Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Children’s microenvironmental exposure to PM2.5 and ozone and the impact of indoor air filtration

Abstract

Background

In highly polluted urban areas, personal exposure to PM2.5 and O3 occur daily in various microenvironments. Identifying which microenvironments contribute most to exposure can pinpoint effective exposure reduction strategies and mitigate adverse health impacts.

Methods

This work uses real-time sensors to assess the exposures of children with asthma (N = 39) in Shanghai, quantifying microenvironmental exposure to PM2.5 and O3. An air cleaner was deployed in participants’ bedrooms where we hypothesized exposure could be most efficiently reduced. Monitoring occurred for two 48-h periods: one with bedroom filtration (portable air cleaner with HEPA and activated carbon filters) and the other without.

Results

Children spent 91% of their time indoors with the majority spent in their bedroom (47%). Without filtration, the bedroom and classroom environments were the largest contributors to PM2.5 exposure. With filtration, bedroom PM2.5 exposure was reduced by 75% (45% of total exposure). Although filtration status did not impact O3, the largest contribution of O3 exposure also came from the bedroom.

Conclusions

Actions taken to reduce bedroom PM2.5 and O3 concentrations can most efficiently reduce total exposure. As real-time pollutant monitors become more accessible, similar analyses can be used to evaluate new interventions and optimize exposure reductions for a variety of populations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PM2.5 concentrations across all microenvironments.
Fig. 2: Measured PM2.5 exposure contribution for each child over the 48-h periods.
Fig. 3: Ozone concentrations by microenvironment.
Fig. 4: Measured microenvironmental exposure contribution to O3.

References

  1. 1.

    Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389:1907–18.

    Article  Google Scholar 

  2. 2.

    WHO. WHO global urban ambient air pollution database. 2016;

  3. 3.

    Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383:1581–92. https://linkinghub.elsevier.com/retrieve/pii/S0140673614606176.

    CAS  Article  Google Scholar 

  4. 4.

    Shannon MW, Best D, Binns HJ, Johnson CL, Kim JJ, Mazur LJ, et al. Ambient air pollution: health hazards to children. Pediatrics. 2004;114:1699–707.

    Article  Google Scholar 

  5. 5.

    Morishita M, Thompson KC, Brook RD. Understanding air pollution and cardiovascular diseases: is it preventable? Curr Cardiovasc Risk Rep. 2015;9:30 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470563/.

    Article  Google Scholar 

  6. 6.

    Niu Y, Cai J, Xia Y, Yu H, Chen R, Lin Z, et al. Estimation of personal ozone exposure using ambient concentrations and influencing factors. Environ Int. 2018;117:237–42. http://www.sciencedirect.com/science/article/pii/S0160412018304021.

    CAS  Article  Google Scholar 

  7. 7.

    Dionisio KL, Baxter LK, Burke J, Özkaynak H. The importance of the exposure metric in air pollution epidemiology studies: When does it matter, and why? Air Qual Atmos Heal. 2016;9:495–502. https://doi.org/10.1007/s11869-015-0356-1.

    Article  Google Scholar 

  8. 8.

    Lim S, Kim J, Kim T, Lee K, Yang W, Jun S, et al. Personal exposures to PM2.5 and their relationships with microenvironmental concentrations. Atmos Environ. 2012;47:407–12. http://www.sciencedirect.com/science/article/pii/S1352231011011228.

    CAS  Article  Google Scholar 

  9. 9.

    De Nazelle A, Seto E, Donaire-Gonzalez D, Mendez M, Matamala J, Nieuwenhuijsen MJ, et al. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ Pollut. 2013;176:92–9.

    Article  Google Scholar 

  10. 10.

    Wang S, Zhao Y, Chen G, Wang F, Aunan K, Hao J. Assessment of population exposure to particulate matter pollution in Chongqing, China. Environ Pollut. 2008;153:247–56. http://www.sciencedirect.com/science/article/pii/S0269749107003958.

    CAS  Article  Google Scholar 

  11. 11.

    Zhang Y, Mo J, Li Y, Sundell J, Wargocki P, Zhang J, et al. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmos Environ. 2011;45:4329–43. http://www.sciencedirect.com/science/article/pii/S1352231011005346.

    CAS  Article  Google Scholar 

  12. 12.

    Bekö G, Fadeyi MO, Clausen G, Weschler CJ. Sensory pollution from bag-type fiberglass ventilation filters: Conventional filter compared with filters containing various amounts of activated carbon. Build Environ. 2009;44:2114–20. http://www.sciencedirect.com/science/article/pii/S0360132309000651.

    Article  Google Scholar 

  13. 13.

    Gallego E, Roca FJ, Perales JF, Guardino X. Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement. Build Environ. 2013;67:14–25. http://www.sciencedirect.com/science/article/pii/S0360132313001418.

    Article  Google Scholar 

  14. 14.

    Silvers A, Florence BT, Rourke DL, Lorimor RJ. How children spend their time - a sample survey for use in exposure and risk assessments. RISK Anal. 1994;14:931–44.

    CAS  Article  Google Scholar 

  15. 15.

    Zhang L, Guo C, Jia X, Xu H, Pan M, Xu D, et al. Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China. PLoS ONE. 2018;13:e0193586.

    Article  Google Scholar 

  16. 16.

    Du X, Kong Q, Ge W, Zhang S, Fu L. Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing, China. J Environ Sci. 2010;22:1757–64. http://www.sciencedirect.com/science/article/pii/S1001074209603168.

    CAS  Article  Google Scholar 

  17. 17.

    Tang R, Tian L, Thach T-Q, Tsui TH, Brauer M, Lee M, et al. Integrating travel behavior with land use regression to estimate dynamic air pollution exposure in Hong Kong. Environ Int. 2018;113:100–8. http://www.sciencedirect.com/science/article/pii/S0160412017316148.

    CAS  Article  Google Scholar 

  18. 18.

    Chen C, Cai J, Wang C, Shi J, Chen R, Yang C, et al. Estimation of personal PM2.5 and BC exposure by a modeling approach - Results of a panel study in Shanghai, China. Environ Int. 2018;118:194–202.

    CAS  Article  Google Scholar 

  19. 19.

    Karakatsani A, Samoli E, Rodopoulou S, Dimakopoulou K, Papakosta D, Spyratos D, et al. Weekly personal ozone exposure and respiratory health in a panel of greek schoolchildren. Environ Health Perspect. 2017;125:077016.

    Article  Google Scholar 

  20. 20.

    Adams C, Riggs P, Volckens J. Development of a method for personal, spatiotemporal exposure assessment. J Environ Monit. 2009;11:1331–9. https://doi.org/10.1039/B903841H.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Rabinovitch N, Adams CD, Strand M, Koehler K, Volckens J. Within-microenvironment exposure to particulate matter and health effects in children with asthma: a pilot study utilizing real-time personal monitoring with GPS interface. Environ Heal. 2016;15:96 https://doi.org/10.1186/s12940-016-0181-5.

    Article  Google Scholar 

  22. 22.

    Branco PTBS, Alvim-Ferraz MCM, Martins FG, Sousa SIV. The microenvironmental modelling approach to assess children’s exposure to air pollution – A review. Environ Res. 2014;135:317–32. http://www.sciencedirect.com/science/article/pii/S0013935114003429.

    CAS  Article  Google Scholar 

  23. 23.

    Koehler K, Good N, Wilson A, Mölter A, Moore BF, Carpenter T, et al. The Fort Collins commuter study: Variability in personal exposure to air pollutants by microenvironment. Indoor Air. 2019;29:231–41. https://doi.org/10.1111/ina.12533. https://onlinelibrary.wiley.com/doi/abs/.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Breen MS, Long TC, Schultz BD, Crooks J, Breen M, Langstaff JE, et al. GPS-based microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina. J Expo Sci Environ Epidemiol. 2014;24:412–20.

    CAS  Article  Google Scholar 

  25. 25.

    Quinn C, Miller-Lionberg DD, Klunder KJ, Kwon J, Noth EM, Mehaffy J, et al. Personal exposure to PM 2.5 black carbon and aerosol oxidative potential using an automated microenvironmental aerosol sampler (AMAS). Environ Sci Technol. 2018;52:11267–75. https://doi.org/10.1021/acs.est.8b02992. https://pubs.acs.org/doi/.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lei X, Xiu G, Li B, Zhang K, Zhao M. Individual exposure of graduate students to PM2.5 and black carbon in Shanghai, China. Environ Sci Pollut Res. 2016;23:12120–7.

    CAS  Article  Google Scholar 

  27. 27.

    Steinle S, Reis S, Sabel CE, Semple S, Twigg MM, Braban CF, et al. Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci Total Environ. 2015;508:383–94. http://www.sciencedirect.com/science/article/pii/S0048969714017057.

    CAS  Article  Google Scholar 

  28. 28.

    Yu X, Ivey C, Huang Z, Gurram S, Sivaraman V, Shen H, et al. Quantifying the impact of daily mobility on errors in air pollution exposure estimation using mobile phone location data. Environ Int. 2020;141:105772. http://www.sciencedirect.com/science/article/pii/S0160412019332386.

    CAS  Article  Google Scholar 

  29. 29.

    Mi YH, Norback D, Tao J, Mi YL, Ferm M. Current asthma and respiratory symptoms among pupils in Shanghai, China: influence of building ventilation, nitrogen dioxide, ozone, and formaldehyde in classrooms. Indoor Air. 2006;16:454–64. https://doi.org/10.1111/j.1600-0668.2006.00439.x. https://onlinelibrary.wiley.com/doi/abs/.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Chen C, Li C, Li Y, Liu J, Meng C, Han J, et al. Short-term effects of ambient air pollution exposure on lung function: a longitudinal study among healthy primary school children in China. Sci Total Environ. 2018;645:1014–20.

    CAS  Article  Google Scholar 

  31. 31.

    Johnson T, Capel J, Ollison W. Measurement of microenvironmental ozone concentrations in Durham, North Carolina, using a 2B Technologies 205 Federal Equivalent Method monitor and an interference-free 2B Technologies 211 monitor. J Air \ Waste Manag Assoc. 2014;64:360–71. https://doi.org/10.1080/10962247.2013.839968.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Zuo J, Ji W, Ben Y, Hassan MA, Fan W, Bates L, et al. Using big data from air quality monitors to evaluate indoor PM2.5 exposure in buildings: case study in Beijing. Environ Pollut. 2018;240:839–47. http://www.sciencedirect.com/science/article/pii/S0269749118307681.

    CAS  Article  Google Scholar 

  33. 33.

    Sagona JA, Weisel CP, Meng Q. Accuracy and practicality of a portable ozone monitor for personal exposure estimates. Atmos Environ. 2018;175:120–6. http://www.sciencedirect.com/science/article/pii/S1352231017307811.

    CAS  Article  Google Scholar 

  34. 34.

    Xia Y, Niu Y, Cai J, Lin Z, Liu C, Li H, et al. Effects of personal short-term exposure to ambient ozone on blood pressure and vascular endothelial function: a mechanistic study based on DNA methylation and metabolomics. Environ Sci Technol. 2018;52:12774–82. https://doi.org/10.1021/acs.est.8b03044.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Liu M, Barkjohn KK, Norris C, Schauer JJ, Zhang J, Zhang Y, et al. Using low-cost sensors to monitor indoor, outdoor, and personal ozone concentrations in Beijing, China. Environ Sci Process Impacts. 2020;22:131–43. https://doi.org/10.1039/C9EM00377K.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Zhang J, Sun H, Chen Q, Gu J, Ding Z, Xu Y. Effects of individual ozone exposure on lung function in the elderly: a cross-sectional study in China. Environ Sci Pollut Res. 2019;26:11690–5. https://doi.org/10.1007/s11356-019-04324-w.

    CAS  Article  Google Scholar 

  37. 37.

    Cui X, Li F, Xiang J, Fang L, Chung MK, Day DB, et al. Cardiopulmonary effects of overnight indoor air filtration in healthy non-smoking adults: a double-blind randomized crossover study. Environ Int. 2018;114:27–36. http://www.sciencedirect.com/science/article/pii/S0160412017321037.

    CAS  Article  Google Scholar 

  38. 38.

    Barkjohn KK, Bergin MH, Norris C, Schauer JJ, Zhang Y, Black M, et al. Using low-cost sensors to quantify the effects of air filtration on indoor and personal exposure relevant PM2.5 concentrations in Beijing, China. Aerosol Air Qual Res. 2020;20:297–313. https://doi.org/10.4209/aaqr.2018.11.0394.

    CAS  Article  Google Scholar 

  39. 39.

    Zhan Y, Johnson K, Norris C, Shafer MM, Bergin MH, Zhang Y, et al. The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing. Sci Total Environ. 2018;626:507–18. http://www.sciencedirect.com/science/article/pii/S004896971830024X.

    CAS  Article  Google Scholar 

  40. 40.

    Barkjohn KK, Norris C, Cui X, Fang L, Zheng T, Schauer JJ, et al. Real-time measurements of PM2.5 and ozone to assess the effectiveness of residential indoor air filtration in Shanghai homes. Indoor Air. 2020n/a. https://doi.org/10.1111/ina.12716.

  41. 41.

    Fang L, Norris C, Johnson K, Cui X, Sun J, Teng Y, et al. Toxic volatile organic compounds in 20 homes in Shanghai: concentrations, inhalation health risks, and the impacts of household air cleaning. Build Environ. 2019;157:309–18. http://www.sciencedirect.com/science/article/pii/S0360132319302999.

    Article  Google Scholar 

  42. 42.

    Norris C, Fang L, Barkjohn KK, Carlson D, Zhang Y, Mo J, et al. Sources of volatile organic compounds in suburban homes in Shanghai, China, and the impact of air filtration on compound concentrations. Chemosphere. 2019;231:256–68. http://www.sciencedirect.com/science/article/pii/S0045653519309579.

    CAS  Article  Google Scholar 

  43. 43.

    Brehmer C, Norris C, Barkjohn KK, Bergin MH, Zhang J, Cui X, et al. The impact of household air cleaners on the chemical composition and children’s exposure to PM2.5 metal sources in suburban Shanghai. Environ Pollut. 2019;253:190–8. https://linkinghub.elsevier.com/retrieve/pii/S0269749119319426.

    CAS  Article  Google Scholar 

  44. 44.

    Brehmer C, Norris C, Barkjohn KK, Bergin MH, Zhang J, Cui X, et al. The impact of household air cleaners on the oxidative potential of PM2.5 and the role of metals and sources associated with indoor and outdoor exposure. Environ Res. 2019;108919. http://www.sciencedirect.com/science/article/pii/S0013935119307169.

  45. 45.

    He L, Li Z, Teng Y, Cui X, Barkjohn KK, Norris C, et al. Associations of personal exposure to air pollutants with airway mechanics in children with asthma. Environ Int. 2020;138:105647.

    CAS  Article  Google Scholar 

  46. 46.

    Cui X, Li Z, Teng Y, Barkjohn KK, Norris CL, Fang L, et al. Association between bedroom particulate matter filtration and changes in airway pathophysiology in children with asthma. JAMA Pediatr. 2020;174:533–42.

    Article  Google Scholar 

  47. 47.

    He L, Cui X, Li Z, Teng Y, Barkjohn KK, Norris C, et al. Malondialdehyde in nasal fluid: a biomarker for monitoring asthma control in relation to air pollution exposure. Environ Sci Technol. 2020. https://doi.org/10.1021/acs.est.0c02558.

  48. 48.

    Ozler S, Johnson KK, Bergin MH, Schauer JJ. Personal exposure to PM2.5 in the various microenvironments as a traveler in the Southeast Asian countries. Am J Environ Sci. 2018;14:170–84. https://doi.org/10.3844/ajessp.2018.170.184. https://thescipub.com/abstract/.

    CAS  Article  Google Scholar 

  49. 49.

    Lal RM, Das K, Fan Y, Barkjohn KK, Botchwey N, Ramaswami A, et al. Connecting air quality with emotional well-being and neighborhood infrastructure in a US city. Environ Health Insights. 2020;14:1178630220915488.

    Article  Google Scholar 

  50. 50.

    Zheng T, Bergin MH, Johnson KK, Tripathi SN, Shirodkar S, Landis MS, et al. Field evaluation of low-cost particulate matter sensors in high-and low-concentration environments. Atmos Meas Tech. 2018;11:4823–46. https://www.atmos-meas-tech.net/11/4823/2018/.

    CAS  Article  Google Scholar 

  51. 51.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna: Austria; 2018. https://www.r-project.org/

  52. 52.

    Nebeker C, Linares R, Crist K. A multi-case study of research using mobile imaging, sensing and tracking technologies to objectively measure behavior: ethical issues and insights to guide responsible research practice. J Res Adm. 2015;46:118.

    Google Scholar 

  53. 53.

    Hazlehurst MF, Spalt EW, Curl CL, Davey ME, Vedal S, Burke GL, et al. Integrating data from multiple time-location measurement methods for use in exposure assessment: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). J Expo Sci Environ Epidemiol. 2017;27:569–74.

    CAS  Article  Google Scholar 

  54. 54.

    Ji W, Zhao B. Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: a model-based estimation. Build Environ. 2015;90:196–205. http://www.sciencedirect.com/science/article/pii/S036013231500164X.

    Article  Google Scholar 

  55. 55.

    Walker IS, Sherman MH. Effect of ventilation strategies on residential ozone levels. Build Environ. 2013;59:456–65. http://www.sciencedirect.com/science/article/pii/S0360132312002557.

    Article  Google Scholar 

  56. 56.

    Boelter KJ, Davidson JH. Ozone generation by indoor, electrostatic air cleaners. Aerosol Sci Technol. 1997;27:689–708. https://doi.org/10.1080/02786829708965505.

    CAS  Article  Google Scholar 

  57. 57.

    Darling E, Morrison GC, Corsi RL. Passive removal materials for indoor ozone control. Build Environ. 2016;106:33–44. http://www.sciencedirect.com/science/article/pii/S0360132316302256.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from Underwriters Laboratory (UL) and supported in part by a grant from the National Natural Science Foundation of China (51420105010). The study was approved by both Duke Campus Institutional Review Board (IRB) and by First People’s Hospital IRB. We thank Amway (China) Co., Limited, for lending the air cleaners for use in this study; however, the company was not involved in study design, implementation, or data interpretation. We greatly appreciate all our participants for welcoming us into your homes and allowing us to gather data on your health and air pollution exposure. Thank you to Donghong Chen and the team at the Qingpu Environmental Monitoring station for providing access to their monitoring site and the data from our study period. We sincerely appreciate the support from the other members of the Bergin lab for their assistance in assembling and designing the air sensor packages. Thanks to Yanbo Teng at Duke Kunshan for his strong technical and administrative support throughout the project. Thanks to Jiaqi Sun from Tsinghua University, Jiang Yanyu (Jade) from Shanghai Jiaotong University as well as Dr. Zhen Li, Dr. Qian Wang and Dr. Lili Lin and the resident physicians at Shanghai General Hospital for assisting with home visits and clinical visits throughout the study.

Funding

This work was funded by a grant from Underwriters Laboratory (UL) and supported in part by a grant from the National Natural Science Foundation of China (51420105010). Amway (China) Co., Limited, lent the air cleaners for use in this study; however, the company was not involved in study design, implementation, or data interpretation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karoline K. Barkjohn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barkjohn, K.K., Norris, C., Cui, X. et al. Children’s microenvironmental exposure to PM2.5 and ozone and the impact of indoor air filtration. J Expo Sci Environ Epidemiol 30, 971–980 (2020). https://doi.org/10.1038/s41370-020-00266-5

Download citation

Keywords

  • Air quality
  • Indoor environment
  • Children’s health
  • Exposure sensors
  • Monitoring methods
  • Exposure assessment

Further reading

Search

Quick links