Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new washing procedure for inorganic element analysis of hair

Abstract

Hair incorporates chemical compounds from the bloodstream and external sources as it grows. Different analytical procedures are proposed, but no consensus can be found for external contamination removal (washing stage). Thus, a major limitation of the use of hair analysis for human biomonitoring is the issue related to the washing efficiency, and the objective of this study was to propose a simple washing method for a better cleaning of external contamination. Based on a sequence of three steps of detergent or acid washing (Triton, nitric acid, and hydrochloric acid), the TNCl method was tested on raw and spiked samples and compared to other methods. Thirty-seven inorganic elements were analyzed by inductively Coupled Plasma Mass Spectrometry (ICP-MS) after washing and acid digestion of 10 hair samples (Li, Be, Na, Mg, Al, P, K, Ca, V, Cr, Fe, Mn, Co, N, Cu, Zn, As, Se, Sr, Mo, Ru, Ag, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Gd, Lu, Tl, Pb, Bi, Th, and U). The inorganic element concentrations in the hair samples were compared to those reported in the literature. The TNCl method was shown to be more efficient than other methods based on the use of surfactants and organic solvents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Labat L. La préparation des matrices biologiques pour l’analyse des métaux. Ann Toxicol Anal. 2010;22:81–88.

    Article  CAS  Google Scholar 

  2. Afridi HI, Gul Kazi T, Brabazon D, Naher S. Association between essential trace and toxic elements in scalp hair samples of smokers rheumatoid arthritis subjects. Sci Total Environ. 2011;412-413:93–100.

    Article  CAS  Google Scholar 

  3. Aleksa K, Liesivuori J, Koren G. Hair as a biomarker of polybrominated diethyl ethers’ exposure in infants, children and adults. Toxicol Lett. 2012;210:198–202.

    Article  CAS  Google Scholar 

  4. Król S, Zabiegała B, Namieśnik J. Human hair as a biomarker of human exposure to persistent organic pollutants (POPs). Tr Anal Chem. 2013;47:84–98.

    Article  Google Scholar 

  5. Appenzeller BMR, Tsatsakis AM. Hair analysis for biomonitoring of environmental and occupational exposure to organic pollutants: state of the art, critical review and future needs. Toxicol Lett. 2012;210:119–40.

    Article  CAS  Google Scholar 

  6. Kempson IM, Lombi E. Hair analysis as a biomonitor for toxicology, disease and health status. Chem Soc Rev. 2011;40:3915–40.

    Article  CAS  Google Scholar 

  7. Pragst F, Balikova MA. State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta. 2006;370:17–49.

    Article  CAS  Google Scholar 

  8. Jeruszka-Bielak M, Brzozowska A. Relationship between nutritional habits and hair calcium levels in young women. Biol Trace Elem Res. 2011;144:63–76.

    Article  CAS  Google Scholar 

  9. Coelho P, Costa S, Silva S, Walter A, Ranville J, Sousa ACA, et al. Metal(loid) levels in biological matrices from human populations exposed to mining contamination—Panasqueira mine (Portugal). J Toxicol Environ Health. 2012;75:893–908.

    Article  CAS  Google Scholar 

  10. Olmedo P, Pla A, Hernández AF, López-Guarnido O, Rodrigo L, Gil F. Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Anal Chim Acta. 2010;659:60–67.

    Article  CAS  Google Scholar 

  11. Martín-Cameán A, Molina-Villalba I, Jos A, Iglesias-Linares A, Solano E, Cameán AM, Gil F. Biomonitorization of chromium. copper. iron manganese and nickel in scalp hair from orthodontic patients by atomic absorption spectrometry. Environ Toxicol Pharmacol. 2014;37:759–71.

    Article  Google Scholar 

  12. Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem. 2015;407:6593–617.

    Article  CAS  Google Scholar 

  13. Kumakli H, Aja VD, McDaniel K, Mehari TF, Stephenson J, Maple L, et al. Environmental biomonitoring of essential and toxic elements in human scalp hair using accelerated microwave-assisted sample digestion and inductively coupled plasma optical emission spectroscopy. Chemosphere . 2017;174:708–15.

    Article  CAS  Google Scholar 

  14. Rodrigues JL, Nunes JA, Batista BL, De Souza SS, Barbosa F Jr. A fast method for the determination of 16 elements in hair samples by inductively coupled plasma mass spectrometry (ICP-MS) with tetramethylammonium hydroxide solubilization at room temperature. J Anal At Spectro. 2008;23:992–6.

    Article  CAS  Google Scholar 

  15. Llorente-Ballesteros MT, Navarro-Serrano I, Izquierdo-Álvarez S. Reference levels of trace elements in hair samples from children and adolescents in Madrid, Spain. J Trace Elem Med Biol. 2016;43:113–20.

    Article  Google Scholar 

  16. Pozebon D, Scheffler GL, Dressler VL. Elemental hair analysis: a review of procedures and applications. Anal Chim Acta. 2017 https://doi.org/10.1016/j.aca.2017.09.017.

    Article  CAS  Google Scholar 

  17. Kempson IM, Skinner WM. A comparison of washing methods for hair mineral analysis: internal versus external effects. Biol Trace Elem Res. 2012;150:10–14.

    Article  Google Scholar 

  18. Journal Officiel français n°182 2004. Loi n° 2004-800 du 6 ao û t 2004 relative à la bioéthique, 2004.

  19. Batista BL, Rodrigues JL, Cristina V, Souza O, Barbosa F. A fast ultrasound-assisted extraction procedure for trace elements determination in hair samples by ICP-MS for forensic analysis. Forensic Sci Intern. 2009;192:88–93.

    Article  Google Scholar 

  20. Eastman RR, Jursa TP, Benedetti C, Lucchini RG, Smith DR. Hair as a biomarker of environmental manganese exposure. Environ Sci Technol. 2013;47:1629–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Agence française de normalisation (AFNOR). Norme NF T90-210, Qualité de l’eau—Protocole d'évaluation initiale des performances d’une méthode dans un laboratoire. 2009.

  22. Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F. A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod. 2015;86:24–36.

    Article  CAS  Google Scholar 

  23. Kim KJ, Kim DH, Yoo YC, Baek K. Electrokinetic extraction of heavy metals from dredged marine sediment. Sep Purif Technol. 2011;79:164–9.

    Article  CAS  Google Scholar 

  24. Borella P, Rovesti S, Caselgrandi E, Bargellini A. Quality control in hair analysis: a systematic study on washing procedures for trace element determinations. Microchim Acta. 1996;123:271–80.

    Article  CAS  Google Scholar 

  25. Bujdoš M, Kubová J, Streško V. Problems of selenium fractionation in soils rich in organic matter. Anal Chim Acta. 2000;408:103–9.

    Article  Google Scholar 

  26. Mikulewicz M, Chojnacka K, Gedrange T, Górecki H. Reference values of elements in human hair: a systematic review. Environ Toxicol Pharmacol. 2013;36:1077–86.

    Article  CAS  Google Scholar 

  27. Raposo JC, Navarro P, Sarmiento A, Arribas E, Irazola M, Alonso RM. Analytical proposal for trace element determination in human hair. Application to the Biscay province population, northern Spain. Microchem J. 2014;116:125–34.

    Article  CAS  Google Scholar 

  28. Skalny AV, Skalnaya MG, Tinkov AA, Serebryansky EP, Demidov VA, Lobanova YN, et al. Reference values of hair toxic trace elements content in occupationally non-exposed Russian population. Environ Toxicol Pharmacol. 2015;40:18–21.

    Article  CAS  Google Scholar 

  29. Szynkowska MI, Marcinek M, Pawlaczyk A, Albińska J. Human hair analysis in relation to similar environmental and occupational exposure. Environ Toxicol Pharmacol. 2015;40:402–8.

    Article  CAS  Google Scholar 

  30. Bencko V. Use of human hair as a biomarker in the assessment of exposure to pollutants in occupational and environmental settings. Toxicology. 1995;101:29–39.

    Article  CAS  Google Scholar 

  31. Kempson IM, Skinner WM. ToF-SIMS analysis of elemental distributions in human hair. Sci Total Environ. 2005;338:213–27.

    Article  CAS  Google Scholar 

  32. Kempson IM, Skinner WM, Kirkbride KP. Advanced analysis of metal distributions in human hair. Environ Sci Technol. 2006;40:3423–8.

    Article  CAS  Google Scholar 

  33. Gil F, Hernandez AF. Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples. Food Chem Toxico. 2015;80:287–97.

    Article  CAS  Google Scholar 

  34. Font L, Van der Peijl G, Van Wetten I, Vroon P, Van der Wagt B, Davies G. Strontium and lead isotope ratios in human hair: investigating a potential tool for determining recent human geographical movements. J Anal At Spectrom. 2012;27:719–32.

    Article  CAS  Google Scholar 

  35. Tipple BJ, Chau T, Chesson LA, Fernandez DP, Ehleringer JR. Isolation of strontium pools and isotope ratios in modern human hair. Anal Chim Acta. 2013;798:64–73.

    Article  CAS  Google Scholar 

  36. Skröder H, Kippler M, Nermell B, Tofail F, Levi M, Rahman SM, et al. Major limitations in using element concentrations in hair as biomarkers of exposure to toxic and essential trace elements in children. Environ Health Persp. 2017. https://doi.org/10.1289/EHP1239.

    Article  Google Scholar 

  37. Bergdahl IA, Skerfving S. Biomonitoring of lead exposure—Alternatives to blood. J Toxicol Environ Health. 2008;71:1235–43.

    Article  CAS  Google Scholar 

  38. Assarian GS, Oberleas D. Effect of washing procedures on trace-element content of hair. Clin Chem. 1977;23:1771–2.

    CAS  PubMed  Google Scholar 

  39. Salmela S, Vuori E, Kilpiö JO. The effect of washing procedures on trace element content of human hair. Anal Chim Acta. 1981;125:131–7.

    Article  CAS  Google Scholar 

  40. Morton J, Carolan VA, Gardiner PHE. Removal of exogenously bound elements from human hair by various washing procedures and determination by inductively coupled plasma mass spectrometry. Anal Chim Acta. 2002;455:23–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Claude Briens and Françoise Lacroix from Laboratoire d’étude et recherche en environnement et santé (LERES) are gratefully acknowledged for their technical support. Bernard Jegou and Cyril Harpet, who followed the work at its early beginning, must also be thanked. We thank EHESP and Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085 for supporting the achievement of this research activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Le Bot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verrey, D., Durand, S., Thomas, O. et al. A new washing procedure for inorganic element analysis of hair. J Expo Sci Environ Epidemiol 29, 706–717 (2019). https://doi.org/10.1038/s41370-018-0112-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-018-0112-3

Keywords

This article is cited by

Search

Quick links