Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association between ambient air pollution and out-of-hospital cardiac arrest: are there potentially susceptible groups?

Abstract

This study aimed to examine the association between air pollution and out-of-hospital cardiac arrest (OHCA), and the effects of underlying diseases. Between January 2015 and December 2016, data on particulate matter (PM)2.5 and other air pollutants in Kaohsiung City were collected, and an emergency medical service database was used for information on patients who experienced OHCA. Overall, 3566 patients were analyzed and subgroup analyses by sex, age, and preexisting morbidities were performed. Interquartile increments in PM2.5, PM10, and O3 levels on lag 1 and NO2 level on lag 3 were associated with increments of 10.8%, 11.3%, 6.2%, and 1.7% in OHCA incidence, respectively. Subgroup analyses showed that patients with diabetes (1.363; interaction p = 0.009), heart disease (1.612; interaction p = 0.001), and advanced age (≥70 years, 1.297; interaction p = 0.003) were more susceptible to NO2 on lag 3. Moreover, patients were more susceptible to O3 during the cold season (1.194; interaction p = 0.001). We found that PM2.5, PM10, NO2, and O3 may play an important role in OHCA events, and the effects vary by underlying condition, age and season.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.

    PubMed  Google Scholar 

  2. Mathiesen WT, Bjørshol CA, Kvaløy JT, Søreide E. Effects of modifiable prehospital factors on survival after out-of-hospital cardiac arrest in rural versus urban areas. Crit Care. 2018;22:1–9.

    Google Scholar 

  3. Franklin M, Zeka A, Schwartz J. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J Expo Sci Environ Epidemiol. 2007;17:279–87.

    CAS  PubMed  Google Scholar 

  4. Ueda K, Yamagami M, Ikemori F, Hisatsune K, Nitta H. Associations between fine particulate matter components and daily mortality in Nagoya, Japan. J Epidemiol. 2016;26:249–57.

    PubMed  Google Scholar 

  5. Cheng M-H, Chiu H-F, Yang C-Y. The effects of coarse particles on daily mortality: a case-crossover study in a subtropical city, Taipei, Taiwan. Int J Environ Res Public Health. 2016;13:347.

    PubMed Central  Google Scholar 

  6. Ueda K, Nitta H, Ono M, Takeuchi A. Estimating mortality effects of fine particulate matter in Japan: a comparison of time-series and case-crossover analyses. J Air Waste Manag Assoc. 2009;59:1212–8.

    PubMed  Google Scholar 

  7. Gardner B, Ling F, Hopke PK, Frampton MW, Utell MJ, Zareba W, et al. Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study. Part Fibre Toxicol. 2014;11:1.

    PubMed  PubMed Central  Google Scholar 

  8. Li M-H, Fan L-C, Mao B, Yang J-W, Choi AMK, Cao W-J, et al. Short-term exposure to ambient fine particulate matter increases hospitalizations and mortality in COPD. Chest. 2016;149:447–58.

    PubMed  Google Scholar 

  9. Yamazaki S, Nitta H, Ono M, Green J, Fukuhara S. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case-crossover analysis. Occup Environ Med. 2006;64:17–24.

    PubMed  PubMed Central  Google Scholar 

  10. Cheng F-J, Lee K-H, Lee C-W, Hsu P-C. Association between particulate matter air pollution and hospital emergency room visits for pneumonia with septicemia: a retrospective analysis. Aerosol Air Qual Res. 2019;19:345–54.

    CAS  Google Scholar 

  11. Wang X, Kindzierski W, Kaul P. Comparison of transient associations of air pollution and AMI hospitalisation in two cities of Alberta, Canada, using a case-crossover design. BMJ Open. 2015;5:e009169–e009169.

    PubMed  PubMed Central  Google Scholar 

  12. Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016;8:E69–74.

    PubMed  PubMed Central  Google Scholar 

  13. Bell ML, Ebisu K, Peng RD, Walker J, Samet JM, Zeger SL, et al. Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999–2005. Am J Epidemiol. 2008;168:1301–10.

    PubMed  PubMed Central  Google Scholar 

  14. Meng X, Zhang Y, Zhao Z, Duan X, Xu X, Kan H. Temperature modifies the acute effect of particulate air pollution on mortality in eight Chinese cities. Sci Total Environ. 2012;435–436:215–21.

    PubMed  Google Scholar 

  15. Katsouyanni K, Touloumi G, Samoli E, Gryparis A, Le Tertre A, Monopolis Y, et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 Project. Epidemiology. 2001;12:521–31.

    CAS  PubMed  Google Scholar 

  16. Bell ML, Ebisu K, Peng RD, Dominici F. Adverse health effects of particulate air pollution: modification by air conditioning. Epidemiology. 2009;20:682–6.

    PubMed  PubMed Central  Google Scholar 

  17. Kang S-H, Heo J, Oh I-Y, Kim J, Lim W-H, Cho Y, et al. Ambient air pollution and out-of-hospital cardiac arrest. Int J Cardiol. 2016;203:1086–92.

    PubMed  Google Scholar 

  18. Xia R, Zhou G, Zhu T, Li X, Wang G. Ambient air pollution and out-of-hospital cardiac arrest in Beijing, China. Int J Environ Res Public Health. 2017;14:423.

    CAS  PubMed Central  Google Scholar 

  19. Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. Resuscitation. 2004;63:233–49.

    PubMed  Google Scholar 

  20. Terman SW, Shields TA, Hume B, Silbergleit R. The influence of age and chronic medical conditions on neurological outcomes in out of hospital cardiac arrest. Resuscitation. 2015;89:169–76.

    PubMed  Google Scholar 

  21. Marshall RJ, Jackson RT. Analysis of case-crossover designs. Stat Med. 1993;12:2333–41.

    CAS  PubMed  Google Scholar 

  22. Mittleman MA, Maclure M, Robins JM. Control sampling strategies for case-crossover studies: an assessment of relative efficiency. Am J Epidemiol. 1995;142:91–8.

    CAS  PubMed  Google Scholar 

  23. Peng RD, Dominici F, Pastor-Barriuso R, Zeger SL, Samet JM. Seasonal analyses of air pollution and mortality in 100 US cities. Am J Epidemiol. 2005;161:585–94.

    PubMed  Google Scholar 

  24. Ensor KB, Raun LH, Persse D. A case-crossover analysis of out-of-hospital cardiac arrest and air pollution. Circulation. 2013;127:1192–9.

    CAS  PubMed  Google Scholar 

  25. Levy D, Sheppard L, Checkoway H, Kaufman J, Lumley T, Koenig J, et al. A case-crossover analysis of particulate matter air pollution and out-of-hospital primary cardiac arrest. Epidemiology. 2001;12:193–9.

    CAS  PubMed  Google Scholar 

  26. Sullivan J. Exposure to ambient fine particulate matter and primary cardiac arrest among persons with and without clinically recognized heart disease. Am J Epidemiol. 2003;157:501–9.

    CAS  PubMed  Google Scholar 

  27. Imaizumi Y, Eguchi K, Kario K. Coexistence of PM2.5 and low temperature is associated with morning hypertension in hypertensives. Clin Exp Hypertens. 2015;37:468–72.

    PubMed  Google Scholar 

  28. Hsu W-H, Hwang S-A, Kinney PL, Lin S. Seasonal and temperature modifications of the association between fine particulate air pollution and cardiovascular hospitalization in New York state. Sci Total Environ. 2017;578:626–32.

    CAS  PubMed  Google Scholar 

  29. Zosky GR, Iosifidis T, Perks K, Ditcham WGF, Devadason SG, Siah WS, et al. The concentration of iron in real-world geogenic PM10 is associated with increased inflammation and deficits in lung function in mice. PLoS ONE. 2014;9:e90609.

    PubMed  PubMed Central  Google Scholar 

  30. Zhou Z, Shao T, Qin M, Miao X, Chang Y, Sheng W, et al. The effects of autophagy on vascular endothelial cells induced by airborne PM2.5. J Environ Sci. 2018;66:182–7.

    Google Scholar 

  31. Li W, Dorans KS, Wilker EH, Rice MB, Ljungman PL, Schwartz JD, et al. Short-term exposure to ambient air pollution and biomarkers of systemic inflammation: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2017;37:1793–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng M-H, Chiu H-F, Yang C-Y. Coarse particulate air pollution associated with increased risk of hospital admissions for respiratory diseases in a tropical city, Kaohsiung, Taiwan. Int J Environ Res Public Health. 2015;12:13053–68.

    PubMed  PubMed Central  Google Scholar 

  33. Ren M, Fang X, Li M, Sun S, Pei L, Xu Q, et al. Concentration-response relationship between PM2.5 and daily respiratory deaths in China: a systematic review and metaregression analysis of time-series studies. Biomed Res Int. 2017;2017:1–15.

    Google Scholar 

  34. Weichenthal S, Lavigne E, Evans G, Pollitt K, Burnett RT. Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study. Environ Health. 2016;15:46.

    PubMed  PubMed Central  Google Scholar 

  35. Yamashina Y, Yagi T, Ishida A, Mibiki Y, Sato H, Nakagawa T, et al. Differentiating between comatose patients resuscitated from acute coronary syndrome-associated and subarachnoid hemorrhage-associated out-of-hospital cardiac arrest. J Cardiol. 2015;65:508–13.

    PubMed  Google Scholar 

  36. Liu Y, Chen X, Huang S, Tian L, Lu Y, Mei Y, et al. Association between air pollutants and cardiovascular disease mortality in Wuhan, China. Int J Environ Res Public Health. 2015;12:3506–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Collart P, Dubourg D, Levêque A, Sierra NB, Coppieters Y. Short-term effects of nitrogen dioxide on hospital admissions for cardiovascular disease in Wallonia, Belgium. Int J Cardiol. 2018;255:231–6.

    PubMed  Google Scholar 

  38. Cheng M-F, Tsai S-S, Chiu H-F, Sung F-C, Wu T-N, Yang C-Y. Air pollution and hospital admissions for pneumonia: Are there potentially sensitive groups? Inhal Toxicol. 2009;21:1092–8.

    PubMed  Google Scholar 

  39. Faustini A, Rapp R, Forastiere F. Nitrogen dioxide and mortality: review and meta-analysis of long-term studies. Eur Respir J. 2014;44:744–53.

    CAS  PubMed  Google Scholar 

  40. Channell MM, Paffett ML, Devlin RB, Madden MC, Campen MJ. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: evidence from a novel translational in vitro model. Toxicol Sci. 2012;127:179–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J. 1995;9:899–909.

    CAS  PubMed  Google Scholar 

  42. Zhu N, Li H, Han M, Guo L, Chen L, Yun Y, et al. Environmental nitrogen dioxide (NO2) exposure influences development and progression of ischemic stroke. Toxicol Lett. 2012;214:120–30.

    CAS  PubMed  Google Scholar 

  43. Ji X, Han M, Yun Y, Li G, Sang N. Acute nitrogen dioxide (NO2) exposure enhances airway inflammation via modulating Th1/Th2 differentiation and activating JAK-STAT pathway. Chemosphere. 2015;120:722–8.

    CAS  PubMed  Google Scholar 

  44. Cheng M-F, Tsai S-S, Wu T-N, Chen P-S, Yang C-Y. Air pollution and hospital admissions for pneumonia in a tropical city: Kaohsiung, Taiwan. J Toxicol Environ Health A. 2007;70:2021–6.

    CAS  PubMed  Google Scholar 

  45. Han M-H, Yi H-J, Ko Y, Kim Y-S, Lee Y-J. Association between hemorrhagic stroke occurrence and meteorological factors and pollutants. BMC Neurol. 2016;16:59.

    PubMed  PubMed Central  Google Scholar 

  46. Raza A, Bellander T, Bero-Bedada G, Dahlquist M, Hollenberg J, Jonsson M, et al. Short-term effects of air pollution on out-of-hospital cardiac arrest in Stockholm. Eur Heart J. 2014;35:861–8.

    CAS  PubMed  Google Scholar 

  47. Zhao R, Chen S, Wang W, Huang J, Wang K, Liu L, et al. The impact of short-term exposure to air pollutants on the onset of out-of-hospital cardiac arrest: a systematic review and meta-analysis. Int J Cardiol. 2017;226:110–7.

    PubMed  Google Scholar 

  48. Devlin RB, Duncan KE, Jardim M, Schmitt MT, Rappold AG, Diaz-Sanchez D. Controlled exposure of healthy young volunteers to ozone causes cardiovascular effects. Circulation. 2012;126:104–11.

    CAS  PubMed  Google Scholar 

  49. Foster WM, Stetkiewicz PT. Regional clearance of solute from the respiratory epithelia: 18-20 h postexposure to ozone. J Appl Physiol. 1996;81:1143–9.

    CAS  PubMed  Google Scholar 

  50. Liu HY, Tian Y, Xu Y, Zhang J. Ambient particulate matter concentrations and hospitalization for stroke in 26 Chinese cities: a case-crossover study. Stroke. 2017;48:2052–9.

    PubMed  Google Scholar 

  51. Hassanvand MS, Naddafi K, Kashani H, Faridi S, Kunzli N, Nabizadeh R, et al. Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. Environ Pollut. 2017;223:695–704.

    CAS  PubMed  Google Scholar 

  52. Huang F, Luo Y, Guo Y, Tao L, XuQ, Wang C, et al. Particulate matter and hospital admissions for stroke in Beijing, China: modification effects by ambient temperature. J Am Heart Assoc. 2016;5:e003437.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the support provided for statistics at Biostatistics Center, Kaohsiung Chang Gung Memorial Hospital.

Author information

Authors and Affiliations

Authors

Contributions

F.J.C.: Conceptualization; Data curation; Formal analysis; Roles/Writing - original draft. K.H.W.: Data curation; Formal analysis; Resources; Validation. S.C.H.: Resources; Data curation. K.H.L.: Methodology; Resources; Conceptualization. C.W.L.: Methodology; Resources. K.Y.L.: Resources; Data curation. P.C.H.: Conceptualization; Supervision; Writing - review & editing.

Corresponding author

Correspondence to Ping-Chi Hsu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, FJ., Wu, KH., Hung, SC. et al. Association between ambient air pollution and out-of-hospital cardiac arrest: are there potentially susceptible groups?. J Expo Sci Environ Epidemiol 30, 641–649 (2020). https://doi.org/10.1038/s41370-019-0140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-019-0140-7

Keywords

This article is cited by

Search

Quick links