Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determinants and characterization of exposure to phthalates, DEHTP and DINCH among pregnant women in the PROTECT birth cohort in Puerto Rico

Abstract

Background

As a result of evidence suggesting phthalate toxicity, their use has decreased in recent years. However, new phthalates and non-phthalate replacements have emerged in their place, with unknown potential impacts on health.

Methods

We measured 15 phthalate, two di(2-ethylhexyl)terephthalate (DEHTP), and two di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) urinary metabolites, collected up to three times during pregnancy from 994 women in Northern Puerto Rico (2011–2017). We used tests of linear trend to assess changes in concentrations over time and linear mixed models to identify predictors of exposure (sociodemographic characteristics, drinking water sources, diet, product use).

Results

Several phthalate metabolites decreased over the study period indicating decreased exposure, while the geometric mean of DEHTP metabolites (molecular sum) increased threefold between 2014 and 2017. Intraclass correlations revealed low to moderate reproducibility of these biomarkers across pregnancy. Several metabolites were associated with maternal age, income, education, pre-pregnancy BMI, drinking public water, use of cleaning and personal care products, and ice cream consumption. DINCH metabolite concentrations remained low throughout the study period.

Conclusion

Although exposure to some phthalates may be decreasing, exposure to replacements, such as DEHTP, is increasing. Additional studies are needed to further characterize sources of phthalate replacement chemicals and potential exposure-related health effects among vulnerable populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Hauser R, Calafat AM. Phthalates and human health. Occup Environ Med. 2005;62:806–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. NRC. Phthalate exposure assessment in humans. In: Phthalates CotHRo, editor. Phthalates and cumulative risk assessment the task ahead. Washington, D.C.: The National Academies Press; 2008.

  3. Toft G, Jonsson BA, Lindh CH, Jensen TK, Hjollund NH, Vested A, et al. Association between pregnancy loss and urinary phthalate levels around the time of conception. Environ Health Perspect. 2012;120:458–63.

    Article  CAS  PubMed  Google Scholar 

  4. Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure and preterm birth. JAMA Pediatr. 2014;168:61–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Werner EF, Braun JM, Yolton K, Khoury JC, Lanphear BP. The association between maternal urinary phthalate concentrations and blood pressure in pregnancy: The HOME Study. Environ Health. 2015;14:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Marie C, Vendittelli F, Sauvant-Rochat MP. Obstetrical outcomes and biomarkers to assess exposure to phthalates: a review. Environ Int. 2015;83:116–36.

    Article  CAS  PubMed  Google Scholar 

  7. Messerlian C, Wylie BJ, Minguez-Alarcon L, Williams PL, Ford JB, Souter IC, et al. Urinary concentrations of phthalate metabolites and pregnancy loss among women conceiving with medically assisted reproduction. Epidemiology. 2016;27:879–88.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cantonwine DE, Meeker JD, Ferguson KK, Mukherjee B, Hauser R, McElrath TF. Urinary concentrations of bisphenol A and phthalate metabolites measured during pregnancy and risk of preeclampsia. Environ Health Perspect. 2016;124:1651–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boss J, Zhai J, Aung MT, Ferguson KK, Johns LE, McElrath TF, et al. Associations between mixtures of urinary phthalate metabolites with gestational age at delivery: a time to event analysis using summative phthalate risk scores. Environ Health. 2018;17:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and childrens neurodevelopment: a systematic review. Environ Res. 2015;142:51–60.

    Article  CAS  PubMed  Google Scholar 

  11. Holahan MR, Smith CA. Phthalates and neurotoxic effects on hippocampal network plasticity. Neurotoxicology. 2015;48:21–34.

    Article  CAS  PubMed  Google Scholar 

  12. Engel SM, Villanger GD, Nethery RC, Thomsen C, Sakhi AK, Drover SSM, et al. Prenatal phthalates, maternal thyroid function, and risk of attention-deficit hyperactivity disorder in the norwegian mother and child cohort. Environ Health Perspect. 2018;126:057004.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jones B, Han TL, Delplancke T, McKenzie EJ, de Seymour JV, Chua MC, et al. Association between maternal exposure to phthalates and lower language ability in offspring derived from hair metabolome analysis. Sci Rep. 2018;8:6745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jurewicz J, Hanke W. Exposure to phthalates: reproductive outcome and children health. A review of epidemiological studies. Int J Occup Med Environ Health. 2011;24:115–41.

    Article  PubMed  Google Scholar 

  15. Martinez-Arguelles DB, Campioli E, Culty M, Zirkin BR, Papadopoulos V. Fetal origin of endocrine dysfunction in the adult: the phthalate model. J Steroid Biochem Mol Biol. 2013;137:5–17.

    Article  CAS  PubMed  Google Scholar 

  16. Radke EG, Braun JM, Meeker JD, Cooper GS. Phthalate exposure and male reproductive outcomes: a systematic review of the human epidemiological evidence. Environ Int. 2018;121(Pt 1):764–93.

    Article  CAS  PubMed  Google Scholar 

  17. Watkins DJ, Sanchez BN, Tellez-Rojo MM, Lee JM, Mercado-Garcia A, Blank-Goldenberg C, et al. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. Environ Res. 2017;159:143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watkins DJ, Sanchez BN, Tellez-Rojo MM, Lee JM, Mercado-Garcia A, Blank-Goldenberg C, et al. Impact of phthalate and BPA exposure during in utero windows of susceptibility on reproductive hormones and sexual maturation in peripubertal males. Environ Health. 2017;16:69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kim JH, Park H, Lee J, Cho G, Choi S, Choi G, et al. Association of diethylhexyl phthalate with obesity-related markers and body mass change from birth to 3 months of age. J Epidemiol Community Health. 2016;70:466–72.

    Article  PubMed  Google Scholar 

  20. Kim SH, Park MJ. Phthalate exposure and childhood obesity. Ann Pedia Endocrinol Metab. 2014;19:69–75.

    Article  Google Scholar 

  21. Valvi D, Casas M, Romaguera D, Monfort N, Ventura R, Martinez D, et al. Prenatal phthalate exposure and childhood growth and blood pressure: evidence from the Spanish INMA-sabadell birth cohort study. Environ Health Perspect. 2015;123:1022–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang TC, Peterson KE, Meeker JD, Sanchez BN, Zhang Z, Cantoral A, et al. Bisphenol A and phthalates in utero and in childhood: association with child BMI z-score and adiposity. Environ Res. 2017;156:326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Silva MJ, Samandar E, Calafat AM, Ye X. Identification of di-2-ethylhexyl terephthalate (DEHTP) metabolites using human liver microsomes for biomonitoring applications. Toxicol Vitr. 2015;29:716–21.

    Article  CAS  Google Scholar 

  24. Silva MJ, Jia T, Samandar E, Preau JL Jr., Calafat AM. Environmental exposure to the plasticizer 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) in U.S. adults (2000-2012). Environ Res. 2013;126:159–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Silva MJ, Wong LY, Samandar E, Preau JL, Calafat AM, Ye X. Exposure to di-2-ethylhexyl terephthalate in a convenience sample of U.S. adults from 2000 to 2016. Arch Toxicol 2017;91:3287–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zota AR, Calafat AM, Woodruff TJ. Temporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001-2010. Environ Health Perspect. 2014;122:235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watkins DJ, Eliot M, Sathyanarayana S, Calafat AM, Yolton K, Lanphear BP, et al. Variability and predictors of urinary concentrations of phthalate metabolites during early childhood. Environ Sci Technol. 2014;48:8881–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koch HM, Ruther M, Schutze A, Conrad A, Palmke C, Apel P, et al. Phthalate metabolites in 24-h urine samples of the German Environmental Specimen Bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012. Int J Hyg Environ Health. 2017;220(2 Pt A):130–41.

    Article  CAS  PubMed  Google Scholar 

  29. Silva MJ, Wong LY, Samandar E, Preau JL Jr, Jia LT, Calafat AM. Exposure to di-2-ethylhexyl terephthalate in the U.S. general population from the 2015–2016 National Health and Nutrition Examination Survey. Environ Int. 2019;123:141–7.

    Article  CAS  PubMed  Google Scholar 

  30. BASF. BASF doubles production capacity of Hexamoll DINCH to 200,000 metric tons 2014 [Available from: https://www.basf.com/en/company/news-and-media/news-releases/2014/05/p-14-231.html.

  31. Shu H, Jonsson BA, Gennings C, Svensson A, Nanberg E, Lindh CH, et al. Temporal trends of phthalate exposures during 2007-2010 in Swedish pregnant women. J Expo Sci Environ Epidemiol. 2018;28:437–47.

    Article  CAS  PubMed  Google Scholar 

  32. Schutze A, Kolossa-Gehring M, Apel P, Bruning T, Koch HM. Entering markets and bodies: increasing levels of the novel plasticizer Hexamoll(R) DINCH(R) in 24h urine samples from the German Environmental Specimen Bank. Int J Hyg Environ Health. 2014;217:421–6.

    Article  PubMed  CAS  Google Scholar 

  33. Gyllenhammar I, Glynn A, Jonsson BA, Lindh CH, Darnerud PO, Svensson K, et al. Diverging temporal trends of human exposure to bisphenols and plastizisers, such as phthalates, caused by substitution of legacy EDCs? Environ Res. 2017;153:48–54.

    Article  CAS  PubMed  Google Scholar 

  34. Lioy PJ, Hauser R, Gennings C, Koch HM, Mirkes PE, Schwetz BA, et al. Assessment of phthalates/phthalate alternatives in children’s toys and childcare articles: review of the report including conclusions and recommendation of the Chronic Hazard Advisory Panel of the Consumer Product Safety Commission. J Expo Sci Environ Epidemiol. 2015;25:343–53.

    Article  CAS  PubMed  Google Scholar 

  35. Campioli E, Lee S, Lau M, Marques L, Papadopoulos V. Effect of prenatal DINCH plasticizer exposure on rat offspring testicular function and metabolism. Sci Rep. 2017;7:11072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Engel A, Buhrke T, Kasper S, Behr AC, Braeuning A, Jessel S, et al. The urinary metabolites of DINCH® have an impact on the activities of the human nuclear receptors ERalpha, ERbeta, AR, PPARalpha and PPARgamma. Toxicol Lett. 2018;287:83–91.

    Article  CAS  PubMed  Google Scholar 

  37. Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-beta/delta and PPAR-gamma. Future Cardiol. 2017;13:279–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jia M, Dahlman-Wright K, Gustafsson JA. Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab. 2015;29:557–68.

    Article  CAS  PubMed  Google Scholar 

  39. Wirnitzer U, Rickenbacher U, Katerkamp A, Schachtrupp A. Systemic toxicity of di-2-ethylhexyl terephthalate (DEHT) in rodents following four weeks of intravenous exposure. Toxicol Lett. 2011;205:8–14.

    Article  CAS  PubMed  Google Scholar 

  40. Ball GL, McLellan CJ, Bhat VS. Toxicological review and oral risk assessment of terephthalic acid (TPA) and its esters: a category approach. Crit Rev Toxicol. 2012;42:28–67.

    Article  CAS  PubMed  Google Scholar 

  41. Eljezi T, Pinta P, Richard D, Pinguet J, Chezal JM, Chagnon MC, et al. In vitro cytotoxic effects of DEHP-alternative plasticizers and their primary metabolites on a L929 cell line. Chemosphere. 2017;173:452–9.

    Article  CAS  PubMed  Google Scholar 

  42. Silva MJ, Samandar E, Preau JL Jr., Reidy JA, Needham LL, Calafat AM. Quantification of 22 phthalate metabolites in human urine. J Chromatogr B Anal Technol Biomed Life Sci. 2007;860:106–12.

    Article  CAS  Google Scholar 

  43. Lessmann F, Schutze A, Weiss T, Langsch A, Otter R, Bruning T, et al. Metabolism and urinary excretion kinetics of di(2-ethylhexyl) terephthalate (DEHTP) in three male volunteers after oral dosage. Arch Toxicol. 2016;90:1659–67.

    Article  CAS  PubMed  Google Scholar 

  44. Hornung RW, Reed LD. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg. 1990;5:46–51.

    Article  CAS  Google Scholar 

  45. CDC. National Health and Nutrition Examination Survey Data 2011–2016: phthalates and plasticizers metabolites—Urine. NCHS; 2018. Available from: https://www.cdc.gov/nchs/nhanes/index.htm.

  46. Meeker JD, Hu H, Cantonwine DE, Lamadrid-Figueroa H, Calafat AM, Ettinger AS, et al. Urinary phthalate metabolites in relation to preterm birth in Mexico City. Environ Health Perspect. 2009;117:1587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolfinger R. Covariance structure selection in general mixed models. Commun Stat Simul Comput. 1993;22:1079–106.

    Article  Google Scholar 

  48. Aker AM, Ferguson KK, Rosario ZY, Mukherjee B, Alshawabkeh AN, Cordero JF, et al. The associations between prenatal exposure to triclocarban, phenols and parabens with gestational age and birth weight in northern Puerto Rico. Environ Res. 2018;169:41–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Cantonwine DE, Cordero JF, Rivera-Gonzalez LO, Anzalota Del Toro LV, Ferguson KK, Mukherjee B, et al. Urinary phthalate metabolite concentrations among pregnant women in Northern Puerto Rico: distribution, temporal variability, and predictors. Environ Int. 2014;62:1–11.

    Article  CAS  PubMed  Google Scholar 

  50. Calafat AM, Valentin-Blasini L, Ye X. Trends in exposure to chemicals in personal care and consumer products. Curr Environ Health Rep. 2015;2:348–55.

    Article  CAS  PubMed  Google Scholar 

  51. Braun JM, Smith KW, Williams PL, Calafat AM, Berry K, Ehrlich S, et al. Variability of urinary phthalate metabolite and bisphenol A concentrations before and during pregnancy. Environ Health Perspect. 2012;120:739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Adibi JJ, Whyatt RM, Williams PL, Calafat AM, Camann D, Herrick R, et al. Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environ Health Perspect. 2008;116:467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mortamais M, Chevrier C, Philippat C, Petit C, Calafat AM, Ye X, et al. Correcting for the influence of sampling conditions on biomarkers of exposure to phenols and phthalates: a 2-step standardization method based on regression residuals. Environ Health. 2012;11:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adibi JJ, Hauser R, Williams PL, Whyatt RM, Calafat AM, Nelson H, et al. Maternal urinary metabolites of Di-(2-Ethylhexyl) phthalate in relation to the timing of labor in a US multicenter pregnancy cohort study. Am J Epidemiol. 2009;169:1015–24.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wenzel AG, Brock JW, Cruze L, Newman RB, Unal ER, Wolf BJ, et al. Prevalence and predictors of phthalate exposure in pregnant women in Charleston, SC. Chemosphere. 2018;193:394–402.

    Article  CAS  PubMed  Google Scholar 

  56. Casas L, Fernandez MF, Llop S, Guxens M, Ballester F, Olea N, et al. Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children. Environ Int. 2011;37:858–66.

    Article  CAS  PubMed  Google Scholar 

  57. Serrano SE, Karr CJ, Seixas NS, Nguyen RH, Barrett ES, Janssen S, et al. Dietary phthalate exposure in pregnant women and the impact of consumer practices. Int J Environ Res Public Health. 2014;11:6193–215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Serrano SE, Braun J, Trasande L, Dills R, Sathyanarayana S. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ Health. 2014;13:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zota AR, Phillips CA, Mitro SD. Recent fast food consumption and bisphenol A and phthalates exposures among the U.S. population in NHANES, 2003–2010. Environ Health Perspect. 2016;124:1521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Buckley JP, Palmieri RT, Matuszewski JM, Herring AH, Baird DD, Hartmann KE, et al. Consumer product exposures associated with urinary phthalate levels in pregnant women. J Expo Sci Environ Epidemiol. 2012;22:468–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cullen K, Baranowski T, Watson K, Nicklas T, Fisher J, O’Donnell S, et al. Food category purchases vary by household education and race/ethnicity: results from grocery receipts. J Am Diet Assoc. 2007;107:1747–52.

    Article  PubMed  Google Scholar 

  62. Appelhans BM, Milliron BJ, Woolf K, Johnson TJ, Pagoto SL, Schneider KL, et al. Socioeconomic status, energy cost, and nutrient content of supermarket food purchases. Am J Prev Med. 2012;42:398–402.

    Article  PubMed  Google Scholar 

  63. Carlson A, Frazao E. Food costs, diet quality and energy balance in the United States. Physiol Behav. 2014;134:20–31.

    Article  CAS  PubMed  Google Scholar 

  64. Xu S, Kwa M, Lohman ME, Evers-Meltzer R, Silverberg JI. Consumer preferences, product characteristics, and potentially allergenic ingredients in best-selling moisturizers. JAMA Dermatol. 2017;153:1099–105.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Barrett ES, Sathyanarayana S, Janssen S, Redmon JB, Nguyen RH, Kobrosly R, et al. Environmental health attitudes and behaviors: findings from a large pregnancy cohort study. Eur J Obstet Gynecol Reprod Biol. 2014;176:119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang J, Song W, Wang X, Li Y, Sun J, Gong W, et al. Migration of phthalates from plastic packages to convenience foods and its cumulative health risk assessments. Food Addit Contam Part B Surveill. 2019:1–8. https://doi.org/10.1080/19393210.2019.1574909.

    Article  CAS  Google Scholar 

  67. Schettler T. Human exposure to phthalates via consumer products. Int J Androl. 2006;29:134–9.

    Article  CAS  PubMed  Google Scholar 

  68. Larsson K, Ljung Bjorklund K, Palm B, Wennberg M, Kaj L, Lindh CH, et al. Exposure determinants of phthalates, parabens, bisphenol A and triclosan in Swedish mothers and their children. Environ Int. 2014;73:323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Parlett LE, Calafat AM, Swan SH. Women’s exposure to phthalates in relation to use of personal care products. J Expo Sci Environ Epidemiol. 2013;23:197–206.

    Article  CAS  PubMed  Google Scholar 

  70. BASF. Hexamoll DINCH for sensitive applications 2019 [Available from: http://www.plasticizers.basf.com/portal/5/en/dt.jsp?setCursor=1_221977&page=hexamoll_dinch_for_sensitive_applications#pagetop.

  71. Gong M, Zhang Y, Weschler CJ. Measurement of phthalates in skin wipes: estimating exposure from dermal absorption. Environ Sci Technol. 2014;48:7428–35.

    Article  CAS  PubMed  Google Scholar 

  72. Torres NI, Yu X, Padilla IY, Macchiavelli RE, Ghasemizadeh R, Kaeli D, et al. The influence of hydrogeological and anthropogenic variables on phthalate contamination in eogenetic karst groundwater systems. Environ Pollut. 2018;237:298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Padilla I, Irizarry C, Steele K. Historical contamination of groundwater resources in the north coast karst aquifers of Puerto Rico. Rev Dimens. 2011;3:7–12.

    PubMed  PubMed Central  Google Scholar 

  74. Ayanda OS, Olutona GO, Olumayede EG, Akintayo CO, Ximba BJ. Phenols, flame retardants and phthalates in water and wastewater—a global problem. Water Sci Technol. 2016;74:1025–38.

    Article  CAS  PubMed  Google Scholar 

  75. Gao D, Li Z, Wen Z, Ren N. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere. 2014;95:24–32.

    Article  CAS  PubMed  Google Scholar 

  76. Zaleski RT, Egeghy PP, Hakkinen PJ. Exploring global exposure factors resources for use in consumer exposure assessments. Int J Environ Res Public Health. 2016;13:E744.

    Article  PubMed  Google Scholar 

  77. Schecter A, Lorber M, Guo Y, Wu Q, Yun SH, Kannan K, et al. Phthalate concentrations and dietary exposure from food purchased in New York State. Environ Health Perspect. 2013;121:473–94.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bui TT, Giovanoulis G, Cousins AP, Magner J, Cousins IT, de Wit CA. Human exposure, hazard and risk of alternative plasticizers to phthalate esters. Sci Total Environ. 2016;541:451–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of Environmental Health Sciences (NIEHS) grants P42ES017198, P50ES026049, and UG3OD023251; and the Environmental Protection Agency (EPA) grant R836155. We thank the nurses and research staff who participated in cohort recruitment and follow up, as well as the Federally Qualified Health Centers (FQHC) and clinics in Puerto Rico who facilitated participant recruitment, including Morovis Community Health Center (FQHC), Prymed: Ciales Community Health Center (FQHC), Camuy Health Services, Inc. (FQHC), and the Delta OBGyn (Prenatal Clinic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Watkins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Carmona, Y., Ashrap, P., Calafat, A.M. et al. Determinants and characterization of exposure to phthalates, DEHTP and DINCH among pregnant women in the PROTECT birth cohort in Puerto Rico. J Expo Sci Environ Epidemiol 30, 56–69 (2020). https://doi.org/10.1038/s41370-019-0168-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-019-0168-8

Keywords

This article is cited by

Search

Quick links