Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolomic assessment of exposure to near-highway ultrafine particles


Exposure to traffic-related air pollutants has been associated with increased risk of adverse cardiopulmonary outcomes and mortality; however, the biochemical pathways linking exposure to disease are not known. To delineate biological response mechanisms associated with exposure to near-highway ultrafine particles (UFP), we used untargeted high-resolution metabolomics to profile plasma from 59 participants enrolled in the Community Assessment of Freeway Exposure and Health (CAFEH) study. Metabolic variations associated with UFP exposure were assessed using a cross-sectional study design based upon low (mean 16,000 particles/cm3) and high (mean 24,000 particles/cm3) annual average UFP exposures. In comparing quantified metabolites, we identified five metabolites that were differentially expressed between low and high exposures, including arginine, aspartic acid, glutamine, cystine and methionine sulfoxide. Analysis of the metabolome identified 316 m/z features associated with UFP, which were consistent with increased lipid peroxidation, endogenous inhibitors of nitric oxide and vehicle exhaust exposure biomarkers. Network correlation analysis and metabolic pathway enrichment identified 38 pathways and included variations related to inflammation, endothelial function and mitochondrial bioenergetics. Taken together, these results suggest UFP exposure is associated with a complex series of metabolic variations related to antioxidant pathways, in vivo generation of reactive oxygen species and processes critical to endothelial function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2


  1. 1.

    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  Google Scholar 

  2. 2.

    Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, et al. Air pollution and mortality in the medicare population. N Eng J Med. 2017;376:2513–22.

    CAS  Article  Google Scholar 

  3. 3.

    Zuurbier M, Hoek G, Oldenwening M, Meliefste K, van den Hazel P, Brunekreef B. Respiratory effects of commuters’ exposure to air pollution in traffic. Epidemiology. 2011;22:219–27.

    Article  Google Scholar 

  4. 4.

    Fuller CH, Williams PL, Mittleman MA, Patton AP, Spengler JD, Brugge D. Response of biomarkers of inflammation and coagulation to short-term changes in central site, local, and predicted particle number concentrations. Ann Epidemiol. 2015;25:505–11.

    Article  Google Scholar 

  5. 5.

    Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, et al. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med. 2009;179:572–8.

    CAS  Article  Google Scholar 

  6. 6.

    Chu JH, Hart JE, Chhabra D, Garshick E, Raby BA, Laden F. Gene expression network analyses in response to air pollution exposures in the trucking industry. Environ Health. 2016;15:101.

    Article  Google Scholar 

  7. 7.

    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0--The Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41:D801–7.

    CAS  Article  Google Scholar 

  8. 8.

    Liu KH, Walker DI, Uppal K, Tran V, Rohrbeck P, Mallon TM, et al. High resolution metabolomics assessment of military personnel. J Occup Environ Med. 2016;58(8 Suppl 1):S53–61.

    CAS  Article  Google Scholar 

  9. 9.

    Breitner S, Schneider A, Devlin RB, Ward-Caviness CK, Diaz-Sanchez D, Neas LM, et al. Associations among plasma metabolite levels and short-term exposure to PM2.5 and ozone in a cardiac catheterization cohort. Environ Int. 2016;97:76–84.

    CAS  Article  Google Scholar 

  10. 10.

    Surowiec I, Karimpour M, Gouveia-Figueira S, Wu J, Unosson J, Bosson JA, et al. Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study. Anal Bioanal Chem. 2016;408:4751–64.

    CAS  Article  Google Scholar 

  11. 11.

    Vlaanderen JJ, Janssen NA, Hoek G, Keski-Rahkonen P, Barupal DK, Cassee FR, et al. The impact of ambient air pollution on the human blood metabolome. Environ Res. 2017;156:341–8.

    CAS  Article  Google Scholar 

  12. 12.

    Pradhan SN, Das A, Meena R, Nanda RK, Rajamani P. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism. Sci Rep. 2016;6:35972.

    CAS  Article  Google Scholar 

  13. 13.

    Menni C, Metrustry SJ, Mohney RP, Beevers S, Barratt B, Spector TD, et al. Circulating levels of antioxidant vitamins correlate with better lung function and reduced exposure to ambient pollution. Am J Respir Crit Care Med. 2015;191:1203–7.

    CAS  Article  Google Scholar 

  14. 14.

    Lane KJ, Levy JI, Scammell MK, Peters JL, Patton AP, Reisner E, et al. Association of modeled long-term personal exposure to ultrafine particles with inflammatory and coagulation biomarkers. Environ Int. 2016;92-93:173–82.

    CAS  Article  Google Scholar 

  15. 15.

    Fuller CH, Patton AP, Lane K, Laws MB, Marden A, Carrasco E, et al. A community participatory study of cardiovascular health and exposure to near-highway air pollution: study design and methods. Rev Environ Health. 2013;28:21–35.

    CAS  Article  Google Scholar 

  16. 16.

    Patton AP, Zamore W, Naumova EN, Levy JI, Brugge D, Durant JL. Transferability and generalizability of regression models of ultrafine particles in urban neighborhoods in the Boston area. Environ Sci Technol. 2015;49:6051–60.

    CAS  Article  Google Scholar 

  17. 17.

    Lane KJ, Levy JI, Scammell MK, Patton AP, Durant JL, Mwamburi M, et al. Effect of time-activity adjustment on exposure assessment for traffic-related ultrafine particles. J Expo Sci Environ Epidemiol. 2015;25:506–16.

    Article  Google Scholar 

  18. 18.

    Patton AP, Perkins J, Zamore W, Levy JI, Brugge D, Durant JL. Spatial and temporal differences in traffic-related air pollution in three urban neighborhoods near an interstate highway. Atmos Environ. 1994;2014:309–21.

    Google Scholar 

  19. 19.

    Lane KJ, Kangsen Scammell M, Levy JI, Fuller CH, Parambi R, Zamore W, et al. Positional error and time-activity patterns in near-highway proximity studies: an exposure misclassification analysis. Environ Health. 2013;12:75.

    Article  Google Scholar 

  20. 20.

    Fuller CH, Brugge D, Williams PL, Mittleman MA, Lane K, Durant JL, et al. Indoor and outdoor measurements of particle number concentration in near-highway homes. J Expo Sci Environ Epidemiol. 2013;23:506–12.

    CAS  Article  Google Scholar 

  21. 21.

    Soltow QA, Strobel FH, Mansfield KG, Wachtman L, Park Y, Jones DP. High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome. Metabolomics. 2013;9:S132–S143.

    Article  Google Scholar 

  22. 22.

    Liu KH, Walker DI, Uppal K, Tran V, Rohrbeck P, Mallon TM, et al. High-resolution metabolomics assessment of military personnel: evaluating analytical strategies for chemical detection. J Occup Environ Med / Am Coll Occup Environ Med. 2016;58:S53–61.

    CAS  Article  Google Scholar 

  23. 23.

    Yu T, Park Y, Li S, Jones DP. Hybrid feature detection and information accumulation using high-resolution LC-MS metabolomics data. J Proteome Res. 2013;12:1419–27.

    CAS  Article  Google Scholar 

  24. 24.

    Uppal K, Soltow QA, Strobel FH, Pittard WS, Gernert KM, Yu T, et al. xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinforma. 2013;14:15.

    Article  Google Scholar 

  25. 25.

    Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.

    Article  Google Scholar 

  26. 26.

    Go YM, Walker DI, Liang Y, Uppal K, Soltow QA, Tran V, et al. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Toxicol Sci. 2015;148:531–43.

    CAS  Article  Google Scholar 

  27. 27.

    Simon-Manso Y, Lowenthal MS, Kilpatrick LE, Sampson ML, Telu KH, Rudnick PA, et al. Metabolite profiling of a NIST Standard Reference Material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Anal Chem. 2013;85:11725–31.

    CAS  Article  Google Scholar 

  28. 28.

    Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51:3299–305.

    CAS  Article  Google Scholar 

  29. 29.

    Colas RA, Shinohara M, Dalli J, Chiang N, Serhan CN. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am J Physiol Cell Physiol. 2014;307:C39–54.

    CAS  Article  Google Scholar 

  30. 30.

    CDC, NCHS. Laboratory Data: Brominated Flame Retardants (BFRs), Non-dioxin-like Polychlorinated Biphenyls, Fatty Acids - Plasma; Year 2003-2004. In: National Health and Nutrition Examination Survey Data, Year 2003-2004. August 2007, April 2008 ed.; Accessed 21 Jan 2017: Centers for Disease Control and Prevention; National Center for Health Statistics.

  31. 31.

    Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–30.

    CAS  Article  Google Scholar 

  32. 32.

    Boulesteix A, Durif G, Labmbert-Lacroix S, Peyre J, Strimmer K. plsgenomics: PLS Analyses for Genomics. In. R package version 1.3-2. ed, 2017.

  33. 33.

    Rohart F, Gautier B, Singh A, Le Cao KA. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13:e1005752.

    Article  Google Scholar 

  34. 34.

    Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48:2097–8.

    CAS  Article  Google Scholar 

  35. 35.

    Uppal K, Walker DI, Jones DP. xMSannotator: an R package for network-based annotation of high-resolution metabolomics data. Analytical chemistry 2016;

    CAS  Article  Google Scholar 

  36. 36.

    Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51.

    CAS  Article  Google Scholar 

  37. 37.

    Uppal K, Walker DI, Liu K, Li S, Go YM, Jones DP. Computational metabolomics: a framework for the million metabolome. Chemical research in toxicology 2016;

    CAS  Article  Google Scholar 

  38. 38.

    Uppal K, Soltow QA, Promislow DE, Wachtman LM, Quyyumi AA, Jones DP. MetabNet: an R package for metabolic association analysis of high-resolution metabolomics data. Front Bioeng Biotechnol. 2015;3:87.

    Article  Google Scholar 

  39. 39.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289–300.

    Google Scholar 

  40. 40.

    Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with cytoscape 3. Curr Protoc Bioinforma. 2014;47:8 13 11-18 13 24.

    Article  Google Scholar 

  41. 41.

    Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, et al. Predicting network activity from high throughput metabolomics. PLoS Comput Biol. 2013;9:e1003123.

    CAS  Article  Google Scholar 

  42. 42.

    Go YM, Jones DP. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med. 2011;50:495–509.

    CAS  Article  Google Scholar 

  43. 43.

    Iyer SS, Accardi CJ, Ziegler TR, Blanco RA, Ritzenthaler JD, Rojas M, et al. Cysteine redox potential determines pro-inflammatory IL-1beta levels. PLoS ONE. 2009;4:e5017.

    Article  Google Scholar 

  44. 44.

    Go YM, Jones DP. Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state. Circulation. 2005;111:2973–80.

    CAS  Article  Google Scholar 

  45. 45.

    Ashfaq S, Abramson JL, Jones DP, Rhodes SD, Weintraub WS, Hooper WC, et al. Endothelial function and aminothiol biomarkers of oxidative stress in healthy adults. Hypertension. 2008;52:80–5.

    CAS  Article  Google Scholar 

  46. 46.

    Moskovitz J, Berlett BS, Poston JM, Stadtman ER. The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci USA. 1997;94:9585–9.

    CAS  Article  Google Scholar 

  47. 47.

    Mashima R, Nakanishi-Ueda T, Yamamoto Y. Simultaneous determination of methionine sulfoxide and methionine in blood plasma using gas chromatography-mass spectrometry. Anal Biochem. 2003;313:28–33.

    CAS  Article  Google Scholar 

  48. 48.

    Ligthart-Melis GC, van de Poll MC, Boelens PG, Dejong CH, Deutz NE, van Leeuwen PA. Glutamine is an important precursor for de novo synthesis of arginine in humans. Am J Clin Nutr. 2008;87:1282–9.

    CAS  Article  Google Scholar 

  49. 49.

    Gornik HL, Creager MA. Arginine and endothelial and vascular health. J Nutr. 2004;134:2880S–2887S. discussion 2895S

    CAS  Article  Google Scholar 

  50. 50.

    Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10:4–18.

    CAS  Article  Google Scholar 

  51. 51.

    Accardi CJ, Walker DI, Uppal K, Quyyumi AA, Rohrbeck P, Pennell KD, et al. High-resolution metabolomics for nutrition and health assessment of armed forces personnel. J Occup Environ Med. 2016;58:S80–8.

    CAS  Article  Google Scholar 

  52. 52.

    Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111:5944–72.

    CAS  Article  Google Scholar 

  53. 53.

    Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol. 2011;2011:487074.

    Article  Google Scholar 

  54. 54.

    Bates JT, Weber RJ, Abrams J, Verma V, Fang T, Klein M, et al. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environ Sci Technol. 2015;49:13605–12.

    CAS  Article  Google Scholar 

  55. 55.

    Weber D, Milkovic L, Bennett SJ, Griffiths HR, Zarkovic N, Grune T. Measurement of HNE-protein adducts in human plasma and serum by ELISA-Comparison of two primary antibodies. Redox Biol. 2013;1:226–33.

    CAS  Article  Google Scholar 

  56. 56.

    Akude E, Zherebitskaya E, Roy Chowdhury SK, Girling K, Fernyhough P. 4-Hydroxy-2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy. Neurotox Res. 2010;17:28–38.

    CAS  Article  Google Scholar 

  57. 57.

    Selley ML. (E)-4-hydroxy-2-nonenal may be involved in the pathogenesis of Parkinson’s disease. Free Radic Biol Med. 1998;25:169–74.

    CAS  Article  Google Scholar 

  58. 58.

    Sibal L, Agarwal SC, Home PD, Boger RH. The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev. 2010;6:82–90.

    CAS  Article  Google Scholar 

  59. 59.

    Stuhlinger MC, Oka RK, Graf EE, Schmolzer I, Upson BM, Kapoor O, et al. Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine. Circulation. 2003;108:933–8.

    Article  Google Scholar 

  60. 60.

    Eid HM, Arnesen H, Hjerkinn EM, Lyberg T, Seljeflot I. Relationship between obesity, smoking, and the endogenous nitric oxide synthase inhibitor, asymmetric dimethylarginine. Metabolism. 2004;53:1574–9.

    CAS  Article  Google Scholar 

  61. 61.

    Bode-Boger SM, Scalera F, Kielstein JT, Martens-Lobenhoffer J, Breithardt G, Fobker M, et al. Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J Am Soc Nephrol. 2006;17:1128–34.

    Article  Google Scholar 

  62. 62.

    Raghavan SA, Dikshit M. Vascular regulation by the L-arginine metabolites, nitric oxide and agmatine. Pharmacol Res. 2004;49:397–414.

    CAS  Article  Google Scholar 

  63. 63.

    Jacobsen DW. Homocysteine and vitamins in cardiovascular disease. Clin Chem. 1998;44:1833–43.

    CAS  PubMed  Google Scholar 

  64. 64.

    Chung MK, Riby J, Li H, Iavarone AT, Williams ER, Zheng Y, et al. A sandwich enzyme-linked immunosorbent assay for adducts of polycyclic aromatic hydrocarbons with human serum albumin. Anal Biochem. 2010;400:123–9.

    CAS  Article  Google Scholar 

  65. 65.

    Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol. 2008;21:232–52.

    CAS  Article  Google Scholar 

  66. 66.

    Sobinoff AP, Mahony M, Nixon B, Roman SD, McLaughlin EA. Understanding the Villain: DMBA-induced preantral ovotoxicity involves selective follicular destruction and primordial follicle activation through PI3K/Akt and mTOR signaling. Toxicol Sci. 2011;123:563–75.

    CAS  Article  Google Scholar 

  67. 67.

    ATSDR. Toxicological Profile for Cresols. Atlanta, GA: Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine/Applied Toxicology Branch; 2008.

    Google Scholar 

  68. 68.

    Chonchol M, Nielson C. Hemoglobin levels and coronary artery disease. Am Heart J. 2008;155:494–8.

    CAS  Article  Google Scholar 

  69. 69.

    Walker DI, Go Y, Liu K, Pennell K, Jones D, editors. Population screening for biological and environmental properties of the human metabolic phenotype: Implications for personalized medicine. Elsevier, San Diego, CA, USA, 2016.

Download references


This work was supported by funds received from the National Institute of Health, award numbers ES019776, ES023485, ES025632, ES015462, and OD018006. The contents of this article do not necessarily reflect the views of HEI, or its sponsors, nor do they necessarily reflect the views and policies of the EPA or motor vehicle and engine manufacturers.

Author information



Corresponding author

Correspondence to Kurt D. Pennell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walker, D.I., Lane, K.J., Liu, K. et al. Metabolomic assessment of exposure to near-highway ultrafine particles. J Expo Sci Environ Epidemiol 29, 469–483 (2019).

Download citation


  • Exposome
  • High-resolution metabolomics
  • Metabolome-wide association study
  • Traffic-related air pollution

Further reading


Quick links