin corrosive chemicals by the EpiSkinTM reconstructed human epidermis skin corrosion test method according to UN GHS: Revision of OECD Test Guideline 431. Toxicol Vitr. 2014;28:131–45.

    Google Scholar 

  41. 41.

    El Ghalbzouri A, Siamari R, Willemze R, Ponec M. Leiden reconstructed human epidermal model as a tool for the evaluation of the skin corrosion and irritation potential according to the ECVAM guidelines. Toxicol Vitr. 2008;22:1311–20.

    CAS  Google Scholar 

  42. 42.

    Netzlaff F, Lehr CM, Wertz PW, Schaefer UF. The human epidermis models EpiSkin®, SkinEthic® and EpiDerm®: An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 2005;60:167–78.

    CAS  PubMed  Google Scholar 

  43. 43.

    Thiele JJ, Traber MG, Podda M, Tsang K, Cross CE, Packer L. Ozone depletes tocopherols and tocotrienols topically applied to murine skin. FEBS Lett. 1997;401:167–70.

    CAS  PubMed  Google Scholar 

  44. 44.

    Weber SU, Thiele JJ, Cross CE, Packer L. Vitamin C, uric acid, and glutathione gradients in murine stratum corneum and their susceptibility to ozone exposure. J Investig Dermatol. 1999;113:1128–32.

    CAS  PubMed  Google Scholar 

  45. 45.

    Weber SU, Jothi S, Thiele JJ. [48] High-pressure liquid chromatography analysis of ozone-induced depletion of hydrophilic and lipophilic antioxidants in murine skin. Methods Enzymol. 2000;319:536–46.

  46. 46.

    Valacchi G, van der Vliet A, Schock B, Okamoto T, Obermuller-Jevic U, Cross C, et al. Ozone exposure activates oxidative stress responses in murine skin. Toxicology. 2002;179:163–70.

    CAS  PubMed  Google Scholar 

  47. 47.

    Valacchi G, Pagnin E, Corbacho AM, Olano E, Davis PA, Packer L, et al. In vivo ozone exposure induces antioxidant/stress-related responses in murine lung and skin. Free Radic Biol Med. 2004;36:673–81.

    CAS  PubMed  Google Scholar 

  48. 48.

    Numata I, Okuyama R, Memezawa A, Ito Y, Takeda K, Furuyama K, et al. Functional expression of heme oxygenase-1 in human differentiated epidermis and its regulation by cytokines. J Investig Dermatol. 2009;129:2594–603.

    CAS  PubMed  Google Scholar 

  49. 49.

    Tripp CS, Blomme EAG, Chinn KS, Hardy MM, LaCelle P, Pentland AP. Epidermal COX-2 Induction Following Ultraviolet Irradiation: suggested Mechanism for the Role of COX-2 Inhibition in Photoprotection. J Investig Dermatol. 2003;121:853–61.

    CAS  PubMed  Google Scholar 

  50. 50.

    Valacchi G, Pagnin E, Okamoto T, Corbacho AM, Olano E, Davis PA, et al. Induction of stress proteins and MMP-9 by 0.8 ppm of ozone in murine skin. Biochem Biophys Res Commun. 2003;305:741–6.

    CAS  PubMed  Google Scholar 

  51. 51.

    Lim Y, Phung AD, Corbacho AM, Aung HH, Maioli E, Reznick AZ, et al. Modulation of cutaneous wound healing by ozone: differences between young and aged mice. Toxicol Lett. 2006;160:127–34.

    CAS  PubMed  Google Scholar 

  52. 52.

    Sticozzi C, Pecorelli A, Lim A, Maioli E, Pagnin E, Davis PA, et al. Modulation of skin oxidative stress and inflammatory markers by environmental stressors. Differences between young and old. J Dermatol Sci. 2012;65:226–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kaur S, Oddos T, Tucker-Samaras S. Regulation of DNA Repair Process by the Pro-Inflammatory NF-κB Pathway. In: New Research Directions in DNA Repair, InTech, 2013, p. 213–27.

  55. 55.

    Jung EC, Maibach HI. Animal Models for Percutaneous Absorption. In: Topical Drug Bioavailability, Bioequivalence, and Penetration. 2014.

  56. 56.

    He QC, Tavakkol A, Wietecha K, Begum-Gafur R, Ansari SA, Polefka T. Effects of environmentally realistic levels of ozone on stratum corneum function. Int J Cosmet Sci. 2006;28:349–57.

    CAS  PubMed  Google Scholar 

  57. 57.

    Mancebo SE, Wang SQ. Recognizing the impact of ambient air pollution on skin health. J Eur Acad Dermatol Venereol. 2015;29:2326–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Valacchi G, Pecorelli A, Belmonte G, Pambianchi E, Cervellati F, Lynch S, et al. Protective Effects of Topical Vitamin C Compound Mixtures against Ozone-Induced Damage in Human Skin. J Investig Dermatol. 2017;137:1373–5.

    CAS  PubMed  Google Scholar 

  59. 59.

    Curpen S, Francois-Newton V, Moga A, Hosenally M, Petkar G, Soobramaney V, et al. A novel method for evaluating the effect of pollution on the human skin under controlled conditions. Ski Res Technol. 2020;26:50–60.

    Google Scholar 

  60. 60.

    Guo H, Callaway JB, Ting JP-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Zhong FL, Mamaï O, Sborgi L, Boussofara L, Hopkins R, Robinson K, et al. Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation. Cell. 2016;167:187–202.e17.

    CAS  PubMed  Google Scholar 

  62. 62.

    Sá DC, de, Festa, Neto C. Inflammasomes and dermatology. Bras Dermatol. 2016;91:566–78.

    Google Scholar 

  63. 63.

    Beer HD, Contassot E, French LE. The inflammasomes in autoinflammatory diseases with skin involvement. J Investig Dermatol. 2014;134:1805–10.

    CAS  PubMed  Google Scholar 

  64. 64.

    Ferrara F, Pambianchi E, Pecorelli A, Woodby B, Messano N, Therrien JP, et al. Redox regulation of cutaneous inflammasome by ozone exposure. Free Radic Biol Med. 2020;152:561–70.

    CAS  PubMed  Google Scholar 

  65. 65.

    Kousha T, Valacchi G. The Air Quality Health Index and Emergency Department Visits for Urticaria in Windsor, Canada. J Toxicol Environ Heal Part A. 2015;78:524–33.

    CAS  Google Scholar 

  66. 66.

    Valacchi G, Sticozzi C, Belmonte G, Cervellati F, Demaude J, Chen N, et al. Vitamin C compound mixtures prevent ozone-induced oxidative damage in human keratinocytes as initial assessment of pollution protection. PLoS ONE. 2015;10:1–15.

    Google Scholar 

  67. 67.

    McCarthy JT, Pelle E, Dong K, Brahmbhatt K, Yarosh D, Pernodet N. Effects of ozone in normal human epidermal keratinocytes. Exp Dermatol. 2013;22:360–1.

    CAS  PubMed  Google Scholar 

  68. 68.

    Cotovio J, Onno L, Justine P, Lamure S, Catroux P. Generation of oxidative stress in human cutaneous models following in vitro ozone exposure. Toxicol Vitr. 2001;15:357–62.

    CAS  Google Scholar 

  69. 69.

    Muresan XM, Narzt M-S, Woodby B, Ferrara F, Gruber F, Valacchi G. Involvement of cutaneous SR-B1 in skin lipid homeostasis. Arch Biochem Biophys. 2019;666:1–7.

    CAS  PubMed  Google Scholar 

  70. 70.

    Muresan XM, Sticozzi C, Belmonte G, Savelli V, Evelson P, Valacchi G. Modulation of cutaneous scavenger receptor B1 levels by exogenous stressors impairs “in vitro” wound closure. Mech Ageing Dev. 2018;172:78–85.

    CAS  PubMed  Google Scholar 

  71. 71.

    Weber SU, Tavakko A, Nabi, Z., Jothi S, Polefka TG, Packer L. The effects of tropospheric ozone on a human epidermal skin model (Epiderm). J Investig Dermatol. 1999;119:576.

  72. 72.

    Valacchi G, Muresan XM, Sticozzi C, Belmonte G, Pecorelli A, Cervellati F, et al. Ozone-induced damage in 3D-Skin Model is prevented by topical vitamin C and vitamin E compound mixtures application. J Dermatol Sci. 2016;82:209–12.

    CAS  PubMed  Google Scholar 

  73. 73.

    Klicks J, von Molitor E, Ertongur-Fauth T, Rudolf R, Hafner M. In vitro skin three-dimensional models and their applications. J Cell Biotechnol. 2017;3:21–39.

    Google Scholar 

  74. 74.

    Rademacher F, Simanski M, Gläser R, Harder J. Skin microbiota and human 3D skin models. Exp Dermatol. 2018;27:489–94.

    PubMed  Google Scholar 

  75. 75.

    Valacchi G, Porada E, Rowe B. Ambient ozone and bacterium Streptococcus: a link between cellulitis and pharyngitis. Int J Occup Med Environ Health. 2015;28:771–4.

    PubMed  Google Scholar 

  76. 76.

    Skobowiat C, Postlethwaite AE, Slominski AT. Skin Exposure to Ultraviolet B Rapidly Activates Systemic Neuroendocrine and Immunosuppressive Responses. Photochem Photobio. 2017;93:1008–15.

    CAS  Google Scholar 

  77. 77.

    Chen J, Roop DR. Genetically engineered mouse models for skin research: taking the next step. J Dermatol Sci. 2008;52:1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Schneider MR. Genetic mouse models for skin research: strategies and resources. Genesis. 2012;50:652–64.

    CAS  PubMed  Google Scholar 

  79. 79.

    Michaudel C, Bataille F, Maillet I, Fauconnier L, Colas C, Sokol H et al. Ozone-Induced Aryl Hydrocarbon Receptor Activation Controls Lung Inflammation via Interleukin-22 Modulation. Front Immunol. 2020; 11.

  80. 80.

    Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, et al. Skin models for the testing of transdermal drugs. Clin Pharm. 2016;8:163–76.

    CAS  Google Scholar 

  81. 81.

    Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59:1152–61.

    CAS  PubMed  Google Scholar 

  82. 82.

    Baxter LK, Dionisio KL, Burke J, Ebelt Sarnat S, Sarnat JA, Hodas N, et al. Exposure prediction approaches used in air pollution epidemiology studies: Key findings and future recommendations. J Expo Sci Environ Epidemiol. 2013;23:654–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Prieux R, Eeman M, Rothen-Rutishauser B, Valacchi G. Mimicking cigarette smoke exposure to assess cutaneous toxicity. Toxicol Vitr. 2020;62:104664.

    Google Scholar 

  84. 84.

    Hu R, Xie X-Y, Xu S-K, Wang Y-N, Jiang M, Wen L-R, et al. PM 2.5 Exposure Elicits Oxidative Stress Responses and Mitochondrial Apoptosis Pathway Activation in HaCaT Keratinocytes. Chin Med J (Engl). 2017;130:2205.

    CAS  Google Scholar 

  85. 85.

    Desmet E, Ramadhas A, Lambert J, Van, Gele M. In vitro psoriasis models with focus on reconstructed skin models as promising tools in psoriasis research. Exp Biol Med. 2017;242:1158–69.

    CAS  Google Scholar 

  86. 86.

    Danso MO, Van Drongelen V, Mulder A, Van Esch J, Scott H, Van Smeden J, et al. TNF-α and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. J Investig Dermatol. 2014;134:1941–50.

    CAS  PubMed  Google Scholar 

  87. 87.

    Bergers LIJC, Reijnders CMA, van den Broek LJ, Spiekstra SW, de Gruijl TD, Weijers EM, et al. Immune-competent human skin disease models. Drug Disco Today. 2016;21:1479–88.

    CAS  Google Scholar 

  88. 88.

    Pendaries V, Malaisse J, Pellerin L, Le Lamer M, Nachat R, Kezic S, et al. Knockdown of Filaggrin in a Three-Dimensional Reconstructed Human Epidermis Impairs Keratinocyte Differentiation. J Investig Dermatol. 2014;134:2938–46.

    CAS  PubMed  Google Scholar 

  89. 89.

    Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143–55.

    CAS  PubMed  Google Scholar 

  91. 91.

    Bojar RA. Studying the Human Skin Microbiome Using 3D In Vitro Skin Models. Appl Vitr Toxicol. 2015;1:165–71.

    Google Scholar 

  92. 92.

    Araviiskaia E, Berardesca E, Bieber T, Gontijo G, Sanchez Viera M, Marrot L, et al. The impact of airborne pollution on skin. J Eur Acad Dermatol Venereol. 2019;33:1496–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Portugal-Cohen M, Oron M, Cohen D, Ma’or Z. Antipollution skin protection – A new paradigm and its demonstration on two active compounds. Clin Cosmet Investig Dermatol. 2017;10:185–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Magnani ND, Muresan XM, Belmonte G, Cervellati F, Sticozzi C, Pecorelli A, et al. Skin damage mechanisms related to airborne particulate matter exposure. Toxicol Sci. 2016;149:227–36.

    CAS  PubMed  Google Scholar 

  95. 95.

    Nakamura M, Haarmann-Stemmann T, Krutmann J, Morita A. Alternative test models for skin ageing research. Exp Dermatol. 2018;27:495–500.

    PubMed  Google Scholar 

  96. 96.

    Pellevoisin C, Bouez C, Cotovio J. Cosmetic industry requirements regarding skin models for cosmetic testing. In: Skin Tissue Models for Regenerative Medicine. Elsevier, 2018, p. 3–37.

  97. 97.

    Thiele JJ, Dreher F, Maibach HI, Packer L. Impact of Ultraviolet Radiation and Ozone on the Transepidermal Water Loss as a Function of Skin Temperature in Hairless Mice. Ski Pharm Physiol. 2003;16:283–90.

    CAS  Google Scholar 

  98. 98.

    Cavicchio C, Crivellari I, Benedusi M, Pecorelli A, Muresan XM, Cervellati F, et al. Air particulate matter as enhancer of ozone-induced skin damage. Free Radic Biol Med. 2017;108:S67.

    Google Scholar 

  99. 99.

    Rasmussen C, Gratz K, Liebel F, Southall M, Garay M, Bhattacharyya S, et al. The StrataTest®human skin model, a consistent in vitro alternative for toxicological testing. Toxicol Vitr. 2010;24:2021–9.

    CAS  Google Scholar 

Download references


This work was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement [grant number 765602]. BP and BRR acknowledge the support of the Adolphe Merkle Foundation.

Author information



Corresponding author

Correspondence to Marc Eeman.

Ethics declarations

Conflict of interest

ME and BP are employees of Dow Silicones Belgium SRL. The authors have no conflict of interest to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petracca, B., Rothen-Rutishauser, B., Valacchi, G. et al. Bench approaches to study the detrimental cutaneous impact of tropospheric ozone. J Expo Sci Environ Epidemiol 31, 137–148 (2021).

Download citation


  • Environmental pollution
  • Skin
  • 3D skin tissue model
  • Oxidative stress
  • Skin protection

Further reading


Quick links